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STRUCTURE OF BOREL SUBGROUPS IN SIMPLE GROUPS OF

FINITE MORLEY RANK

TUNA ALTINEL, JEFFREY BURDGES, AND OLIVIER FRÉCON

Abstract. We study the structure of subgroups of minimal connected simple

groups of finite Morley rank. We first establish a Jordan decomposition for
a large family of minimal connected simple groups including those with a
non-trivial Weyl group. We then show that definable, connected, solvable
subgroups of such a simple group are the semi-direct product of their unipotent

part extended by a maximal torus. This is an essential step in the proof of
the main theorem which provides a precise structural description of Borel
subgroups.

1. Introduction

This article aspires to contribute to the progress towards the resolution of the
Cherlin-Zil’ber conjecture, which states that an infinite simple group of finite Morley
rank, seen as a pure group structure, is a linear algebraic group over an algebraically
closed field. This conjecture is in fact a natural question in the context of the model
theory of algebraic structures. It has served as a reference point in that any work on
simple groups of finite Morley rank is an attempt to measure how far one is from a
family of algebraic groups. These attempts have had recourse to two main sources
in addition to model-theoretic foundations: the structure of linear algebraic groups,
and finite group theory, especially the classification of the finite simple groups.

This paper touches upon all these resources. Its main theme is the description
of the solvable subgroup structure of a large class of connected minimal simple
groups. Connected minimal simple groups of finite Morley rank are those whose
proper definable connected subgroups are solvable, and their analysis has well-
known analogues in the classification of the finite simple groups. The main theorem
of the present paper (Theorem 6.16) yields a precise structural description in our
context, of the Borel subgroups (maximal definable connected solvable subgroups)
as a semi-direct product of two definable, connected subgroups. In order to achieve
this objective, a Jordan decomposition is established by introducing notions of
semisimple and unipotent elements.

Our main theorems were initially proven for connected minimal simple groups
having a non-trivial Weyl group (see Section 3 for the definition). In fact, our
methods cover a more general class of groups. They will be proven for a connected
minimal simple group G that satisfies the negation of the following assumption:

(∗)
the Borel subgroups of G are all non-nilpotent and there exists
one that is generically disjoint from its conjugates.
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The groups not covered by our theorems form a subclass of groups of type (1),
one of the four mutually exclusive families that cover all connected minimal simple
groups and were introduced in [ABF12] (Fact 3.9). The groups satisfying the (*)
hypothesis are groups whose structure is close to that of a bad group (see Fact
2.12), but having no nilpotent Borel subgroup. They form a class of groups for
which known group theoretical methods are ineffective. However, as it will be
discussed in the final section of this article, our results have potential extensions
that are both natural and relevant.

Our main result is Theorem 6.16 that gives a precise structural description of
the Borel subgroups of a connected minimal simple group satisfying the negation
of the (∗) hypothesis. This theorem involves the use of Carter subgroups, definable,
connected, nilpotent subgroups of finite index in their normalizers.

Main Theorem (special case of Theorem 6.16, Corollary 6.17) – Let G be a
connected minimal simple group of finite Morley rank which satisfies the negation
of (∗). Then any Borel subgroup B of G satisfies

B = U ⋊D .

where D is any Carter subgroup of B and U is a normal nilpotent connected defin-
able subgroup of B.

Furthermore, if D is abelian, then B′ = U and Z(B) = F (B) ∩D.

A noticeable consequence of this result is a positive answer to a question posed
by Deloro in the end of his Ph. D. Thesis [Del07, p. 93] about the splitting of Borel
subgroups in a specific class of connected minimal simple groups of odd type (see
Section 2 after Fact 2.14 for the definition).

The main ingredient for our analysis is the introduction in Section 5 of notions
of semisimple and unipotent elements in the context of groups of finite Morley rank.
The semisimple elements are those belonging to a Carter subgroup of the ambient
group, and an element u is unipotent if its definable envelope d(u) contains no
nontrivial semisimple element. In the context of reductive algebraic groups over
an algebraically closed field, these definitions corresponds exactly to the algebraic
ones. We succeed in obtaining the following Jordan Decomposition in the context
of connected minimal simple groups.

Theorem 5.12 – Let G be a minimal, connected, simple group of finite Morley
rank which satisfies the negation of the (∗) hypothesis. Then for each x ∈ G, there
exists a unique semisimple element xs and a unique unipotent element xu satisfying
the following conclusions:

(1) x = xsxu = xuxs;
(2) for each x ∈ G, we have d(x) = d(xs)× d(xu);
(3) for each (x, y) ∈ G × G such that xy = yx, we have (xy)u = xuyu and

(xy)s = xsys.

Using our Jordan Decomposition, we obtain the following decomposition of solv-
able subgroups:

Theorem 6.12 – Let G be a connected minimal simple group of finite Morley rank
which satisfies the negation of (∗). In each connected solvable definable subgroup H
of G, the set Hu of the unipotent elements of H is a definable connected subgroup
such that H = Hu ⋊ T for any maximal torus T of H.
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This is an analogue in our context of the well-known decomposition of closed,
connected, solvable subgroups of algebraic groups. The proof of Theorem 6.16
builds on this essential step.

It should be noted that the Jordan Decomposition in groups of finite Morley
rank has been studied independently by Poizat in [Poiz12]. The approaches are
different because Poizat aims to obtain a description of the centralizer a generic
element of a group of finite Morley rank.

2. Background on groups of finite Morley rank

This is a long section that covers the entire bacground on groups of finite Morley
rank needed in this paper. Keeping in mind specialists not familiar with groups of
finite Morley rank, in order to be as self-consistant as possible, we will start from
the most fundamental results. For further details, one can consult [BN94], [ABC08].
[PoizGrSt] contains a more model-theoretic approach to some of the themes of this
paper. [WagStGr] offers a solid introduction to probable extensions of our results
to higher levels of generality. Some recent results that do not appear in these books
will be exposed in detail. Readers familiar with groups of finite Morley rank can
skip this section, but have a look at the next one devoted to very recent progress.

Morley rank is one of the many dimension notions in model theory. It gen-
eralizes the notion of Zariski dimension of closed sets in algebraic geometry over
algebraically closed fields. In the case of a structure that admits Morley rank, de-
finable sets are those that yield themselves to the measurement by the Morley rank.
We will note the Morley rank of a definable set X by rk(X).

The ordinal character of the Morley rank imposes strong finiteness conditions,
the most fundamental being the descending chain condition on definable subgroups:
in a group of finite Morley rank, there is no infinite descending chain of definable
subgroups. This property allows one to introduce various notions in the abstract
context of groups of finite Morley rank, analogous to geometric aspects of algebraic
groups. Thus, the connected component of a group G of finite Morley rank, noted
G◦ and defined as the smallest definable subgroup of finite index, does exist and
is the intersection of all definable subgroups of finite index in G. A group of finite
Morley rank is said to be connected if it is equal to its connected component.

The connected component of a group is an example of a “large” definable set in
that it is of the same rank as the ambient group. In general, a definable subset X
of G is said to be generic if rk(X) = rk(G).

In a dual vein, if X is an arbitrary subset of a group G of finite Morley rank, then
one defines its definable hull, noted d(X) as the intersection of all definable sub-
groups of G containing X. Thanks to the descending chain condition, the definable
hull of a set is well-defined and yields an analogue of the Zariski closure in algebraic
geometry. The existence of a definable hull allows to introduce the connected com-
ponent of an arbitrary subgroup of the ambient group G: if X is subgroup, then
X◦ is defined as X ∩ d(X)◦, and X is said to be connected if X = X◦. It is worth
noting that the notion of definable hull has proven to be very effective in illuminat-
ing the algebraic structure of groups of finite Morley rank since many algebraically
interesting subgroups such as Sylow subgroups, are not definable. Various algebraic
properties are preserved as one passes to the definable hull:
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Fact 2.1. – (Zil’ber) [BN94, Corollary 5.38] Let G be a group of finite Morley rank
and H be a solvable (resp. nilpotent) subgroup of class n. Then d(H) has the same
properties.

Another fundamental notion that also has connections with definability and con-
nectedness is that of an indecomposable set. A definable set in a group G of finite
Morley rank is said to be indecomposable if for any definable subgroup H ≤ G
whenever cosets of H decompose X into more than one subset, then they decom-
pose into infinitely many. In particular, an indecomposable subgroup is a connected
subgroup.

The notion of indecomposable set, that has analogues well-known to algebraic
group theorists, is of fundamental importance in that it helps clarify the definable
structure of a group of finite Morley rank. This is mostly due to the Zil’ber’s
indecomposability theorem which states that indecomposable sets which contain the
identity element of the group generate definable connected subgroups. We will use
its following corollaries frequently, mostly without mention:

Fact 2.2. – [BN94, Corollary 5.28] Let G be a group of finite Morley rank. Then the
subgroup generated by a family of definable connected subgroups of G is definable
and the setwise product of finitely many of them.

Fact 2.3. – [BN94, Corollaries 5.29 and 5.32] Let G be a group of finite Morley
rank.

(1) Let H ≤ G be a definable connected subgroup of G and X an arbitrary
subset of G. Then the subgroup [H,X] is definable and connected.

(2) Let H be a definable subgroup of G. Then the members of the derived (H(n))
and lower central series (Hn) of H are definable. If H is connected, then
so are these subgroups of H.

As a linear algebraic group, a group of finite Morley rank is built up from defin-
able, minimal subgroups that are abelian:

Fact 2.4. – [Rei] [BN94, Theorem 6.4] In a group of finite Morley rank, a minimal,
infinite, definable subgroup A is abelian. Furthermore, either A is divisible or is an
elementary abelian p-group for some prime p.

This simple and historically old fact is what permits many inductive arguments
using Morley rank. The additional structural conclusions in Fact 2.4 are related to
the following general structural description of abelian groups of finite Morley rank.

Fact 2.5. – [Mac70Gr, Theorems 1 and 2] [BN94, Theorem 6.7] Let G be an abelian
group of finite Morley rank. Then the following hold:

(1) G = D⊕C where D is a divisible subgroup and C is a subgroup of bounded
exponent;

(2) D ∼= ⊕p prime(⊕IpZp∞
)⊕⊕IQ where the index sets Ip are finite;

(3) G = DB where D and B are definable characteristic subgroups, D is di-
visible, B has bounded exponent and D ∩ B is finite. The subgroup D is
connected. If G is connected, then B can be taken to be connected.

It easily follows from this detailed description of abelian groups of finite Morley
rank that, in general, groups of finite Morley rank enjoy the property of lifting
torsion from definable quotients. More precisely, if G is a group of finite Morley
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rank, H ≤ G a definable subgroup of G and g ∈ G such that gn ∈ H for some
n ∈ N∗, where n is assumed to be the order of g in d(g)/d(g) ∩ H and is a π-
number with π a set of prime numbers, then there exists g′ ∈ gH ∩ d(g) such that
g′ is again a π-element. Here, a π-number is a natural number whose prime divisors
belong to π, and a π-element is an element whose order is a π-number. Weyl groups
(see Section 3) provide a good example of the importance of this property. The
torsion-lifting property will be used without mention.

Fact 2.5 was later generalized to the context of nilpotent groups of finite Morley
rank using techniques of algebraic character:

Fact 2.6. – [Nes91, Theorem 2] [BN94, Theorem 6.8 and Corollary 6.12] Let G be
a nilpotent group of finite Morley rank. Then G is the central product B ∗D where
D and B are definable characteristic subgroups of G, D is divisible, B has bounded
exponent. The torsion elements of D are central in G.

The structural description provided by Facts 2.5 and 2.6 can be regarded as a weak
“Jordan decomposition” in groups of finite Morley rank since, using the notation of
the fact, B and D are respectively abstract analogues of unipotent and semisimple
parts of a nilpotent algebraic group. This viewpoint is indeed weak in that when
B = 1 and D is a torsion-free group, it is not possible to decide whether D is
semisimple or unipotent (characteristic 0).

The description of the divisible nilpotent groups can be refined further:

Fact 2.7. – [Nes91, Theorem 3] [BN94, Theorem 6.9] Let G be a divisible nilpotent
group of finite Morley rank. Let T be the torsion part of G. Then T is central in
G and G = T ⊕N for some torsion-free divisible nilpotent subgroup N .

This description has been extensively exploited in most works on groups of finite
Morley rank and this paper is no exception to this. Remarkably, as will be explained
later in this section, and used later in this paper, a finer analysis of nilpotent groups
of finite Morley rank, even when torsion elements are absent, is possible using a
suitable notion of unipotence.

We also include the following two elementary properties of nilpotent groups of
finite Morley rank that generalize similar well-known properties of algebraic groups.
Other similarities involving normalizer conditions will be mentioned later in this
section in the context of the finer unipotent analysis.

Fact 2.8. –

(1) [BN94, Lemma 6.3] Let G be a nilpotent group of finite Morley rank and H
a definable subgroup of infinite index in G. Then NG(H)/H is infinite.

