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Photon density and photon flux are widely used to model the measurable quantity in diffuse optical tomogra-
phy problems. However, it is not these two quantities that are actually measured, but rather the radiance ac-
cepted by the detection system. We provide a theoretical analysis of the model deviations related to the choice
of the measurable quantity—either photon density or flux. By using the diffusion approximation to the radia-
tive transfer equation and its solution with extrapolated boundary conditions, an exact analytical expression of
the measurable quantity has been obtained. This expression has been employed as a reference to assess model
deviation when considering the photon density or the photon flux as the measurable quantity. For the case of
semi-infinite geometry and for both continuous wave and time domains, we show that the photon density ap-
proximates the measurable quantity better than the photon flux. We also demonstrate that the validity of this
approximation strongly depends on the optical parameters. © 2008 Optical Society of America
OCIS codes: 170.0170, 170.3660, 170.6920, 170.7050, 170.6960.

1. INTRODUCTION

The diffusion equation (DE) is known to model to good ap-
proximation the photon migration processes in biological
tissue. Solutions of the DE have been used extensively for
the optical characterization of turbid media, in diffuse op-
tical tomography (DOT) [1,2] and fluorescence diffuse op-
tical tomography (FDOT) [3,4]. Although one requires ex-
pressing the experimentally measurable quantity (MQ),
the solutions of the DE are given in terms of photon den-
sities. A question of interest, already addressed by differ-
ent authors, is to determine the relation between the pho-
ton density and the MQ. The two main approaches are (1)
the MQ is proportional to the photon density [1,3] and (2)
the MQ is proportional to the derivative of the photon
density normal to the boundary, namely, the photon flux
[5,6].

Lui et al. [7] suggested that the two approaches are
equivalent since the photon density and flux are propor-
tional. This assertion is valid when regarding solutions of
the DE obtained with the partial current boundary condi-
tion as shown by Martelli et al. [8]. However, the alterna-
tive extrapolated boundary condition (EBC) is often ap-
plied, since it leads to the derivation of analytical
solutions of the DE [6]. These EBC solutions are widely
employed and appreciated because of the short computa-
tion time they require. In that case, there is no a priori
proportionality between photon density and photon flux,
and both terms must be taken into account.
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Kienle and Patterson [9] first reported improvement in
the determination of optical properties when density and
flux terms are both considered. The same hybrid expres-
sion has been used in the steady-state bioluminescence
problem by Comsa et al. [10]. Xu et al. [11] reported en-
hanced description of continuous wave (CW) light distri-
bution with a distinct expression involving density and
flux. Finally, Laidevant et al. [12] derived a hybrid expres-
sion for the time-resolved (TR) light distribution. How-
ever, the vast majority of authors consider either only
photon density or only photon flux. Indeed, it is also
claimed that there is no difference in taking one or the
other or both terms. For instance, Haskell et al. [13] re-
ported little difference in the simulated MQ when neglect-
ing the density term.

Since deviations between model and measurements can
dramatically affect ill-posed DOT and FDOT problems,
we propose an evaluation of model deviation due to the
choice of MQ. Our evaluation is carried out by comparing
the EBC photon density and the EBC photon flux at a sur-
face to a reference MQ. Tomographic schemes consist of
reconstructing quantities (absorption, diffusion, fluores-
cence yield) from surface excitations and measurements.
Whatever the quantity to be reconstructed, that implies
in practice the calculation of the MQ of light for any posi-
tion of excitation within the medium. Consequently, the
evaluation has been done simultaneously on a wide set of
source positions within the medium.

© 2008 Optical Society of America
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Finally, we restrict the study to a semi-infinite geom-
etry, allowing the simplest description of a bounded me-
dium. However, a more complex geometry such as a slab
or a parallelepiped can be seen as the combination of
semi-infinite media. Such an expansion can be performed
by means of the method of images [14]. Therefore, the de-
viation trends observed in the semi-infinite geometry
could be reasonably extrapolated to those in the slab or
parallelepiped geometry.

In Section 2, we present the classical analytical expres-
sions of photon density and photon flux used to model
MQ. We also detail our reference MQ based on the diffu-
sion approximation and solution of the DE obtained with
EBC. We propose to address both the CW and the TR
case. Since the CW case can be derived from the TR case
by integration over all time, the problem is put into equa-
tions in the more general time domain.