(2) [BN94, Exercice 6.1.5] Let G be a nilpotent group of finite Morley rank.
Any infinite normal subgroup has infinite intersection with Z(G).

As in many other classes of groups, there is a long way between nilpotent and
solvable groups of finite Morley rank. The differences are best measured by field
structures that are definable in solvable non-nilpotent groups of finite Morley rank.
All the solvable results used in this paper illustrate this “definably linear” aspect of
solvable groups of finite Morley rank. The most fundamental one is the following:

Fact 2.9. – (Zil’ber) [BN94, Theorem 9.1] Let G be a connected, solvable, non-
nilpotent group of finite Morley rank. Then there exist a field K and definable
connected sections U and T of G′ and G/G′ respectively such that U ∼= (K,+),
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and T embeds in (K×, .). Moreover, these mappings are definable in the pure group
G, and each element of K is the sum of a bounded number of elements of T . In
particular, K is definable in G and hence of finite Morley rank.

The ability to define an algebraically closed field in a connected solvable even-
tually culminates in the following result that generalizes a well-known property of
connected solvable algebraic groups.

Fact 2.10. – [BN94, Corollary 9.9] Let G be a connected solvable group of finite
Morley rank. Then G′ is nilpotent.

The Fitting subgroup of a group of finite Morley rank G, noted F (G), is defined
to be the maximal, definable, normal, nilpotent subgroup of G. By the works of
Belegradek and Nesin, this definition is equivalent to the one used in finite group
theory: the subgroup generated by all normal, nilpotent subgroups. The following
result of Nesin shows that the Fitting subgroup shares properties of its unipotent
analogues in algebraic groups. This is another consequence of the linear behaviour
of solvable groups of finite Morley rank of which various refinements have been
obtained first in the works of Altseimer and Berkman, later of the third author.

Fact 2.11. – [BN94, Theorem 9.21] Let G be a connected solvable group of finite
Morley rank. Then G/F (G)◦, thus G/F (G) are divisible abelian groups.

Beyond solvable?... Since this paper is about minimal connected simple groups
of finite Morley rank and we already mentioned examples that motivate the Alge-
braicity Conjecture, at this point we will be content with the most extreme minimal
counterexample whose existence is a major open problem, namely bad groups. By
definition a bad group is a connected, non-solvable, group of finite Morley rank
whose proper definable connected subgroups are nilpotent. One easily shows that
if a bad group exists, then there exists a simple one. In particular, such a group
is minimal, connected and simple. The following make up for most of the few but
striking known properties of simple bad groups.

Fact 2.12. – [BN94, Theorem 13.3] The following hold in a simple bad group G:

(1) The Borel subgroups of G are conjugate.
(2) Distinct Borel subgroups of G are intersect trivially.
(3) G is covered by its Borel subgroups.
(4) G has no involutions.
(5) NG(B) = B for any Borel subgroup B of G.

A Borel subgroup of a group of finite Morley rank is a maximal, definable, connected,
solvable subgroup.

Clearly, the stated properties are far from those of simple algebraic groups.
Except for the primes 2 and 3, it is not even known whether a simple bad group
can be of prime exponent. This is the main reason why below we will be careful
while treating p-subgroups of groups of finite Morley rank.

In this paper, for each prime p, a Sylow p-subgroup of any group G is defined
to be a maximal locally finite p-subgroup. By Fact 2.13 (1), such a subgroup of a
group of finite Morley rank is nilpotent-by-finite.

Fact 2.13. –

(1) [BN94, Theorem 6.19] For any prime number p, a locally finite p-subgroup
of a group of finite Morley rank is nilpotent-by-finite.
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(2) [BN94, Proposition 6.18 and Corollary 6.20] If P is a nilpotent-by-finite
p-subgroup of a group of finite Morley rank, then P ◦ = B ∗ T is the central
product of a definable, connected, subgroup B of bounded exponent and a
divisible abelian p-group. In particular, P ◦ is nilpotent.

The assumption of local finiteness for p-subgroups is rather restrictive but un-
avoidable as was implied by the remarks after Fact 2.12. The only prime for which
the mere assumption of being a p-group is equivalent to being a nilpotent-by-finite
in groups of finite Morley rank is 2. The prime 2 is also the only one for which a
general Sylow theorem is known for groups of finite Morley rank:

Fact 2.14. – [BN94, Theorem 10.11] In a group of finite Morley rank the maximal
2-subgroups are conjugate.

Before reviewing the Sylow theory in the context of solvable groups where it is
better understood, we introduce some terminology related to the unipotent/semisimple
decomposition, as well as some of its implications for the analysis of simple groups
of finite Morley rank. For each prime p, a nilpotent definable connected p-group
of finite Morley rank is said to be p-unipotent if it has bounded exponent while a
p-torus is a divisible abelian p-group.

In general, a p-torus is not definable but enjoys a useful finiteness property in a
group of finite Morley rank. It is the direct sum of finitely many copies of Zp∞ , the
Sylow p-subgroup of the multiplicative group of complex numbers. In particular,
the p-elements of order at most p form an finite elementary abelian p-group of which
the rank is called the Prüfer p-rank of the torus in question. Thus, in any group
of finite Morley rank where maximal p-tori are conjugate, the Prüfer p-rank of the
ambient group is defined as the Prüfer p-rank of a maximal p-torus.

The choice of terminology, “unipotent” and “torus”, is not coincidental. Fact
2.13 (2) shows that the Sylow p-subgroups of a group of finite Morley rank have
similarities with those of algebraic groups. These are of bounded exponent when
the characteristic of the underlying field is p, and divisible abelian when this char-
acteristic is different from p. In the notation of Fact 2.13 (2), this case division
corresponds to T = 1 or B = 1 respectively when the Sylow p-subgroup in question
is non-trivial.

A similar case division for the prime 2 has played a major role in developing a
strategy to attack parts of the Cherlin-Zil’ber conjecture. In this vein, a group of
finite Morley rank is said to be of even type if its Sylow 2-subgroups are infinite of
bounded exponent (B 6= 1, T = 1), of odd type if its Sylow 2-subgroups are infinite
and their connected components are divisible (B = 1, T 6= 1), of mixed type if
B 6= 1 and T 6= 1 and of degenerate type if they are finite.

The main result of [ABC08] states that a simple group of finite Morley rank
that contains a non-trivial unipotent 2-subgroup is an algebraic group over an
algebraically closed field of characteristic 2. In particular, there exists no simple
group of finite Morley rank of mixed type. In this article, we will use this result and
refer to it as the classification of simple groups of even type. Despite spectacular
advances for groups of odd type, no such extensive conclusion has been achieved.
In the degenerate type, it has been shown in [BBC07] that a connected group of
finite Morley rank of degenerate type has no involutions:
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Fact 2.15. – [BBC07, Theorems 1 and 3] Let G be a connected group of finite
Morley rank whose maximal p-subgroups are finite. Then G contains no elements
of order p.

As was mentioned above, the Sylow theory is much better understood in solvable
groups of finite Morley rank. This is one reason why one expects to improve the
understanding of the structure of minimal connected simple groups of finite Morley
rank although even in the minimal context additional tools are indispensable. We
first review the parts of what can now be called the classical Hall theory for solvable
groups of finite Morley rank that are relevant for this paper. Then we will go over
more recent notions of tori, unipotence and Carter theory as was developed in the
works Cherlin, Deloro, Jaligot, the second and third authors.

One now classical result on maximal π-subgroups of solvable groups of finite
Morley rank is the Hall theorem for this class of groups:

Fact 2.16. – [BN94, Theorem 9.35] In a solvable group of finite Morley rank, any
two Hall π-subgroups are conjugate.

Hall π-subgroups are by definition maximal π-subgroups. The Hall theorem was
motivated by finite group theory while the next two facts have their roots in the
structure of connected solvable algebraic groups:

Fact 2.17. –

(1) [BN94, Corollary 6.14] In a connected nilpotent group of finite Morley rank,
the Hall π-subgroups are connected.

(2) [BN94, Theorem 9.29] [Fré00a, Corollaire 7.15] In a connected solvable
group of finite Morley rank, the Hall π-subgroups are connected.

We also recall the following easy but useful consequence of Fact 2.11.

Fact 2.18. – A solvable group of finite Morley rank G has a unique maximal p-
unipotent subgroup.

On the toral side, we will need the following analogue of well-known properties
of solvable algebraic groups:

Fact 2.19. – [Fré00b, Lemma 4.20] Let G be a connected solvable group of finite
Morley rank, p a prime number and T a p-torus. Then T ∩ F (G) ≤ Z(G).

Attempts to understand the nature of a generic element of a group of finite
Morley rank have given rise to two important notions of tori. A divisible abelian
group G of finite Morley rank is said to be: a decent torus if G = d(T ) for T its
(divisible) torsion subgroup; a pseudo-torus if no definable quotient of G is definably
isomorphic to K+ for an interpretable field K.

The following remark based on important work of Wagner on bad fields of non
zero characteristic was the first evidence of the relevance of these notions of tori.

Fact 2.20. – [AC04, Lemma 3.11] Let F be a field of finite Morley rank and nonzero
characteristic. Then F× is a good torus.

A good torus is a stronger version of a decent torus in that the defining property
of a decent torus is assumed to be hereditary.

Using the geometry of groups of finite Morley rank provided by genericity argu-
ments, Cherlin and later the third author obtained the following conjugacy results.
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It is worth mentioning that such results were attained to the extent that one can
describe the generic element of a group of finite Morley rank. This is the case when
a group of finite Morley rank has non-trivial decent or pseudo-tori.

Fact 2.21. –

(1) [Che05, Extended nongenericity] In a group of finite Morley rank, maximal
decent tori are conjugate.

(2) [Fré09, Theorem 1.7] In a group of finite Morley rank, maximal pseudo-tori
are conjugate.

Below, we include several facts about decent and pseudo-tori mostly for the
practical reason that we will need them. They illustrate that these more general
notions of tori, introduced to investigate more efficiently the structure of groups
of finite Morley rank, share crucial properties of tori in algebraic groups, and thus
clarify which aspects of algebraic tori influence the structure of algebraic groups.

The last point below mentions the generosity of a set. A definable subset X of a
group G of finite Morley rank is said to be generous in G (or shortly, “generous” in
case the ambient group is clear) if the union of its conjugates is generic in G. This
notion was introduced and studied in [Jal06].

Fact 2.22. –

(1) [Fré06b, Lemma 3.1] Let G be a group of finite Morley rank, N be a normal
definable subgroup of G, and T be a maximal decent torus of G. Then
TN/N is a maximal decent torus of G/N and every maximal decent torus
of G/N has this form.

(2) [Fré09, Corollary 2.9] Let G be a connected group of finite Morley rank.
Then the maximal pseudo-torus of F (G) is central in G.

(3) [AB09, Theorem 1] Let T be a decent torus of a connected group G of finite
Morley rank. Then CG(T ) is connected.

(4) [Fré09, Corollary 2.12] Let T be a pseudo-torus of a connected group G
of finite Morley rank. Then CG(T ) is connected and generous in G, and
NG(CG(T ))

◦ = CG(T ).

So far, we have emphasized notions of tori and their generalizations in groups of
finite Morley rank. Before moving to the unipotent side, it is necessary to go over
a notion that is related to both sides and thus fundamental to the understanding
of groups of finite Morley rank: Carter subgroups. In groups of finite Morley rank,
Carter subgroups are defined as being the definable connected nilpotent subgroups
of finite index in their normalizers. We summarize the main results concerning
these subgroups in Fact 2.23.

In a reductive algebraic group, Carter subgroups are the maximal tori. Hence,
the notion of Carter subgroup yields a group-theoretical tool to analyze properties
of algebraic tori. Carter subgroups have strong ties with the geometry of groups of
finite Morley rank stemming from genericity arguments.

Fact 2.23. – Let G be a group of finite Morley rank.

(1) [FJ05], [FJ08, Theorem 3.11] G has a Carter subgroup.
(2) [Fré09, Corollary 2.10] Each pseudo-torus is contained in a Carter subgroup

of G.
(3) [Wag94, Theorem 29] If G is solvable, its Carter subgroups are conjugate.
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(4) [Fré08, Theorem 1.2] If G is a minimal connected simple group, its Carter
subgroups are conjugate.

(5) [Fré00a, Théorèmes 1.1 and 1.2] If G is connected and solvable, any subgroup
of G containing a Carter subgroup of G is definable, connected and self-
normalizing.

(6) [Fré00a, Corollaire 5.20], [FJ08, Corollary 3.13] If G is connected and solv-
able, for each normal subgroup N , Carter subgroups of G/N are exactly of
the form CN/N , with C a Carter subgroup of G.

(7) [Fré00a, Corollaire 7.7] Let G be a connected solvable group of class 2 and C
be a Carter subgroup of G. Then there exists k ∈ N such that G = Gk ⋊C.

(8) [Fré00a, Théorème 1.1] If G is connected and solvable, and if C is a de-
finable nilpotent subgroup of finite index in its normalizer in G, then C is
connected, i.e. a Carter subgroup of G.

The following observation illustrates the connection between genericity, Carter
subgroups and torsion elements in connected minimal simple groups.

Fact 2.24. – [AB09, Proposition 3.6] Let G be minimal connected simple group.
Then

(1) either G does not have torsion,
(2) or G has a generous Carter subgroup.

The notion of abnormality is tightly connected to that of a Carter subgroup in
solvable groups. In the context of solvable groups of finite Morley rank, abnormal
subgroups of solvable groups were analyzed in detail in [Fré00a]. A subgroup H
of any group G is said to be abnormal if g ∈ 〈H,Hg〉 for every g ∈ G. In a
connected solvable group of finite Morley rank, abnormal subgroups are definable
and connected. Their relation to Carter subgroups is as follows:

Fact 2.25. –

(1) [Fré00a, Théorème 1.1] In a connected solvable group of finite Morley rank,
a definable subgroup is a Carter subgroup if and only if it is a minimal
abnormal subgroup.

(2) [Fré00a, Théorème 1.2] Let G be a connected solvable group of finite Morley
rank, and H be a subgroup of G. Then the following are equivalent:
(i) H is abnormal;
(ii) H contains a Carter subgroup of G.

An important class of abnormal subgroup is formed by generalized centralizers.
If G is an arbitrary group, A a subgroup and g ∈ NG(A), then the generalized
centralizer of g in A is EA(g) = {x ∈ A| il existe n ∈ N tel que [x,n g] = 1}. Let us
remind that [x,0 g] = x and [x,n+1 g] = [[x,n g], g] for every n ∈ N. More generally,
if Y ⊆ NG(A) then EA(Y ) = ∩y∈Y EA(y).

In general, a generalized centralizer need not even be a subgroup. In a connected
solvable group of finite Morley rank, it turns out to be a definable, connected
subgroup that sheds considerable light on the structure of the ambient group:

Fact 2.26. – [Fré00a, Corollaire 7.4] Let G be a connected solvable group of finite
Morley rank and H be a nilpotent subgroup of G. Then EG(H) is abnormal in G.

In addition to the information they provide, the generalized centralizers are in
a sense more practical tools than the centralizers of sets. This is mainly because
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a generalized centralizer contains the elements that they “centralize”, and this
containment is rather special:

Fact 2.27. – [Fré00a, Corollaire 5.17] Let G be a connected solvable group of finite
Morley rank and H a subset of G that generates a locally nilpotent subgroup. Then
EG(H) = EG(d(H)), is definable, connected, and H is contained in F (EG(H)). In
particular, d(H) is nilpotent and the set of nilpotent subgroups of G is inductive.

Thus generalized centralizers provide definable connected enveloping subgroups for
arbitrary subsets of connnected solvable groups of finite Morley rank.

The notion of a p-unipotent group gives a robust analogue of a unipotent element
in an algebraic group over an algebraically closed field of characteristic p. As was
mentioned after Fact 2.6 however, there is no such analogue for unipotent elements
in characteristic 0, and this has been a major question to which answers of increasing
levels of efficiency have been given. The first step in this direction can be traced
back to the notion of quasiunipotent radical introduced in unpublished work by
Altseimer and Berkman. This notion is still of relevance, and yields a refinement
of Fact 2.11, proven by the third author.

A definable, connected, nilpotent subgroup of group G of finite Morley rank
is said to be quasi-unipotent if it does not contain any non-trivial p-torus. The
quasi-unipotent radical of a group of finite Morley rank G, noted Q(G), is the
subgroup generated by its quasi-unipotent subgroups. By Fact 2.2, Q(G) is a
definable, connected subgroup. Clearly, Q(G) ⊳ G. Less clearly, though naturally,
the following is true:

Fact 2.28. – [Fré00b, Proposition 3.26] Let G be connected solvable group of finite
Morley rank. Then G/Q(G) is abelian and divisible.

The notions of reduced rank and U0,r-groups were introduced by the second au-
thor in order to carry out an analogue of local analysis in the theory of the finite
simple groups. In a similar vein, a theory of Sylow U0,r-subgroups was developed.
The notion of homogeneity was introduced by the third author in his refinement of
the unipotence analysis. We summarize these in the following definition:

Definition 2.29. – [Bur04], [Fré06a], [Bur06]

• An abelian connected group A of finite Morley rank is indecomposable if it
is not the sum of two proper definable subgroups. If A 6= 1, then A has a
unique maximal proper definable connected subgroup J(A), and if A = 1,
let J(1) = 1.

• The reduced rank of any abelian indecomposable group A of finite Morley
rank is r(A) = rk(A/J(A)).

• For any group G of finite Morley rank and any positive integer r, we define

U0,r(G) = 〈A ≤ G | A is indecomposable definable abelian,

r(A) = r, A/J(A) is torsion-free〉.

• A group G of finite Morley rank is said to be a U0,r-group whenever G =
U0,r(G), and to be homogeneous if each definable connected subgroup of G
is a U0,r-subgroup.

• The radical U0(G) is defined as follows. Set r0(G) = max{r | U0,r(G) 6= 1}
and set U0(G) = U0,r0(G)(G).
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• In any group G of finite Morley rank, a Sylow U0,r-subgroup is a maximal,
definable, nilpotent U0,r-subgroup.

• In a group G of finite Morley rank, U(G) is defined as the subgroup of
G generated by its normal homogeneous U0,s-subgroups where s covers N∗

and by its normal definable connected subgroups of bounded exponent. A
U -group is a group G of finite Morley rank such that G = U(G).

The notion of reduced rank and the resulting unipotence theory, allowed a finer
analysis of connected solvable groups in a way reminiscent of what torsion elements
had allowed to achieve in such results as Facts 2.6, 2.7, 2.10, 2.18. Indeed, the first
point of Fact 2.30 can be regarded as an analogue of Fact 2.18 while the points (6)
and (7) refine Facts 2.6 and 2.7. The points (3), (4) and (5) are clear examples of
nilpotent behaviour. It should also be emphasized that the “raison d’être” of the
first two points is nothing but Fact 2.9.

Fact 2.30. –

(1) [Bur04, Theorem 2.16] Let H be a connected solvable group of finite Morley
rank. Then U0(H) ≤ F (H).

(2) [FJ05, Proposition 3.7] Let G = NC be a group of finite Morley rank where
N and C are nilpotent definable connected subgroups and N is normal in G.
Assume that there is an integer n ≥ 1 such that N = 〈U0,s(N)|1 ≤ s ≤ n〉
and C = 〈U0,s(C)|s ≥ n〉. Then G is nilpotent.

(3) [Bur06, Lemma 2.3] Let G be a nilpotent group satisfying U0,r(G) 6= 1.
Then U0,r(Z(G)) 6= 1.

(4) [Bur06, Lemma 2.4] Let G be a nilpotent U0,r-group. If H is a definable
proper subgroup of G then U0,r(NG(H)/H) > 1.

(5) [Bur06, Theorem 2.9] Let G be a nilpotent U0,r-group. Let {Hi|1 ≤ i ≤
n} be a family of definable subgroups such that G = 〈∪iHi〉. Then G =
〈U0,r(Hi)|1 ≤ i ≤ n〉.

(6) [Bur06, Theorem 3.4] Let G be a divisible nilpotent group of finite Morley
rand, and let T be the torsion subgroup G. Then

G = d(T ) ∗ U0,1(G) ∗ U0,2(G) ∗ . . . ∗ U0,rk(G)(G) .

(7) [Bur06, Corollary 3.5] Let G be a nilpotent group of finite Morley rank.
Then G = D ∗ B is a central product of definable characteristic subgroups
D, B where D is divisible and B has bounded exponent. The latter group
is connected if and only if G is connected.

Let T be the torsion part of D. Then we have decompositions of D and
B as follows.

D = d(T ) ∗ U0,1(G) ∗ U0,2(G) . . .

B = U2(G)⊕ U3(G)⊕ . . .

For a prime p, Up(G) is the largest normal p-unipotent subgroup of G.
The new notion of unipotence behaves well under homomorphisms:

Fact 2.31. – (Burdges [Bur04, Lemma 2.11]) Let f : G −→ H be a definable
homomorphism between two groups of finite Morley rank. Then

• (Push-forward) f(U0,r(G)) ≤ U0,r(H) is a U0,r-subgroup.
• (Pull-back) If U0,r(H) ≤ f(G) then f(U0,r(G)) = U0,r(H).

In particular, an extension of a U0,r-subgroup by a U0,r-subgroup is a U0,r-subgroup.
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The work of the third author showed that the theory of unipotence is much better
behaved when the unipotent groups in question are homogeneous in the sense of
Definition 2.29. Remarkably, as points (1), (3) and (4) of Fact 2.32 illustrate, in
order to find homogeneous groups it suffices to avoid central elements.

Fact 2.32. –

(1) [Fré06a, Theorem 4.11] Let G be a connected group of finite Morley rank.
Assume that G acts definably by conjugation on H, a nilpotent U0,r-group.
Then [G,H] is a homogeneous U0,r-group.

(2) [Fré06a, Theorem 5.4] Let G be a U -group. Then G has the following de-
composition:

G = B ∗ U0,1(G) ∗ U0,2(G) ∗ . . . ∗ U0,r(G)(G),

where
(i) B is definable, connected, definably characteristic and of bounded ex-

ponent;
(ii) U0,s(G) is a homogeneous U0,s-subgroup for each s ∈ {1, 2, . . . , r(G)};
(iii) the intersections of the form U0,s(G)∩U0,t(G) are finite. In particular,

if G does not contain a bad group, then

G = B × U0,1(G)× U0,2(G)× . . .× U0,r(G)(G).

(3) [Fré06a, Corollary 6.8] Let G be a solvable connected group of finite Morley
rank. Then G′ is a U -group.

(4) [Fré06a, Lemma 4.3] Let G be a nilpotent U0,r-group. Then G/Z(G)◦ is a
homogeneous U0,r-group.

A natural question was whether it was possible to develop a Sylow theory us-
ing the notions introduced in Definition 2.29. The second author answered this
affirmatively in the context of connected solvable groups of finite Morley rank.

Fact 2.33. –

(1) [Bur06, Lemma 6.2] In a group G of finite Morley rank, the Sylow U0,r-
subgroups are exactly those nilpotent U0,r-subgroups S such that U0,r(NG(S)) =
S.

(2) [Bur06, Theorem 6.5] Let H be a connected solvable group of finite Morley
rank. Then the Sylow U0,r-subgroups of H are conjugate in H.

(3) [Bur06, Theorem 6.7] Let H be a connected solvable group of finite Morley
rank and let Q be a Carter subgroup of H. Then U0,r(H

′)U0,r(Q) is a Sylow
U0,r-subgroup of H, and every Sylow U0,r-subgroup has this form for some
Carter subgroup of H.

(4) [Bur06, Corollary 6.9] Let H be a connected solvable group of finite Morley
rank and let S be a Sylow U0,r-subgroup of H. Then NH(S) contains a
Carter subgroup of H.

(5) [FJ05] Let G be a group of finite Morley rank. If r is an integer and if S is
a Sylow U0,r-subgroup of G such that NG(S) has no nontrivial decent torus
and such that U0,s(NG(S)) = 1 for each s < r, then S is contained in a
Carter subgroup of G as a normal subgroup.

These results that we will use intensively in this paper have been key to the
progress in local analysis in connected minimal simple groups of finite Morley rank.
The facts below summarize the major ingredients of local analysis.
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Fact 2.34. –

(1) [Bur07, Lemma 2.1] Let G be a minimal connected simple group. Let B1,
B2 be two distinct Borel subgroups satisfying Up1

(B1) 6= 1 and Up2
(B2) 6= 1.

Then F (B1) ∩ F (B2) = 1.
(2) [Bur07, Corollary 2.2] Let G be a minimal connected simple group. Let B1,

B2 be two distinct Borel subgroups of G. Then F (B1) ∩ F (B2) is torsion-
free.

Fact 2.35. – [Bur07, Proposition 4.1] Let G be a minimal connected simple group.
Let B1, B2 be two distinct Borel subgroups of G. Let H be a definable connected
subgroup of the intersection B1 ∩B2. Then the following hold:

(1) H ′ is homogeneous or trivial.
(2) Any definable connected nilpotent subgroup of B1 ∩B2 is abelian.

Fact 2.36. – [Bur07, Theorem 4.3]

(1) Let G be a minimal connected simple, and let B1, B2 be two distinct Borel
subgroups of G. Suppose that H = (B1 ∩ B2)

◦ is non-abelian. Then the
following are equivalent:
(a) B1 and B2 are the only Borel subgroups G containing H.
(i) If B3 and B4 are distinct Borel subgroups of G containing H, then

(B3 ∩B4)
◦ = H.

(ii) C◦

G(H
′) is contained in B1 or B2.

(iii) r0(B1) 6= r0(B2).
(2) [Bur07, Lemma 3.28] If one of the equivalent conditions of (1) holds and

r0(B1) > r0(B2), then B1 is the only Borel subgroup containing NG(H
′)◦.