In Section 3, we evaluate the deviation due to the mod-
eling of the MQ by photon density and photon flux. We
emphasize here the necessity to compare the MQ models
for a large variety of source positions. Comparisons based
only on the temporal shapes of the MQ underestimate the
deviation due to neglecting the influence of varying
source—detector separation. The evaluation is done in the
CW domain and in the TR domain. We see that CW de-
viations differ from TR deviations in some situations. Fi-
nally, the evaluation is done for several combinations of
optical parameters and for several numerical apertures
(NA) of the detection system. We observe a strong depen-
dence on some optical parameters.

2. THEORY

In this study, we consider a homogeneous semi-infinite
medium of absorption coefficient u, (cm™1), diffusion con-
stant D=1/3u, (cm) as recommended in [15], and refrac-
tive index n. As depicted in Fig. 1, this medium is sur-
rounded by a nonabsorbing and nondiffusing medium of
refractive index ng.

A. Photon Density with Extrapolated Boundary
Conditions

The photon density ¢ (photon number/cm?/ns) in a dif-
fusing medium is defined as the integration of the radi-
ance L (photon number/cm?/ns/sr) over all solid angles
[16]:

n, dg[
: : u
Ap=p-p, D P
B Az=z-z | w A
b, ! Y,
uw,’ ‘s

Fig. 1. Position of the problem and notations. The lower semi-
infinite medium is absorbing and scattering. The position of the
source S expressed in cylindrical coordinates is (p;,z,), the posi-
tion of the detector D is (p,z). The relative position between S
and D is represented by Az and Ap.
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P(x,t) = f L(8,r,t)ds. (1)
4

In diffusing media, analytical expressions of EBC photon
densities have been well established for simple geom-
etries [6]. In our semi-infinite problem, the photon density
¢ at position r=phi,+20, and time ¢ (ns) due to the injec-
tion of a light pulse at position r¢=p,li,+2,0, and time ¢
=0 is given by

v Ap?
) 7t =T 39 - th_
Hrrs0) (47vDt)*? x| T M 4vDt
AZZ
X| e -
[Xp< 4th)

( (z+2de+zs)2>:|
—exp| - ———— | |, (2)

4vDt

where v (cm/ns) is the speed of light in the medium, Ap
=p-p, (cm) and Az=z-z, (cm) represents the radial and
normal source—detector separation. The distance d, (cm)
is the distance of extrapolation away from the physical in-
terface and where the photon density vanishes. The dis-
tance of extrapolation is calculated according to [13] and
[17], taking into account the index mismatch between the
diffusing and the nondiffusing medium (see [18] for fur-
ther discussion of that distance).

B. Photon Flux with Extrapolated Boundary Conditions
The photon flux F (photon number/cm?/ns) in the direc-
tion n is defined from the photon density. Several expres-
sions, differing only in a multiplicative factor, have been
used [6,9]. Let us keep the simple definition

F(r,t)=V(r,t) fi. (3)

The photon flux normal to the boundary is easily given by
deriving Eq. (2) along 11,. The classical expression is then
obtained:

1 Ap?
Flryrgt)= ———0p - MVt -
Tl = Deambn® <P\ "4~ Dy

(z +2d, +2,)?
X3 (z + 2d, + z,)exp| - —————
4vDt¢
Az?
-A - . 4
2 exp 4vD¢ @)

It can be seen from Eq. (2) and Eq. (4), that photon den-
sity and photon flux are not proportional. Indeed, the ra-
tio between these two quantities is not a constant and de-
pends notably on the time and on the normal source—
detector separation.

C. Measurable Quantity

The MQ at the surface position r=pi, has been rigorously
defined by Haskell et al. [13]. It is stated that surface MQ
is proportional to the radiance L transmitted from the dif-
fuse medium to the detection system and integrated over
the angles accepted by the detection system:
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MQ(I‘,I's,t) o f TF(é)L(ryrsyé’t)é : ﬁ(r)dé’ (5)

Qeger

where g, is the solid angle corresponding to the NA of
detection, § is a unit vector indicating the direction of ra-
diance, and n is a unit vector indicating the direction of
detection. We consider normal detection, leading to n=
-z. All these parameters are represented in Fig. 2. Ty is
the Fresnel transmission coefficient for unpolarized light
given by

TF(0)=1——

1/ncos @ —ngcos 62
2

n cos 6’ +ngcos 6

2

1/ncos @—ngcos 0'\2
(6)

n cos 6+ ngcos 6'

where 6 is the angle of incidence from within the medium
and @’ is the refracted angle outside the medium (see Fig.
2) satisfying the Snell-Descartes law n(sin §’'=n sin 6
[13].

To go further, the radiance L can be expanded in terms
of ¢ according to the diffusion approximation [16]:

1 3D
L(r,rg,8,t) = —d(r,re,t) - —V(r,rg,t)-§.  (7)
47 47

Substituting Eq. (7) in Eq. (5) and after some algebra (see
[16] and [19] for details on the derivation) we derive the
general form

MQ(r,rg,t) « ¢(r,rg,t) + 3DCF(v,rg,t). (8)

The general Eq. (8) describes the MQ as the weighted
sum of a density term and a flux term. The weight coeffi-
cients C give the relative amount of photon density and
flux that have to be considered. This coefficient depends
only on refractive indices n and ny and on the NA of the
detection system, since they are analytically given by

em
f Tp(6')sin 6 (1~ ng/n® sin® ¢')d ¢’
C="n , 09
f TF(Q/)Sin 0’(1 - ng/n2 Sin2 0’)1/2d0/

where 6,,=arcsin (NA) represents the angle of maximal
acceptance of the detection system. Note that the integra-

n(r)
O ,
n 0
0 Qdet
n |
", . A
w’ 5 0 i 2

Fig. 2. Determination of the MQ. §-fi=cos 6. § and ¢ are re-
lated through the Snell-Descartes law. The radiance is inte-
grated over all refracted angles within the acceptance of the de-
tection system. All ¢ smaller than 6,, must be considered.
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Table 1. Indicating Values of Coupling Coefficients
for Different NA and Refractive Indices n“

n
NA 1.33 1.4 1.5 1.54
0.2 0.994 0.995 0.996 0.996
0.5 0.963 0.967 0.971 0.973
0.7 0.925 0.933 0.942 0.945
0.9 0.865 0.879 0.895 0.901

“Here ny is set to 1.

tion is performed on refracted angles corresponding to
photons leaving the medium.

Values of the weight coefficient C for different NAs and
refractive indices are gathered in Table 1. Equation (8)
generalizes for any numerical aperture and refractive in-
dex the hybrid expressions proposed by different authors.
The expression of Kienle and Patterson [9] and similar ex-
pressions are identical to Eq. (8) under conditions of large
NA. The expression proposed by Laidevant et al. [12] and
similar expressions can be retrieved considering a low
NA, for which C tends to 1.

3. MODEL DEVIATIONS

A. Continuous Wave Domain
In the CW domain, we propose to evaluate the following
deviations:

Jad)(r,rs,t)dt—fMQ(r,rS,t)dt

€g,0m(r,rg) = ,
fMQ(I',Ps,t)dt
(10a)
jBF(r;rs’t)dt_fMQ(r,rs,t)dt
€ cw(r,ry) = .
JMQ(r,rs,t)dt
(10b)

The model deviation due to the use of the photon density
as the MQ is given by Eq. (10a). The model deviation due
to the use of photon flux as the MQ is given by Eq. (10b).
The two quantities €; cw and €;cw can be analytically de-
termined by integration of Eq. (2) and Eq. (4) and use of
Eq. (8). Analytical expression of the integrals of Eq. (2)
and Eq. (4) can be found in [6]. CW deviations depend on
the depth of the source Az=-z, and on the radial source—
detector separation Ap. The coefficients of proportionality
a and B are calibrated such that CW deviations are null
for large source—detector separations. For such long dis-
tances of propagation, the photon density and the photon
flux are proportional. This assertion is proved in Appen-
dix A.

An illustration of CW deviations is given on Fig. 3. To
investigate tomographic conditions, we represent devia-
tions for 143 different source—detector relative positions.
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Fig. 3. (Color online) CW deviations in tomographic conditions.