(3) [Bur07, Consequence of Theorem 4.5 (4)] If one of the equivalent conditions
of (1) holds and r0(B1) > r0(B2) and r = r0(H

′), then Fr(B2) is non-
abelian, where Fr(X) denotes U0,r(F (X)) with X a solvable connected group
of finite Morley rank.

3. Recent progress around the Weyl group

In this section, we will go over recent results that will play a major role in this
article. The three main references are [Del08] that generalizes the fundamental
[CJ04] to a non-tame context, [BD09] and [ABF12]. The main theme is the notion
of the Weyl group of a group G of finite Morley rank, denoted W (G), and defined
as NG(T )/CG(T ) where T is any maximal decent torus of G. By Fact 2.21, the
Weyl group of a group of finite Morley rank G is well-defined. By Facts 2.22 (3) and
(4), W (G) is finite, and by the torsion-lifting properties of groups of finite Morley
rank, the non-triviality of the Weyl group implies the non-triviality of torsion in
the ambient group. It thus follows from Fact 2.24 that, in a connected minimal
simple group of finite Morley rank, there is a strong connection between the generic
element of the group and the Weyl group. This connection is also illustrated by
Fact 3.9.

In a simple algebraic group G, one could alternately define the Weyl group as
NG(C)/C where C is any Carter subgroup of G. The following fact shows that the
same equivalence holds in a connected minimal simple group of finite Morley rank:

Fact 3.1. – [ABF12, Proposition 3.2] Let G be a minimal connected simple group,
and let C be a Carter subgroup of G. Then the Weyl group W (G) of G is isomorphic
to NG(C)/C.
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The following statements are rapid corollaries:

Fact 3.2. –

(1) If C is a Carter subgroup of a minimal connected simple group G, then C
is a maximal nilpotent subgroup.

(2) Let G be a minimal connected simple group, and let S be a non-trivial p-
torus for a prime p. Then NG(S)/CG(S) is isomorphic to a subgroup of
W (G). Moreover, if S is maximal, then we have NG(S)/CG(S) ≃ W (G).

(3) Let G be a minimal connected simple group, and let T be a maximal pseudo-
torus of G. Then W (G) is isomorphic to NG(T )/CG(T ).

Next, we revise a variety of results on the structure of W (G) when G is minimal
connected simple.

Fact 3.3. – (Particular case of [Del08, Théorème-Synthèse]) Let G be a minimal
connected simple group of odd type. Then G satisfies one of the following four
conditions:

• G ≃ PSL2(K) for an algebraically closed field K of characteristic p 6= 2;
• |W (G)| = 1, and the Prüfer 2-rank of G is one;
• |W (G)| = 2, the Prüfer 2-rank of G is one, and G has an abelian Borel
subgroup C;

• |W (G)| = 3, the Prüfer 2-rank of G is two, and the Carter subgroups of G
are not Borel subgroups.

Fact 3.4. – [BD09, Theorem 4.1] Let G be a minimal connected simple group, T a
maximal decent torus of G, and τ the set of primes p such that Zp∞ embeds into T .
Then W (G) is cyclic, and has an isomorphic lifting to G. Moreover, no element of
τ divides |W (G)|, except possibly 2.

The results of [BD09, §3] do not need that the group G be degenerate, but just
that |W (G)| be odd. This increases their relevance for us in conjonction with results
from [BC08b]. In particular, the following fact holds.

Fact 3.5. – [BD09, §3][BC08b, §5] Let G be a minimal connected simple group, T
a maximal decent torus of G, τ the set of primes p such that Zp∞ embeds into T ,
and τ ′ its complement. If W (G) is non-trivial and of odd order, then the following
conditions hold:

(1) [BC08b, Corollary 5.3] the minimal prime divisor of |W (G)| does not belong
to τ ;

(2) if a is a τ ′-element of NG(T ), then CCG(T )(a) is trivial;
(3) [BD09, Corollary 3.8] CG(T ) is a Carter subgroup of G;

In the rest of this section, we will recall various facts from [ABF12].

Fact 3.6. – [ABF12, Lemma 3.9] Let B1 and B2 be two generous Borel subgroups
of a minimal connected simple group G. Then there exists g ∈ G such that B1 ∩Bg

2

contains a generous Carter subgroup of G.

Fact 3.7. – [ABF12, Lemma 3.10] Let G be a minimal connected simple group with
a nilpotent Borel subgroup B. Then B is a Carter subgroup of G, and the generous
Borel subgroups of G are conjugate with B, and they are generically disjoint.
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The following theorem, that will not be directly used in this article, is involved
in the proofs of many other crucial facts such as 3.9, 3.12, 3.13.

Fact 3.8. – [ABF12, Theorem 3.12] Any non-nilpotent generous Borel subgroup B
of a minimal connected simple group G is self-normalizing.

In [ABF12], a uniform approach to the analysis of connected minimal simple
groups of finite Morley rank was introduced through a case division that consists
of four mutually exclusive classes of groups. This case division follows two criteria:
generic disjointness of Borel subgroups from their conjugates and (non-)triviality
of the Weyl group. The following table introduces the four types of groups that
emerge from these two criteria:

A Borel subgroup generically dis-
joint from its conjugates
exists does not exist

Weyl group
trivial (1) (2)
non-trivial (3) (4)

Fact 3.9. – (Tetrachotomy theorem) [ABF12, Theorem 4.1] Any minimal con-
nected simple group G satisfies exactly one of the following four conditions:

• G is of type (1), its Carter subgroups are generous and any generous Borel
subgroup is generically disjoint from its conjugates;

• G is of type (2), it is torsion-free and it has neither a generous Carter
subgroup, nor a generous Borel subgroup;

• G is of type (3), its generous Borel subgroups are nilpotent: they are the
Carter subgroups;

• G is of type (4), its Carter subgroups are generous, and there is no nilpotent
Borel subgroup.

In the sequel, by “type (i)” we will mean one of the four types caracterized
in Theorem 3.9. Although we will try to obtain results as general as possible,
the terminology and conclusions of the Tetrachotomy theorem will be essential in
the development of this article. It should be emphasized the (*) condition in the
introduction is also best appreciated in the light of this four-way case division and
its consequences. Indeed, the condition (*) describes a strict subclass of groups of
type (1), and it in particular excludes the bad groups. We recall some remarks from
[ABF12] concerning the four types of groups.

Remark 3.10. –

• Bad groups [BN94, Chapter 13], and more generally full Frobenius groups
[Jal01], are examples of groups of type (1). The existence of any of these
groups is a well-known open problem.

• The minimal connected simple groups with a nongenerous Carter subgroup
are of type (2) and are analyzed in [Fré08].

• The group PSL2(K) for an algebraically closed field K, is of type (4).
• By Fact 2.15, the classification of simple groups of even type, and Theorem
3.9, a non-algebraic minimal connected simple group with involutions is of
odd type and not of type (2). But the existence of a minimal connected
simple group with involutions and either of type (1), or of type (3), or not
algebraic and of type (4), is an open problem. A comparison of Fact 3.3
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and Theorem 3.9 show that the three pathological configurations by Deloro
in [Del08] corresponds to the groups of type (1), (3) and (4) respectively.

As Remark 3.10 suggests, minimal connected simple algebraic groups over alge-
braically closed fields are of type (4). Thus, one expects simple groups of type (4)
to have properties close to those of algebraic groups. Fact 3.11 provides evidence
in this direction.

Fact 3.11. – [ABF12, Theorem 5.1] Let G be a minimal connected simple group
of type (4). Then there is an interpretable field K such that each Carter subgroup
definably embeds in K∗ ×K∗.

The following fact is of fundamental importance for the analysis of groups of
type (4). Many proofs in this article depend very much on the non-triviality of the
Weyl group when all the Borel subgroups of the ambient connected minimal simple
group are non-nilpotent.

Fact 3.12. – [ABF12, Proposition 3.13] Let H be a subgroup of a minimal connected
simple group G. If H contains a Carter subgroup C of G, then H is definable, and
either it is contained in NG(C), or it is connected and self-normalizing.

The following is a corollary proven in [ABF12].

Fact 3.13. – [ABF12, Corollary 3.14] Let G be a minimal connected simple group
with a non-trivial Weyl group, and let T be a non-trivial maximal p-torus of G for
a prime p. Then CG(T ) is a Carter subgroup of G.

The following corollary has a similar proof.

Corollary 3.14. – Let G be a minimal connected simple group, and T a maximal
decent torus of G. If W (G) is non-trivial, then CG(T ) is a Carter subgroup of G
and any Carter subgroup of G has this form.

4. Major Borel subgroups

In this section, we will introduce and analyze the structure of a special class of
Borel subgroups that we will call major.

Definition 4.1. – Let G be a group of finite Morley rank. A Borel subgroup B of
G is said to be a major Borel subgroup if it satisfies the following conditions:

(1) every Carter subgroup of B is contained in a Carter subgroup of G;
(2) for every non-nilpotent Borel subgroup A and Carter subgroup C of G such

that A ∩ C contains a Carter subgroup of B, rk(A ∩ C) = rk(B ∩ C).

Except for pathological cases, in a connected minimal simple group G that is not
a bad group, that thus possesses a non-nilpotent Borel subgroup, a Carter subgroup
C of G group and a non-nilpotent Borel that contains C, present a picture closer to
that of a connected minimal simple algebraic group over an algebraically closed field.
In presence of a Carter subgroup that is itself a Borel subgroup, this picture is lost.
The notion of a major Borel subgroup tries to remedy this deficiency and yields a
picture sufficiently close to the natural one. Indeeed, the main result of this section,
Theorem 4.9, proves the existence of a factorization of major Borel subgroups in
minimal simple groups with a non-trivial Weyl group in a way very reminiscent of
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the decomposition of connected solvable algebraic groups as semidirect product of
their unipotent part by their maximal tori [Hum81, Theorem 19.3].

Theorem 4.9 is proven under a technical assumption that may look exotic: Con-
ditions (N) and (W) in its statement. The assumption describes in fact the groups
covered by the negation of the (*) condition in the introduction, except a subclass of
groups of type (2). The groups of type (2) will be treated separately in Subsection
5.2. As a result, the structural description provided by Theorem 4.9 will involve all
connected minimal simple groups except a rather pathological subclass of groups
of type (1), namely those covered by the (*) assumption.

Remark 4.2. – 1. Every nilpotent Borel subgroup of a group of finite Morley rank
is a major Borel subgroup. Indeed, if B is such a Borel subgroup, then by Fact 2.4,
NG(B)/B is finite, and as a result, B is a Carter subgroup of G and satisfies the
two conditions defining a major Borel subgroup.

2. In a group of finite Morley rank whose Borel subgroups are not nilpotent, the
major Borel subgroups are those containing a Carter subgroup of G.

Lemma 4.3. – Let G be a minimal connected simple group that has a nilpotent
and a non-nilpotent Borel subgroup. Let C be a Carter subgroup of G. Then there
exists a non-nilpotent Borel subgroup A of G such that A ∩ C 6= 1.

Proof – We assume toward a contradiction that A ∩ C is trivial for each non-
nilpotent Borel subgroup A. By Fact 2.23 (2) and (4), each pseudo-torus of G is
contained in a conjugate of C.

Suppose toward a contradiction that G has a non-trivial p-unipotent subgroup
U0 not contained in a conjugate of C for a prime integer p. Let U be a maximal
p-unipotent subgroup containing U0. Then NG(U)◦ centralizes all the NG(U)◦-
minimal sections of U , otherwise it would contain a nontrivial pseudo-torus by
Facts 2.9, 2.20 and 2.22 (1), so NG(U)◦ would have a non-trivial intersection with
a conjugate of C, and it would be contained in Cg for a g ∈ G by our contradictory
assumption, contradicting our choice of U . Let D be a Carter subgroup of NG(U)◦.
Since D centralizes all the NG(U)◦-minimal sections of U , it contains U . Moreover,
since U is a maximal p-unipotent subgroup of G, it is definably characteristic in
D. So we obtain NG(D) ≤ NG(U), and D is a Carter subgroup of G. Thus D is
conjugate to C by Fact 2.23 (4), contradicting our choice of U . This proves that,
for each prime p, any p-unipotent subgroup of G is contained in a conjugate of C.

Let B be a non-nilpotent Borel subgroup of G. By our contradictory assumption,
B ∩ Cg is trivial for each g ∈ G. Then the pseudo-tori of B and its p-unipotent
subgroups are trivial for each prime p, so B is torsion-free by Fact 2.15. In partic-
ular, B contains a non-trivial nilpotent U0,r-group for a positive integer r. Let r
be the smallest positive integer such that there is a non-trivial nilpotent U0,r-group
intersecting trivially any conjugate of C.

Let T be a Sylow U0,r-subgroup of G contained in no conjugate of C, B a
Borel subgroup of G containing NG(T )

◦, and D a Carter subgroup of NG(T )
◦.