MQ is approximated by the photon density (left) and by the pho-
ton flux (right). z, varies from 1/u, to 5 cm and Ap from 0 to 4 cm.
Here 1,=0.05cm™, u/=2cm™, n=1.54, and NA=0.7. The closer
to the surface the source is, the larger the deviations are.

Table 2. CW Deviations at z,=1/u_ cm for
1e=0.05 cm™! and NA=0.7

€q.cw (%) &rcw (%)

e (cm)! n Min Max Min Max
2 1.33 -18.9 14.1 -21.9 29.4

5 1.33 1.2 9.0 -17.0 -2.0

20 1.33 0.5 5.5 -9.5 -0.8

2 1.54 -23.3 18.9 -38.8 47.9

5 1.54 -2.4 12.0 -29.7 5.9

20 1.54 2.2 7.5 -20.3 -0.8

The smallest z, investigated was chosen equal to 1/u..
This choice is based on external laser beam excitations, as
this type of excitation is commonly modeled by a source of
light positioned at depth 1/u, below the surface [5]. We
investigate z, up to 5 cm and Ap up to 4 cm. These dimen-
sions are large enough for DOT and FDOT problems.

It can be seen that for both photon density and flux, the
shallower the source is, the larger the deviations are. In
particular, the photon density and the photon flux due to
a surface excitation differ significantly from the MQ.
These deviations will be of particular consequence with
DOT and FDOT problems for which the quantity to be re-
constructed (absorption, diffusion, or fluorescence yield) is
close to the surface. Interestingly, it can be noted that
choosing photon density as the MQ leads to lower devia-
tions than choosing photon flux. We calculated the same
deviation pictures as in Fig. 3 for several u,
€[0.02,0.2] em™1, for several u. € [2,20] cm™!, for several
n €[1.33,1.54] (from water to epoxy resin), and for sev-
eral NA €[0.2,0.9]. These sets of parameters cover most
of the situations encountered in DOT and FDOT prob-
lems.

The same trends in deviations with increased or re-
duced amplitudes were observed for all these configura-
tions. Some interesting results for z;=1/u, cm are re-
ported in Table 2. We observed that the deviations were
mainly amplified by the parameter u,. A low-diffusing
medium leads to large deviations. Deviations are accentu-
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ated by high values of n, especially when the photon flux
is assumed to describe the MQ. Finally, deviations are af-
fected to a lower extent by the parameters p, and NA.

B. Time Domain

In the time domain, we introduce the following devia-

tions:

a¢(r7 rg, t) - MQ(I', rg, t)
MQ(r,r,t) ’

€1 1r(T,Ts,t) = (11a)

BF(rvrsvt) _MQ(r,rs,t)
MQ(r,rg,t)

€ r(T,rg,t) = (11b)

In the same way, the model deviations due to the use of
photon density as a model of the MQ is given by Eq. (11a).
The model deviation due to the use of flux as a model of
the MQ is given by Eq. (11b). The two quantities €; 7z and
€.rr can be easily derived using Eq. (2), Eq. (4), and Eq.
(8). TR deviations depend also on the depth of the source
Az=-z, and on the time ¢ but, contrary to the CW case,
not on the radial source—detector separation Ap.

An illustration of TR deviations is given in Fig. 4. We
chose the same relative source—detector positions as in
the CW domain (see subsection 3.A). The coefficients of
proportionality « and B calibrated for the CW study were
also used in the time domain. For both photon density

100¢ 100

50t . . 50f ;s
mcreasing Zs AT o

S
S
increasing z
=50} ¢ =50 &%
5
%05 1 15 1% o5 1
t (ns) t (ns)
Fig. 4. (Color online) TR deviations in tomographic conditions.

MQ is approximated by the photon density (left) and by the pho-
ton flux (right). z, varies from 1/u/, to 5 cm. TR deviations do not
depend on Ap. Here p,=0.05cm™, u/=5cm™, n=1.54, and NA
=0.7. The earlier the time, the larger the deviations.