By our choice of T and by our contradictory assumption, B ∩ Cg is trivial for
each g ∈ G. This implies that NG(T )

◦ is torsion-free, and by minimality of r,
we have U0,s(D) = 1 for each s < r. Thus, by Fact 2.30 (2) and (6), the group
TD is nilpotent, and since D is a Carter subgroup of NG(T )

◦, we have T ≤ D.
Since T is a Sylow U0,r-subgroup of G, it is normal in NG(D). Therefore we
have NG(D)◦ ≤ NG(T )

◦ and D is a Carter subgroup of G. By Fact 2.23 (4), D
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is conjugate to C, contradicting that T is contained in no conjugate of C. Hence
there exists a non-nilpotent Borel subgroup A of G such that A 6= C and A∩C 6= 1.
�

Lemma 4.4. – Let G be a minimal connected simple group that has a nilpotent
Borel subgroup C. Then, for each Borel subgroup B of G, either B ∩C is a Carter
subgroup of B, or B ∩ C is torsion-free.

Proof – If B ∩C is of finite index in NB(B ∩C), then Fact 2.23 (8) shows that
B ∩C is a Carter subgroup of B. So we may assume that B ∩C is of infinite index
in NB(B ∩ C).

We assume toward a contradiction that the torsion part R of B∩C is non-trivial.
If Up(C) is trivial for each prime p, then R is central in C by Fact 2.6, and NG(R)
contains NG(B ∩ C) and C. Since C is a Borel subgroup of G, this implies that
C = NG(R)◦ and that B ∩ C is of finite index in NB(B ∩ C), contradicting that
B∩C is of infinite index in NB(B∩C). Therefore Up(C) is non-trivial for a prime p.
As a result Up(CC(R)) is non-trivial by Fact 2.6, and C is the only Borel subgroup
of G containing NG(R)◦ by Fact 2.34 (1). Thus, once again we conclude that C
contains NG(B ∩C)◦ and thus B ∩C is of finite index in NB(B ∩C), contradicting
that B∩C is of infinite index in NB(B∩C). Hence B∩C is torsion-free, as desired.
�

Corollary 4.5. – Let G be a minimal connected simple group that has a nilpotent
Borel subgroup. Then, for each Carter subgroup C of G and each Borel subgroup
B 6= C, the subgroup B ∩ C is abelian and divisible.

Proof – First, we note that by the hypothesis on the Borel subgroups of G and
Fact 2.23 (4), C is a Borel subgroup of G. Lemma 4.4 and Fact 2.35 (2) imply that
the subgroup B ∩ C is connected and abelian. On the other hand, since F (B) ∩ C
is torsion-free by Fact 2.34 (2), we have Up(B ∩ C) = 1 for each prime p. Thus,
B ∩ C is divisible by Fact 2.5. �

Lemma 4.6. – Let G be a minimal connected simple group that has a nilpotent and
a non-nilpotent Borel subgroup. Then, for each Carter subgroup C of G and each
Borel subgroup B 6= C, there is a Borel subgroup A 6= C such that A ∩ C contains
B ∩ C and is a Carter subgroup of A.

Moreover, if B ∩ C has torsion or if rk(B0 ∩ C) = rk(B ∩ C) for each Borel
subgroup B0 6= C containing B ∩ C, then B ∩ C is a Carter subgroup of B.

Proof – First, we note that by the hypothesis on the Borel subgroups of G and
Fact 2.23 (4), C is a Borel subgroup of G. By Lemma 4.4, we may assume that B∩C
is torsion-free and is of infinite index in NB(B∩C). Moreover, we may assume that,
for each Borel subgroup A 6= C containing B ∩C we have rk(A∩C) = rk(B ∩C).
By Lemma 4.3, this implies that B∩C is non-trivial. We consider a Borel subgroup
A containing NG(B ∩C)◦. In particular, A contains B ∩C since B ∩C is torsion-
free. Since B ∩ C is of infinite index in NB(B ∩ C), we have A 6= C and it follows
that rk(A ∩ C) = rk(B ∩ C). On the other hand, since C > B ∩ C is nilpotent,
B ∩ C is of infinite index in NC(B ∩ C)◦ ≤ A ∩ C. This contradiction finishes the
proof. �

Proposition 4.7. – Let G be a minimal connected simple group that has a nilpo-
tent and a non-nilpotent Borel subgroup. Then the following two conditions are
equivalent for any Borel subgroup B of G:
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(1) B is a non-nilpotent major Borel subgroup;
(2) there is a Carter subgroup C 6= B of G such that, for each Borel subgroup

A 6= C containing B ∩ C, we have rk(A ∩ C) = rk(B ∩ C);

In this case, B ∩ C is an abelian divisible Carter subgroup of B, and each Carter
subgroup of B has the form B ∩ Cb for b ∈ B.

Moreover, for each Borel subgroup A 6= C containing B ∩ C, we have A ∩ C =
B ∩ C.

Proof – First we assume that B is a non-nilpotent major Borel subgroup of
B. Let D be a Carter subgroup of B. Then D is contained in a Carter subgroup
C of G, and we have C 6= B since B is non-nilpotent. Moreover, for each Borel
subgroup A 6= C containing B ∩C, either A is nilpotent or rk(A∩C) = rk(B ∩C).
But Lemma 4.6 applied to A shows that A ∩ C is a Carter subgroup of A, so A is
non-nilpotent, and we have rk(A∩C) = rk(B∩C). Hence, since A∩C is connected
by Corollary 4.5, we obtain A ∩ C = B ∩ C.

Now we assume that there is a Carter subgroup C 6= B of G such that, for each
Borel subgroup A 6= C containing B ∩ C, we have rk(A ∩ C) = rk(B ∩ C). Then
B ∩C is a Carter subgroup of B by Lemma 4.6. In particular, B is non-nilpotent,
and B ∩C is abelian and divisible by Corollary 4.5. Moreover, Fact 2.23 (3) shows
that any Carter subgroup of B has the form B ∩ Cb for b ∈ B. This implies the
result. The final conclusion follows from Fact 2.23 (5). �

Corollary 4.8. – Let G be a minimal connected simple group. Either G is a bad
group or it has a non-nilpotent major Borel subgroup.

Proof – Since every Borel subgroup of a bad group is nilpotent, we may assume
G is not bad using Remark 4.2 (1). If all Borel subgroups of G are non-nilpotent,
then any Borel containing a Carter subgroup of G is major. Indeed, it can be easily
checked that a non-nilpotent Borel subgroup containing a Carter subgroup of G is
major. Thus, we may assume G has a nilpotent Borel subgroup, say C, which is
evidently a Carter subgroup of G.

By Lemma 4.6, there exists a Borel subgroup B of G such that B 6= C and
B ∩ C is a Carter subgroup of B. The same lemma allows us to assume that the
intersection B ∩ C is of maximal Morley rank with respect to these properties. To
such a pair and their intersection applies clause (2) of Proposition 4.7. �

Now, we can prove the main theorem of this section.

Theorem 4.9. – Let G be a minimal connected simple group that is not bad and
that satisfies one of the following conditions:

(N) G has a nilpotent Borel subgroup;
(W) no Borel subgroup of G is nilpotent and W (G) 6= 1.

Let B be a non-nilpotent major Borel subgroup G and C be a Carter subgroup of G
containing a Carter subgroup D of B. Then the following conclusions follow

D = B ∩ C, B = B′ ⋊D and Z(B) = F (B) ∩D ;

moreover, C is the only Carter subgroup of G such that D = B ∩ C, and for each
Borel subgroup A 6= C containing B∩C, the equality rk(A∩C) = rk(B∩C) holds.

Furthermore, B has the following properties:

(1) for each prime p, either Up(B
′) is the unique Sylow p-subgroup of B, or

each Sylow p-subgroup of B is a p-torus contained in a conjugate of D;
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(2) for each positive integer r ≤ r0(D), each Sylow U0,r-subgroup of B has the
form U0,r(D

b) for b ∈ B.

Proof – Before going any further, we emphasize that condition (W) in the
statement of the theorem describes exactly the minimal connected simple groups
of type (4), as is justified by Theorem 3.9. We will stick to this latter terminology
during the proof. As for condition (N), it covers completely groups of type (3), but
is more general.

We note that if G is of type (4), then B contains a Carter subgroup of G (Remark
4.2 (2) and Fact 3.9 (4)). Thus, D = C by Fact 2.23 (3), so D = B ∩ C. If G
has a nilpotent Borel subgroup, then C is a Borel subgroup of G (Fact 3.7) and B,
despite being major, is relatively small. Nevertheless, as we will now show, it still
controls the conjugacy of the Carter subgroups of G that it intersects non-trivially.
By Proposition 4.7 there exists a Carter subgroup C0 of G such that, for each Borel
subgroup A 6= C0 containing B ∩ C0, we have rk(A ∩ C0) = rk(B ∩ C0), and that
D = B ∩ Cb

0 for some b ∈ B. We thus conclude that rk(B0 ∩ Cb
0) = rk(B ∩ Cb

0)
for each Borel subgroup B0 6= Cb

0 containing B ∩ Cb
0. Since C is a Borel subgroup

of G that contains D, if C 6= Cb
0, then rk(B0 ∩ Cb

0) = rk(C ∩ Cb
0) for each Borel

subgroup B0 6= Cb
0 containing C∩Cb

0. Thus by Lemma 4.6 C∩Cb
0 is a proper Carter

subgroup of C, a contradiction to the nilpotence of C. Hence we have C = Cb
0 and

D = B ∩ C. This argument also shows the following two conclusions:

• for each Borel subgroup A 6= C containing B ∩C, rk(A∩C) = rk(B ∩C);
• C is the only Carter subgroup of G such that D = B ∩ C.

Now, by Fact 2.23 (6), we have B = B′D and, by Fact 2.23 (5), we obtain
Z(B) ≤ NB(D) = D, so Z(B) ≤ F (B) ∩ D. On the other hand, using Fact 3.11
when G is of type (4) and Corollary 4.5 in presence of a nilpotent Borel subgroup,
one concludes that D is divisible and abelian. We also remind that B/B′ is divisible
by Facts 2.10 and 2.11.

We verify assertion (1). Let p be a prime integer. We will show that, either
Up(B

′) is the unique Sylow p-subgroup of B, or each Sylow p-subgroup of B is
a p-torus contained in a conjugate of D. We may assume that Up(B

′) is not a
Sylow p-subgroup of B. By Fact 2.28, there is no non-trivial p-torus in B′. It
then follows from Facts 2.6 and 2.17 (1) that Up(B

′) is the Sylow p-subgroup of
B′. Since B = B′D and since D is abelian and divisible, the Sylow p-subgroup T
of D is a non-trivial p-torus. Then, Facts 2.17 (2) and 2.13 (2) imply that there is
a Sylow p-subgroup of B in CB(T ). On the other hand, C = CG(T ). Indeed, if G
has a nilpotent Borel subgroup then C is one such, and since CG(T ) ≥ C, we have
equality using Fact 2.22 (3); if, on the other hand, G is of type (4), then D = C
and Fact 3.13 implies that C = CG(T ). It follows from the preceding conclusions
that T is a Sylow p-subgroup of B, and (1) is then a consequence of Fact 2.16.

We note that, since D is abelian and divisible, assertion (1) implies that B′ ∩D
is torsion-free.

Now we assume that s = r0(D) is positive, and we consider a Sylow U0,s-
subgroup S of G containing U0,s(D) = U0(D). We suppose toward a contradic-
tion that C does not contain S. We note that the hypothesis s > 0 implies that
U0(D) 6= 1. Let R = U0,s(S ∩ C). If G is of type (4), then we have D = C, so
R = U0(D), and R is normal in NG(D), and D is not self-normalizing in NG(R) as
we have NG(D)/D ≃ W (G) 6= 1 by Fact 3.1. On the other hand, Fact 2.33 (1) gives
R < U0,s(NS(R)), and we obtain D < NG(R)◦. Therefore Fact 3.12 shows that
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NG(R) is a solvable connected subgroup of G. In particular D is self-normalizing
in NG(R) (Fact 2.23 (5)), contradicting that D is not self-normalizing in NG(R).

If G has a nilpotent Borel subgroup, then C is one such. Fact 2.30 (7) implies
that D = U0(D)CD(U0,s(C)), so D normalizes R. Thus NG(R)◦ contains D, and
the maximality of the intersection D = B ∩ C implies either NC(R)◦ = D and
R = U0(D), or NG(R)◦ ≤ C. But, as S is not contained in C, Fact 2.33 (1)
implies R < U0,s(NS(R)), and we obtain NG(R)◦ 6≤ C, so we have NC(R)◦ = D
and R = U0(D). Consequently, we obtain NC(D)◦ ≤ NC(U0(D))◦ = NC(R)◦ = D,
contradictingD < NC(D)◦. Thus, in all the cases, U0,s(C) is the only U0,s-subgroup
of G containing U0(D).

We assume toward a contradiction that there exists a positive integer r ≤
r0(D) such that U0,r(B

′) is non-trivial. Then, by Fact 2.30 (2), the subgroup
U0,r(B

′)U0(D) is nilpotent. On the other hand, by Facts 2.32 (2) and (3), there
is a definable connected definably characteristic subgroup A of B′ such that B′ =
A × U0,r(B

′). But, since U0,r(B
′) is non-trivial, B/A is not abelian. Hence, since

D is abelian and satisfies B = B′D, the group U0,r(B
′) is not contained in D.

Now, in the case r = r0(D), the group U0,r(B
′)U0(D) is a nilpotent U0,r-subgroup

of B containing the U0,r(D) = U0(D) and not contained in C. Since this contra-
dicts the previous paragraph, we obtain r < r0(D), and by Fact 2.30 (7) U0,r(B

′)
centralizes U0(D). In particular, this gives U0,r(B

′) ≤ NG(U0(D))◦. If G is of
type (4), this yields C < NG(U0(C))◦, and Fact 3.12 shows that NG(U0(C)) is a
definable connected solvable subgroup of G. Since it contains NG(C), we have a
contradiction with Facts 2.23 (5) and 3.1. If G has a nilpotent Borel subgroup,
then D < NC(D)◦ ≤ NC(U0(D))◦, and the maximality of D = B ∩ C yields
NG(U0(D))◦ ≤ C and U0,r(B

′) ≤ C, contradicting U0,r(B
′) 6≤ D = B ∩ C. Conse-

quently, in all the cases, U0,r(B
′) is trivial for each positive integer r ≤ r0(D).

We note that, since B′ ∩D is torsion-free, the last paragraph yields B′ ∩D = 1
and B = B′ ⋊ D. On the other hand, for each positive integer r ≤ r0(D), the
group [B,U0,r(F (B))] is a homogeneous U0,r-group by Fact 2.32 (1), so U0,r(F (B))
is central in B. Since the torsion part of F (B) ∩ D is central in B by Fact 2.19,
we obtain F (B) ∩D ≤ Z(B) by (Fact 2.30 (7)). Thus Z(B) = F (B) ∩D, and the
same holds for every Carter subgroup of B by Fact 2.23 (5).

Now we prove assertion (2). Let r ≤ r0(D) be a positive integer, and let U be a
Sylow U0,r-subgroup of B. Since U0,r(B

′) is trivial, by Fact 2.33 (3) there exists a
Carter subgroup Q of B such that U = U0,r(Q). Hence assertion (2) follows from
Fact 2.23 (3). �

Corollary 4.10. – Let G be a minimal connected simple group that is not bad and
that satisfies one of the following conditions:

(N) G has a nilpotent Borel subgroup;
(W) no Borel subgroup of G is nilpotent and W (G) 6= 1.

Let B be a non-nilpotent major Borel subgroup G and C be a Carter subgroup of G
containing a Carter subgroup D of B. If H is a subgroup of B containing a Carter
subgroup D of B, then the following conditions are satisfied:

H = H ′ ⋊D and Z(H) = F (H) ∩D.

Furthermore, H has the following properties:

(1) for each prime p, either Up(H
′) is the unique Sylow p-subgroup of H, or

each Sylow p-subgroup of H is a p-torus contained in a conjugate of D;
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(2) for each positive integer r ≤ r0(D), each Sylow U0,r-subgroup of H has the
form U0,r(D

h) for h ∈ H.

Proof – By Fact 2.23 (3) and Theorem 4.9, we may assume D = B ∩ C. By
Fact 2.23 (6), we have H = H ′D, and Theorem 4.9 gives H ′ ∩D ≤ B′ ∩D = 1, so
H = H ′ ⋊D. In particular, we have H ′ = B′ ∩H.

Now we prove assertion (1). Let p be a prime, and let S be a Sylow p-subgroup
of H. By Facts 2.17 (2) and 2.13 (2), we have S = Up(H) ∗ T for a p-torus T .
Then Theorem 4.9 (1) says that we have either S = Up(H) ≤ Up(B

′), or S = T .
In the first case, we have S ≤ B′ ∩H = H ′ and S = Up(H

′). In the second case,
S is contained in a conjugate of D by Fact 2.23 (2) and (3). Now the conjugacy of
Sylow p-subgroups in H yields (1).

We prove the second assertion. Let r ≤ r0(D) be a positive integer, and let S
be a Sylow U0,r-subgroup of H. By Theorem 4.9 (2), we have S ∩H ′ ≤ S ∩B′ = 1,
so Fact 2.33 (3) provides a Carter subgroup Q of H such that U = U0,r(Q). Hence
assertion (2) follows from Fact 2.23 (3).

From now on, we have just to prove the equality Z(H) = F (H) ∩ D. By Fact
2.23 (5), we have Z(H) ≤ NH(D) = D, so Z(H) is contained in F (H)∩D. On the
other hand, since H = H ′ ⋊D, we have F (H) = H ′ × (F (H) ∩D), so the Sylow
structure description of H obtained in assertions (1) and (2), together with Fact
2.30 (7), yields the conclusion. �

5. Jordan Decomposition

In the following definition, we propose our Jordan decomposition. This section is
devoted to proving that for a large subclass of connected minimal simple groups, this
decomposition has the same fundamental properties as the one in linear algebraic
groups. This subclass is identified by the negation of the (*) hypothesis in the
introduction.

Definition 5.1. – Let G be a group of finite Morley rank.

(1) We denote by S the union of its Carter subgroups and by U its elements x
satisfying d(x) ∩ S = {1}.

(2) The elements of S are called semisimple and the ones of U unipotent.
(3) For each subgroup H of G, we denote by Hu the set H ∩ U of its unipotent

elements, and by Hs the set H ∩ S of its semisimple elements. A definable
connected subgroup H is said to be a semisimple torus if H = Hs.

Remark 5.2. –

(1) If G is to PSL2(K) for an algebraically closed field K, then in the language
of pure fields its Carter subgroups are the maximal tori and its non-trivial
unipotent subgroups have the form B′ for B a Borel subgroup. Moreover,
each element belongs to a maximal torus or a unipotent subgroup, hence our
definitions of semisimple and unipotent elements coincide with the classical
definitions in simple algebraic groups.

(2) For each definable automorphism α of the pure group G, we have α(S) = S
and α(U) = U .

(3) The notion of semisimple torus should be handled with care. Under fa-
vorable hypotheses, it describes groups that are similar to algebraic tori, a
phenomenon illustrated in Subsection 5.2 as well as in Section 6. Never-
theless, a simple bad group is semisimple torus as Fact 2.12 (3) shows.
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Although Definition 5.1 is for an arbitrary group of finite Morley rank, in the
rest of this section, G will denote a connected minimal simple group that satisfies
the negation of the (∗) hypothesis. In Subsection 5.1, preparatory lemmas will be
proven under additional hypotheses that exclude a subclass of groups of type (2).
These excluded ones will be recovered in Subsection 5.2; tools from [Fré08] permit
a uniform treatment of that type. In Subsection 5.3, the properties of the Jordan
decomposition will be verified at the level of generality described by the negation
of the (∗) hypothesis.

5.1. Preparatory lemmas. In this subsection, unless otherwise stated, G will
denote a conected minimal simple group that is not bad and that is subject to one
of the following conditions:

(N) G has a nilpotent Borel subgroup;
(W) no Borel subgroup of G is nilpotent and W (G) 6= 1.

We find it useful to remind that the groups satisfying the condition (W) are exactly
those of type (4).

Lemma 5.3. – Let x be an element of a Carter subgroup C of G. Then one of the
following three conditions is satisfied:

(A) either CG(x) is connected;
(B) or CG(x) is not connected, CG(x) ⊆ S and one of the following holds:

(1) |W (G)| is odd, G has a nilpotent and a non-nilpotent Borel subgroup,
CG(x) ≤ C and C is the only Borel subgroup of G that contains CG(x);

(2) |W (G)| = 2, I(G) 6= ∅, G is of odd type of Prüfer 2-rank 1, x is an
involution and belongs to C, C = CG(x)

◦, CG(x) = CG(x)
◦⋊〈i〉 where

i ∈ I(G) and inverts CG(x)
◦.

Proof – We may assume that CG(x) is not connected. First we assume that
|W (G)| is even. By Corollary 3.14, we have C = CG(T ) for a maximal decent torus
T of G. We may assume that G is not isomorphic to PSL2(K) for an algebraically
closed field K. Then Fact 2.15, the classification of simple groups of even type, and
Fact 3.3 imply that G is of odd type and of Prüfer 2-rank one. It follows from Fact
3.3 that |W (G)| = 2, that involutions of G are conjugate, and that G has an abelian
Borel subgroup D such that NG(D) = D ⋊ 〈i〉 for an involution i inverting D. By
the conjugacy of C and D (Fact 2.23 (4)), we obtain CG(x) = NG(C) = C ⋊ 〈j〉
for an involution j inverting C. In particular, x is an involution, and the elements
of jC are involutions, which are semisimple by conjugacy. Hence we may assume
that |W (G)| is odd.

We first assume that G has a nilpotent Borel subgroup. In particular, C is a
nilpotent Borel subgroup by Theorem 3.9. For each prime p and each p-element
a ∈ NG(C)\C, the prime p divides |W (G)|, and by Fact 3.4 there is no non-trivial p-
torus in T . Then Fact 3.5 (2) implies a 6∈ CG(x), and we conclude CG(x)∩NG(C) ≤
C. Clearly, this inclusion is evident when |W (G)| = 1. Thus, if C is the only
Borel subgroup containing CG(x)

◦, we obtain CG(x) ≤ NG(CG(x)
◦) ≤ NG(C) and

CG(x) ≤ C, so we may assume that there is a Borel subgroup B 6= C containing
CG(x)

◦. We will show that this leads to the contradictory conclusion that CG(x)
is connected.

In this vein, let B be a Borel containing CG(x)
◦ and assume by contradiction

that B 6= C. First, we will show that Up(C) = 1 for any prime p. This will then
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be used to conclude that CC(x) is connected. If Up(C) 6= 1 for a prime p, then
Up(Z(C)) 6= 1 by Fact 2.6. Since Up(Z(C)) ≤ CC(x)

◦, it follows using Fact 2.34
(1) that B = C, a contradiction to B 6= C. Thus, C is divisible and CC(x) contains
the torsion of C by Fact 2.6. It follows that CC(x) is connected.

Since x ∈ C, the conclusion that CC(x) is connected implies that x ∈ CC(x) ≤
CG(x)

◦ ≤ B. But by Corollary 4.5, B∩C is abelian, thus CC(x) = B∩C. Moreover,
if B0 is another Borel of G such that B0 6= C and B0 ∩C ≥ B ∩C, then B0 ∩C is
also abelian by Corollary 4.5, and hence, B0 ∩ C = B ∩ C. It follows from Lemma
4.6 that B ∩ C is a Carter subgroup B and thus a Carter subgroup of CG(x)

◦.
By Fact 2.23 (3) and a Frattini argument, CG(x) = CG(x)

◦NCG(x)(CC(x)). But
for each g ∈ NCG(x)(CC(x)), we have CC(x) ≤ C ∩ Cg. If C 6= Cg, then Lemma
4.6 and Corollary 4.5 imply as previously that C ∩Cg is a proper Carter subgroup
of Cg, a contradiction to the fact that Cg is nilpotent and connected. It follows
that g ∈ CG(x) ∩NG(C). But it has been already argued that this intersection is
contained in C. Thus g ∈ CC(x) ≤ CG(x)

◦. This proves that CG(x) is connected,
a contradiction. This final contradiction shows that B = C. This finishes the proof
that C is the only Borel subgroup of G containing CG(x)

◦.
Finally, we will show that G is not of type (4) when |W (G)| is odd. In this case,

|W (G)| > 1, thus C has a non-trivial maximal decent torus, denoted T . Moreover,
C = CG(T ) by Corollary 3.14. If, toward a contradiction, G is of type (4), then C
is abelian, CG(x) contains C, and we have CG(x)

◦ = C by Fact 3.12. Then there
is a prime p dividing |CG(x)/C|. In particular, p divides |W (G)| by Fact 3.1. We
consider a p-element a in CG(x) \ C. Since C = CG(T ), we obtain a ∈ NG(T ) and
x ∈ CCG(T )(a) \ {1}. Then Facts 3.4 and 3.5 (2) yield a contradiction. �

Corollary 5.4. – Suppose G has a nilpotent Borel subgroup and a non-nilpotent
one, with C a Carter subgroup of G. Let B be a Borel subgroup of G subject to one
of the following conditions:

(1) B contains NG(U)◦, where U is a definable connected subgroup of C;
(2) B contains CG(x)

◦ where x ∈ C.

Then either B = C or B is a major Borel subgroup. In the latter case, B ∩ C is
a Carter subgroup of B contained in H, where H is either NG(U)◦ as in (1) or
CG(x)

◦ as in (2).
In the case where H = CG(x)

◦ with x ∈ C, we have x ∈ B.

Proof – In the case where H = CG(x)
◦ with x ∈ C, x ∈ B by Lemma 5.3.