Table 3. TR Deviations at u,=5 cm™, u,=0.05cm™1,

and NA=0.7
€4, TR (%) €, TR (%)

t (ns) n Min Max Min Max
0.1 1.33 -70.0 11.9 -20.4 105.6
0.1 14 -64.9 14.0 -27.6 127.5
0.1 1.54 -61.5 16.1 -40.0 173.1
1.0 1.33 -1.2 2.9 -5.0 2.0
1.0 14 -1.9 3.7 -7.3 3.8
1.0 1.54 -4.2 5.5 -13.9 10.5
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and flux, the smaller ¢ is, the larger the deviations. At
early time, deviations are particularly high, especially for
deep sources and when the MQ is modeled by the photon
flux. Here again, it can be seen that the use of photon den-
sity rather than photon flux results in smaller deviations.
Analogously to the CW case, deviations were evaluated
for several u,c[0.02,0.2]cm™!, several u) e[2,20]cm™?,
several n €[1.33,1.54], and several NA €[0.2,0.9]. As for
the CW domain, the trends of deviations remain the same
for all configurations but exhibit increased or reduced am-
plitudes. In the TR case the main amplifying parameter is
found to be n. The larger n is, the larger the deviations
are whether photon density if or photon flux is considered.
Examples of deviations for different n are shown in Table
3. Secondarily, low u. leads to larger deviations. The pa-
rameters u, and NA have limited impact.

4. DISCUSSION AND CONCLUSION

In this study, we analyzed the impact of the approxima-
tion of the measurable quantity. The main contribution of
this work was to show that EBC photon density better de-
scribes the measurable quantity than EBC photon flux in
DOT and FDOT according to the diffusion approximation.
We saw that model deviations due to the approximation of
the MQ can be reduced by a factor of 2 when photon den-
sity is preferred to photon flux. That conclusion was found
to be true for CW and TR problems for a wide range of
optical properties. In addition, it, was proved that the de-
gree of accuracy of approximating the MQ to the photon
density strongly depends on the values of the optical pa-
rameters.

More precisely, we found for u/=5cm™' that the CW
photon density differs by less than 15% from the MQ
whatever source position, absorption, refractive index, or
numerical aperture is considered. We identified that CW
deviations are larger when the source is close to the sur-
face and also larger if the medium is less diffusing. When
the propagation distances are short and when the diffu-
sion processes are limited, the directive (flux) component
of the MQ differs significantly from the isotopic (density)
component.

In the time domain, we found at #=1ns that the TR
photon density deviation from the MQ is less than 15%
whatever source depth, absorption, diffusion, refractive
index or NA is considered. We observed that the largest
TR deviations occur at early time and are negative for the
photon density (underestimation of the MQ) and positive
for the photon flux (overestimation of the MQ). We inves-
tigated how large these deviations are by deriving the
limit of €; 7z and €7 when ¢ tends to zero (see Appendix
B for details). It was shown that using the photon density
results in a 100% underestimation of the MQ at early
time. It was also shown that using photon flux results in
an overestimation of the MQ at early time. The amplitude
of this overestimation depends on the optical properties of
the medium and the NA of the detection system according
to formula Eq. (B6). For all the situations investigated in
the present paper, the amplitude of the early time photon
flux overestimation is always larger than the amplitude of
the early time photon density underestimation.

Ducros et al.

In the time domain, we also established that the stron-
ger n is, the larger the deviations are. This strong index
dependency, enhanced at early time, was not observed in
the CW domain. The index mismatch has high implica-
tions in terms of extrapolation distance. Although the im-
plications in terms of extrapolation distance are the same
in the CW domain, the dependency is limited in that do-
main. The determining aspect of the index dependency
may be explained in terms of speed of light in the me-
dium. Indeed, the speed of light affects only the time do-
main since it cancels out in the CW domain where phe-
nomena are integrated over time.

In the situations investigated, the NA of the detection
system is not a crucial parameter. However, we would like
to point out that the influence of this parameter grows
sensitive when a low-diffusing medium is considered, as
already noted by Martelli et al. [8] with partial current
boundary conditions.