Thus in both cases, since B ∩ C is abelian and divisible by Corollary 4.5, we have
B∩C ≤ H. Let A 6= C be a Borel subgroup containing B∩C. Similarly A∩C ≤ H,
and rk(A ∩ C) = rk(H ∩ C) = rk(B ∩ C). Proposition 4.7 yields the result. �

Lemma 5.5. – Let B be a major Borel subgroup of G, and let C be a Carter
subgroup of G such that D = B∩C is a Carter subgroup of B. Let H be a subgroup
of B containing D. Then we have Hu = H ′ and, for each element x of H, there
exists a unique pair (xu, xs) ∈ d(x)u × d(x)s satisfying x = xuxs = xsxu and such
that d(x) = d(xu)× d(xs).

Furthermore, if A is any subset of H formed by some semisimple elements and
that generates a nilpotent subgroup, then A is conjugate in H with a subset of D.
In particular, we have Hs = ∪h∈HDh.

Proof – By the Sylow structure description of H obtained in Corollary 4.10,
we have (H ′)s = {1}, so H ′ is contained in Hu.
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We show that, for each element x of H, there exist h ∈ H and (xu, xs) ∈ (H ′ ∩
d(x))× (Dh∩d(x)) satisfying x = xuxs = xsxu and such that d(x) = d(xu)×d(xs).
By Fact 2.27, the generalized centralizer EH(x) of x inH is definable and connected,
x belongs to its Fitting subgroup F (EH(x)), and, by Facts 2.25 (1) and 2.26, EH(x)
contains a Carter subgroup Q of H. Moreover, there exists h ∈ H such that
Q = Dh (Fact 2.23 (3)), and Corollary 4.10 yields F (EH(x)) = EH(x)′×Z(EH(x))
and Z(EH(x)) = F (EH(x)) ∩Dh. It follows from Fact 2.5 that d(x) = d(x)◦ × U
with U a finite cyclic subgroup, and d(x)◦ divisible. Also, by Fact 2.30 (6), if T
denotes the maximal decent torus of d(x), then d(x)◦ is the product of T by its
Sylow U0,r-subgroups for all the positive integers r. Let π be the set of primes
p such that EH(x)′ has a non-trivial p-element, and let π′ be its complementary
in the set of primes. Let S1 be the set of π-elements of d(x) and let S2 be the
set of π′-elements of d(x). Then Corollary 4.10 (1) implies S1 ≤ EH(x)′ and
S2 ≤ Z(EH(x)). Moreover, we have T ≤ d(S1)d(S2). Also, Corollary 4.10 (2)
shows that, for each positive integer r, we have either U0,r(d(x)) ≤ EH(x)′ or
U0,r(d(x)) ≤ Z(EH(x)). This implies d(x) = (d(x)∩EH(x)′)× (d(x)∩Z(EH(x))).
Since EH(x)′ is contained in H ′, and since Z(EH(x)) is contained in Dh, we obtain
(xu, xs) ∈ (H ′ ∩ d(x)) × (Dh ∩ d(x)) satisfying x = xuxs = xsxu and such that
d(x) = d(xu)× d(xs).

As for the uniqueness of (xu, xs), we note that the above argument of existence
depends only on x and H. Indeed, the entire argument was carried out in H and
used d(x), EH(x)′ and Z(EH(x)).

Note that, since U contains H ′, we have xu ∈ d(x)u. On the other hand, since S
contains Dh ≤ Ch, we have xs ∈ d(x)s, and if x is semisimple, then we obtain xu =
1, and x = xs belongs to Dh ⊆ ∪k∈HDk. This implies the equality Hs = ∪k∈HDk.

Now let x ∈ H \ H ′. By the previous paragraph, there exists h ∈ H and
(xu, xs) ∈ (H ′ ∩ d(x))× (Dh ∩ d(x)) such that x = xuxs. In particular, xs is a non-
trivial semisimple element of d(x), so x is not unipotent, and we obtain Hu = H ′.

Let A be a subset of H formed by some semisimple elements and generating
a nilpotent subgroup. Then, by Fact 2.27, the generalized centralizer EH(A) of
A in H is definable and connected, F (EH(A)) contains A and, by Facts 2.25 (1)
and 2.26, there is a Carter subgroup P of H in EH(A). Moreover, since there
exists h ∈ H such that P = Dh (Fact 2.23 (3)), Corollary 4.10 yields F (EH(A)) =
EH(A)′×Z(EH(A)) and Z(EH(A)) = F (EH(A))∩P . But, by previous paragraphs,
the semisimple elements of EH(A) are contained in ∪k∈EH(A)P

k. Thus, the ones
in F (EH(A)) are central in EH(A). Hence A is contained in a central subgroup of
EH(A), and we obtain A ⊆ Dh, as desired. �

5.2. Special case: groups of type (2). In this subsection, we consider a minimal
connected simple group G of finite Morley rank and of type (2). We recall that, by
Fact 3.9, this group is torsion-free and it has neither a generous Carter subgroup,
nor a generous Borel subgroup. It should be emphasized that the main raison
d’être of this subsection is the class of groups of type (2) that do not have nilpotent
Borel subgroups. Indeed, in the presence of a non-trivial Weyl group or nilpotent
and non-nilpotent Borel subgroups, our methods using Major Borel subgroups are
sufficient for the subsequent developments.

The following results describe the strong structural properties of nilpotent sub-
groups of such a group G.
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Fact 5.6. – [Fré08, Corollaries 1.8 and 3.17, Fact 3.13] Any nilpotent definable
subgroup H of G has the following decomposition:

H = U0,1(H)× · · · × U0,r(H)(H),

where U0,i(H) is a homogeneous U0,i-subgroup for each i ∈ {1, . . . , r(H)}.

Fact 5.7. – [Fré08, Corollary 1.8] There is an integer c such that any Carter
subgroup C of G is a homogeneous U0,c-subgroup.

The following result follows from Facts 2.33 (5) and 5.7.

Corollary 5.8. – Let c be the smallest integer such that U0,c(G) is nontrivial. Then

• the Carter subgroups of G are precisely its Sylow U0,c-subgroups;
• the semisimple tori of G are precisely its nilpotent U0,c-subgroups.

By using Fact 2.33 (2) too, we obtain also the following result.

Corollary 5.9. – In each proper definable connected subgroup H of G, the maximal
semisimple tori of H are conjugate.

Proof – Let c be the smallest integer such that U0,c(G) is nontrivial. By Corol-
lary 5.8, the maximal semisimple tori of H are precisely its Sylow U0,c-subgroups,
and these ones are conjugate by Fact 2.33 (2). �

Proposition 5.10. – Let H be a definable nilpotent subgroup of G. If c denotes
the smallest integer such that U0,c(G) is nontrivial, then Hu and Hs are definable
subgroups of G satisfying Hs = U0,c(H) and Hu = U0,c+1(H)× · · · × U0,r(H)(H).

In particular, we have H = Hu ×Hs.

Proof – By Corollary 5.8, an element s of G is semisimple if and only if d(s) is
a U0,c-subgroup of G, and an element u of G is unipotent if and only if U0,c(d(u))
is trivial, that is by Fact 5.6:

d(u) = U0,c+1(d(u))× · · · × U0,r(d(u))(d(u)).

Now the result follows from Fact 5.6, which says that

H = U0,c(H)× · · · × U0,r(H)(H),

where U0,i(H) is a homogeneous U0,i-subgroup for each i ∈ {c, . . . , r(H)}. �

Proposition 5.11. – In each definable solvable subgroup H of G, the set Hu of
unipotent elements is a definable subgroup such that H = Hu ⋊ T for any maximal
semisimple torus T of H.

Proof – Let c be the smallest integer such that U0,c(G) is nontrivial. Let T be
a maximal semisimple torus of H. By Corollary 5.8, it is a Sylow U0,c-subgroup of
H, and by Fact 2.33 (5), it is contained in a Carter subgroup C of H.

By Fact 5.6, the following decomposition holds

F (H) = U0,c(F (H))× · · · × U0,r(F (H))(F (H)),

where U0,i(F (H)) is a homogeneous U0,i-subgroup for each i ∈ {c, . . . , r(F (H))}.
Since T is a Sylow U0,c-subgroup of H, it contains U0,c(F (H)) (Fact 2.30 (2)).

By Fact 5.6, the following decomposition holds

C = U0,c(C)× · · · × U0,r(C)(C),
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where U0,i(C) is a homogeneous U0,i-subgroup for each i ∈ {c, . . . , r(C)}. Since T
is a Sylow U0,c-subgroup of H contained in C, it is equal to U0,c(C). In particular,
if we consider D = U0,c+1(C)× · · · × U0,r(C)(C), then we have C = T ×D.

Let F = U0,c+1(F (H))× · · · ×U0,r(F (H))(F (H)). Since all the U0,c-subgroups of
DF/F and of F are trivial, Fact 2.31 shows that all the U0,c-subgroups of DF are
trivial. Thus, by Corollary 5.8, all the elements of DF are unipotent. In particular,
we have H = DF ⋊ T .

Moreover, if u is a unipotent element of H, then U0,c(d(u)) is trivial (Corollary
5.8), and since H/DF ≃ T , we find d(u) ≤ DF by Fact 2.31. Thus u belongs to
DF ⊆ U , and we may conclude DF = Hu, as desired. �

5.3. Main theorem. In this subsection, we will prove that for the groups that
satisfy the negation of the (∗) hypothesis, the Jordan decomposition proposed in
Definition 5.1 has the well-known properties of the usual Jordan decomposition
in linear algebraic groups. In this vein, G will denote a group that satisfies the
negation of the (∗) hypothesis.

Theorem 5.12. – (Jordan decomposition)

(1) For each x ∈ G, there exists a unique (xs, xu) ∈ S × U satisfying x =
xsxu = xuxs.

(2) For each x ∈ G, we have d(x) = d(xs)× d(xu).
(3) For each (x, y) ∈ G × G such that xy = yx, we have (xy)u = xuyu and

(xy)s = xsys.

Proof – If G is a bad group, then there is nothing to do. Indeed, by Fact 2.12,
all the elements of G are semisimple. Thus, we may assume that G is not bad.

We first prove (1) and (2). Let x ∈ G\{1}. We show that there exists (xs, xu) ∈
S × U satisfying x = xsxu = xuxs, and such that d(x) = d(xs) × d(xu). If G is of
type (2), then by Proposition 5.10, the sets d(x)u and d(x)s are definable subgroups
of d(x) satisfying d(x) = d(x)u × d(x)s, so the existence of xs and xu is clear in
this case. In the other cases either G has a nilpotent Borel subgroup or G is of
type (4). The argument will eventually use this case devision. Note first that we
may assume that x is neither semisimple, nor unipotent. In particular, there exists
y ∈ d(x) \ {1} such that y belongs to a Carter subgroup C0 of G. Since x ∈ CG(y)
is not semisimple, Lemma 5.3 shows that CG(y) is connected. Then, if G is of type
(4), we have CG(y) ≥ C0 as C0 is abelian, and Lemma 5.5 proves the existence of
(xs, xu). If G has a nilpotent Borel subgroup, then as CG(y) contains an element
that is not semisimple, by Corollary 5.4 there exists a major Borel subgroup By

containing CG(y) and such that By ∩ C0 is a Carter subgroup of By. Again, the
existence of (xs, xu) follows from Lemma 5.5.

Now we show the uniqueness of (xs, xu) in the case where G is of type (2). Let
(x′

s, x
′

u) ∈ S × U satisfying x = x′

sx
′

u = x′

ux
′

s. We consider H = CG(x); recall that,
G being torsion-free, H is a connected subgroup. We note that H contains xs, xu,
x′

s and x′

u, and that xs and xu are central in H since they belong to d(x). Let
T1 and T2 be maximal semisimple tori of H containing xs and x′

s respectively. By
Corollary 5.9, there exists h ∈ H such that Th

1 = T2. Moreover, by Proposition
5.11, the set Hu of unipotent elements of H is a definable subgroup such that
H = Hu ⋊ T1 = Hu ⋊ T2. In particular, we have x ∈ xsHu = x′

sHu, and since xs is
central in H, we find

x′

s ∈ T2 ∩ x′

sHu = Th
1 ∩ xsHu = (T1 ∩ xsHu)

h = {xs},
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so x′

s = xs. Now we have x′

u = xuxs(x
′

s)
−1 = xu, finishing the proof of (1) and (2)

in the special case where G is of type (2).
The uniqueness of (xs, xu) for the rest of the groups that do not satisfy the (∗)

hypothesis is mainly a reduction to the solvable case, more precisely to Lemma 5.5.
We assume (x′

s, x
′

u) ∈ S×U be a pair that satisfies x = x′

sx
′

u = x′

ux
′

s. We first show
that xs = 1 if and only if x′

s = 1. Indeed, if xs = 1 and x′

s 6= 1, then x = xu = x′

sx
′

u.
Since x, xu, x

′

u ∈ CG(x
′

s), by Lemma 5.3 CG(x
′

s) is connected. Using Corollary 5.4
in the case G has a nilpotent Borel subgroup and the commutativity of the Carter
subgroups of G when G is of type (4), we conclude that CG(x

′

s) is contained in a
major Borel subgroup of G and that it contains a Carter subgroup of it. It then
suffices to apply Lemma 5.5 with H = CG(xs) to reach a contradiction. Now, the
uniqueness trivially follows when xs = 1. We may thus assume xs 6= 1; equivalently
x′

s 6= 1.
If xu = x′

u = 1 then the uniqueness is again trivial. If not, then xu 6= 1 or
x′

u 6= 1. Since xu, x
′

u ∈ CG(xs) (equivalently, in CG(x
′

s)), CG(xs) is connected. As
in the preceding paragraph, CG(xs) lies in a major Borel subgroup and contains
a Carter subgroup of this major Borel. The uniqueness follows from Lemma 5.5
applied to H = CG(xs).