In this paper we identified and quantified model devia-
tions due to the modeling of the MQ. Our analysis is
based entirely on the diffusion approximation. It may be
interesting to note that the situations for which the use of
photon density to model the MQ becomes questionable
are situations for which the diffusion approximation
starts to be invalid. Indeed, the diffusion approximation
breaks down when low-diffusing media, near-to-surface
source positions, and early time are examined. It can be
postulated that the diffusion approximation can hold in a
wider range of validity when the exact MQ expression
given in Eq. (5) is used. Further studies with experimen-
tal measurements could enlarge the discussion and pro-
vide an answer to this question.

APPENDIX A: LIMIT OF THE RATIO
BETWEEN PHOTON DENSITY AND PHOTON
FLUX FOR DEEP SOURCE OF LIGHT IN

THE CONTINUOUS WAVE DOMAIN

To evaluate

o(r,rg,t)de
L,=lim —, (A1)
JF(r,rs,t)dt

we make use of analytical expressions of [¢(r,rg,t)dt and
[F(r,rg,t)d¢ given by Eqgs. (12) and (15) of [20]. With our
notations, the two equations are rewritten

1 |: exp(-kry) exp(-ksy) :|
J d)(ryrsyt)dt = - ,
47TD ry ry
(A2a)
1 | (zg+2d,)(krg+1)
f o(r,rg,t)dt = D 2 exp(- krs)

Zs(krl + 1)

+————exp(- krl)l , (A2Db)

ry

where r2=Ap?+22, ra=Ap?+(2d,+z,)% and k=(u,/D)"2.
With no loss of generality when z, tends to infinity, Ap is
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set to zero in Eqgs. (A2a) and (A2b). Then the two quanti-
ties are factored into the form

1 exp(-kz,)
f d)(rarmt)dt = —[1 - exp(_ 2dek)]A(r’rs)5
47D s
(A3a)
k  exp(-kz,)
j F(r,rg,t)dt = —— ———[1 + exp(- 2d,.k)]B(r,ry),
47D 2

(A3Db)

where the terms A and B both tend to one when z, tends
to infinity. Taking the ratio between [¢(r,rg,t)d¢ and
JF(r,rg,t)d¢ in the form of Egs. (A3a) and (A3b) leads to
the derivation of the finite limit as

1-exp(-2d,k)1

o=, (A4)
1+ exp(-2d.k)k

L., has the dimensions of length. The strict positivity of d,
and %k guarantee that L., is also positive.

APPENDIX B: BOUNDS OF DEVIATIONS IN
THE TIME DOMAIN

In order to evaluate how large the deviations are at early
time, we are interested in deriving the following quanti-
ties:

i ot = 1 o(r,rg,t) ) (Bla)
im € pp(r,re,t) = Ilma——— -1, a
t—0%* ° t—0* MQ(r?rS}t)

. ( - F(r,rg,t) (B1b)
im € p(r,re,t) = limf————— — 1. B1
g MQrryt)

To derive the two limits in Eq. (Bla) and Eq. (B1lb), we
rewrite Egs. (2), (4), and (8) in the form

v Ap+22
t)=———5 - 1 t
(B2a)
zJ/2D 1 Ap+22
F ) ’t =T a9, - J ) st ’
wxel) = b2t P\~ gy )
(B2b)
3Cz/2 1 Ap +22
M t)=————5— - K t
(B2c¢)

where the three terms I, J, and K tend to one when ¢
tends to 0*. Upon substitution of Eq. (B2a) and Eq. (B2¢)
into Eq. (Bla) and substitution of Eq. (B2b) and Eq. (B2¢)
into Eq. (B1b), we obtain the following limits:

lim ed,TR(r,rsst) == 1’ (BSa)
t—0*
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B
lim r,rgt)=——-1. B3b
tioff,TR( >t) 3CD (B3b)

Using the fact that B is calibrated in the CW domain
such that €; cw(r,rs) tends to zero when z; tends to infin-
ity, we can write

F(r,rg,t)dt
limgB—— -1=0. (B4)
= f MQ(r,r,,t)dt
With expansion of M@ in terms of ¢ and F' and use of the

definition of L., given by Eq. (Al), we derive the simple
expression

B=L.+3CD. (B5)

After substitution of Eq. (B5) into Eq. (B3b), we finally ob-
tain

L.,
tlil;ié'f’TR(I',I‘s,t) = ﬁ >0. (B6)
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