In order to prove (3), it suffices to prove that the product of two commuting
semisimple (resp. unipotent) elements x and y is semisimple (resp. unipotent). If
G is of type (2), then H = d(x)d(y) is an abelian subgroup of G, and Proposition
5.10 shows that H = Hs (resp. H = Hu), so xy is a semisimple (resp. unipotent)
element, as desired. Consequently we may assume that G is not of type (2). We
suppose that x and y are two non-trivial semisimple elements that commute. We
may assume CG(x) 6⊆ S. In particular, Lemma 5.3 implies that CG(x) is connected.
Then, using Corollary 5.4 when G has a nilpotent Borel subgroup, we apply Lemma
5.5 in CG(x), and find a Carter subgroup of G that contains both x and y.

Now suppose that x and y are two non-trivial unipotent elements that commute.
We may assume (xy)s 6= 1. Then by Lemma 5.3 CG((xy)s) is connected and not
contained in S. Indeed, as xy = (xy)s(xy)u such that (xy)s and (xy)u commute,
either (xy)u 6= 1 and CG((xy)s) 6⊆ S, or xy = (xy)s. In the latter case, we still
conclude CG((xy)s) 6⊆ S because x and y commute with xy, therefore with (xy)s
which is equal to xy. As a result, by using Corollary 5.4 when G has a nilpotent
Borel subgroup, we may apply Lemma 5.5 in CG((xy)s). It follows that x and y
belong to CG((xy)s)

′ ⊆ U , and the proof of (3) is finished. �

6. The structure of arbitrary Borel subgroups

In this section, we will prove the main results of this article, namely Theorem
6.16 and Corollary 6.17. Theorem 6.12 is an important step along the way. The
development is relatively technical, but it follows a line reasoning that has already
been encountered in the preceding sections. The underlying assumption throughout
the entire section is that the ambient group G is connected minimal simple group
G that satisfies the negation of the (*) hypothesis in the introduction. This covers
the groups of types (2), (3) and (4) entirely, part of groups of type (1). As in the
previous sections, we will analyze groups of type (2) separately. The rest of the
arguments will follow the case division (N) and (W) of Theorem 4.9. In addition,
G is assumed not to be a bad group. This last assumption does not limit the range
of our results since bad groups vacuously satisfy the main conlusions.
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The Jordan decomposition, established in the previous section, will provide an
efficient setting and language for the entire development in this section. We will
also try to emphasize where our notions of semisimple and unipotent deviate from
the ones encountered in the realm of linear algebraic groups.

6.1. Sylow subgroups. It is well-known that in an algebraic group, the character-
istic of the underlying field plays a decisive role on the nature of torsion elements,
and this phenomenon is observed through the use of the Jordan decomposition in
that torsion elements are either semisimple or unipotent. In Proposition 6.2, we
will obtain a similar result for minimal connected simple groups satisfying the con-
ditions (N) or (W) by proving that the Sylow p-subgroups of G are not of mixed
type, in the sense that each Sylow p-subgroup is contained either in U or in S.
However, in a minimal connected simple group, it is not clear whether the elements
of a p-unipotent group are unipotent, a well-known property of connected simple
algebraic groups over algebraically closed fields (cf. Proposition 6.2 (2) (a)). This
discussion will evidently not involve groups of type (2) since these are torsion-free.

Another well-known property in the algebraic category is that in minimal con-
nected simple algebraic groups over algebraically closed fields, equivalently in PSL2(K)
with K algebraically closed the semisimple/unipotent dichotomy becomes global
since every non-trivial element is either semisimple or unipotent. In Proposition
6.4, we will exhibit an analogous behaviour in the context of minimal connected
simple groups, by proving a result similar to Proposition 6.2 for the Sylow U0,r-
subgroups of G.

The following conclusion from [BD09], in the spirit of Fact 2.17 (2), will be useful:

Fact 6.1. – [BD09, Corollary 4.7] Let G be a minimal connected simple group and
p a prime different from 2. Then the maximal p-subgroups of G are connected.

Proposition 6.2. – Let p be a prime number, and let S be a Sylow p-subgroup of
G. Then one of the following three conditions is satisfied:

(1) S ⊆ U and S is p-unipotent;
(2) S ⊆ S, S is contained in a Carter subgroup C of G, and it is connected;

furthermore, we have two possibilities:
(a) G satisfies the condition (N) and S ∩ B is a p-torus of Prüfer p-rank

at most 1 for each Borel subgroup B 6= C;
(b) G does not satisfy the condition (N) but (W), equivalently G is of type

(4), and S is a p-torus of Prüfer p-rank at most 2;
(3) S ⊆ S, p = 2, S◦ is a 2-torus of Prüfer 2-rank one, and S = S◦ ⋊ 〈i〉 for

an involution i inverting S◦.

Proof –Wemay assume thatG is not of type (2) and that it is not isomorphic to
PSL2(K) for an algebraically closed fieldK. If p = 2, by Fact 2.15, the classification
of simple groups of even type and Fact 3.3, the group S◦ is a non-trivial 2-torus,
and one of the following two conditions is satisfied:

(†) |W (G)| = 2, S◦ is a 2-torus of Prüfer 2-rank one, the involutions of G are
conjugate, and G has an abelian Borel subgroup C0 such that NG(C0) =
C0 ⋊ 〈i〉 for an involution i inverting C0;

(††) |W (G)| = 3 and S◦ is a 2-torus of Prüfer 2-rank two.

The group S◦ is a maximal 2-torus of G, and even a maximal connected 2-subgroup
of G by Fact 2.14. By Fact 3.13, CG(S

◦) is a Carter subgroup of G. In particular, S◦
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is the only Sylow 2-subgroup of CG(S
◦) by Fact 2.17 (1), soNG(S

◦) = NG(CG(S
◦)).

Thus, in case (†), Fact 2.23 (4) yields an involution j inverting CG(S
◦) and such that

NG(S
◦) = CG(S

◦)⋊ 〈j〉. Then, by conjugacy of the Sylow 2-subgroups in NG(S
◦)

(Fact 2.14), we may decompose S in the form S = S◦ ⋊ 〈k〉 for an involution k
inverting S◦. Moreover, since S◦ is a 2-torus, the elements of the coset kS◦ are
some involutions, which are semisimple by conjugacy of the involutions in G. Hence
S satisfies the assertion (3).

In case (††), by Fact 3.2 (2), NG(S
◦)/CG(S

◦) ≃ W (G) has order 3, so S ≤
CG(S

◦). In particular, S = S◦ is connected and it is contained in the Carter
subgroup CG(S

◦) of G. On the other hand, the Carter subgroups of G are not
Borel subgroups by Fact 3.3, consequently G is of type (4) by Fact 3.9, and S
satisfies the assertion (2) (b) of our result. Hence we may assume p 6= 2.

We first show that if S is a p-unipotent subgroup then S satisfies (1) or (2)
(a). We may assume that S contains a non-trivial semisimple element x. By Fact
2.34 (1), there is a unique Borel subgroup B of G containing Z(S)◦. In particular,
B contains S and CG(x)

◦ and, by Fact 2.16, there is no non-trivial p-torus in B.
Thus, x centralizes no non-trivial p-torus. If G is of type (4), then the Carter
subgroups are abelian and divisible by Fact 3.11, and x belongs to a non-trivial
p-torus. This contradicts that there is no non-trivial p-torus in B ≥ CG(x)

◦. Hence
G has a nilpotent Borel subgroup (condition (N)). Then, by Corollary 5.4, if C
denotes a Carter subgroup containing x, we have either B = C or B is a major
Borel subgroup containing x, and B ∩ C is a Carter subgroup of B. In the latter
case, B ∩C is abelian and divisible by Corollary 4.5. Hence, x ∈ B ∩C belongs to
a p-torus. This is contradictory since there is no non-trivial p-torus in B. Hence we
find B = C, and C contains no non-trivial p-torus. Since, for each Borel subgroup
B0 6= C, the group B0 ∩ C is abelian and divisible by Corollary 4.5, this implies
that B0 ∩B = B0 ∩C has no non-trivial p-element, so S ∩B0 = 1. Thus S satisfies
(2) (a), as desired.

From now on, we assume that S is not a p-unipotent subgroup. By Fact 2.13
(2), the maximal p-torus T of S is non-trivial, and CG(T ) contains S. We set
CT = CG(T ) and assume that G contains a nilpotent Borel subgroup (condition
(N)). Then, by Fact 2.23 (2), CG(T ) is a Carter subgroup of G and thus is a
nilpotent Borel in G. Let B 6= CT be another Borel subgroup. We show that
S ∩B is a p-torus of Prüfer p-rank at most 1. By Lemma 4.6 and Proposition 4.7,
we may assume that B is a major Borel subgroup, and that B ∩ CT is a Carter
subgroup of B. Let A be a B-minimal subgroup in B′. By Theorem 4.9, we have
A ∩ CT ≤ B′ ∩ CT = 1, so B ∩ CT does not centralize A. Consequently, Fact 2.9
provides a definable algebraically closed field K such that (B ∩ CT )/CB∩CT

(A) is
definably isomorphic to a subgroup of the multiplicative group K∗. By Corollary
4.5, S ∩ B is a p-torus. If prp(S ∩ B) ≥ 2, then there is a non-trivial p-torus S0

in CB∩CT
(A). By Fact 2.6, S0 centralizes CT . It follows that CG(S0)

◦ is a proper
definable subgroup of G containing CT and A. This contradicts that CT is a Borel
subgroup of G. Hence, prp(S ∩B) = 1 and S satisfies (2) (a).

It remains to deal with the case when G does not satisfy the condition (N) but
(W). Equivalently, G is of type (4). By Fact 3.4, p does not divide |W (G)|. By Fact
3.13, CT is a Carter subgroup of G. Corollary 4.10 (1) shows that S is a p-torus.
This p-torus has Prüfer p-rank at most 2 by Fact 3.11. Hence S satisfies (2) (b).
�
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Corollary 6.3. – Let S be a Sylow p-subgroup of a solvable connected definable
subgroup H of G. If H is non-nilpotent, then one of the following two conditions
is satisfied:

(1) S ⊆ U and S is p-unipotent;
(2) S ⊆ S and S is a p-torus of Prüfer p-rank at most 2.

Proof – Since S is connected by Fact 2.17 (2), the result follows from Fact 2.13
(2) and from Proposition 6.2. �

We will now analyze Sylow U0,r-subgroups.

Proposition 6.4. – For each positive integer r and each Sylow U0,r-subgroup S of
G, one of the following two conditions is satisfied:

(1) S ⊆ U and S is a homogeneous U0,r-subgroup;
(2) S ⊆ S and S is contained in a unique Carter subgroup of G.

Proof – If G is of type (2), this result follows from Fact 5.6 and Corollary 5.8,
hence we may assume that G is not of type (2). Otherwise, first we assume S ⊆ U ,
and prove that S is a homogeneous U0,r-subgroup. By Fact 2.23 (2), for each prime
p, there is no non-trivial p-torus in S, and Fact 2.6 implies that S is torsion-free.
We consider the subgroup S∗ generated by the indecomposable subgroups A of S
satisfying rk(A/J(A)) 6= r. In other words, S∗ is generated by the subgroups of
the form U0,s(S) for s 6= r. We will show that S∗ = {1}. In this vein, we assume
that S∗ is non-trivial. By Fact 2.32 (1), the groups of the form [NG(S)

◦, U0,s(S)],
where s is a positive integer, are some homogeneous U0,s-subgroups. Since S is a
U0,r-subgroup, they are U0,r-subgroup too. Hence NG(S)

◦ centralizes S∗.
On the other hand, NG(S)

◦ is a subgroup of NG(S
∗)◦ that contains a Carter

subgroup D of NG(S
∗)◦ by Fact 2.33 (4). We show that S∗ = U0,r(D)∗, where

U0,r(D)∗ is the subgroup generated by the indecomposable subgroups A of U0,r(D)
satisfying rk(A/J(A)) 6= r. Since S is the unique Sylow U0,r-subgroup of NG(S)

◦

by Fact 2.33 (2), we have U0,r(D) ≤ S and U0,r(D)∗ ≤ S∗. In order to prove
that U0,r(D)∗ contains S∗, we have just to verify that U0,r(D) contains S∗. But
D centralizes S/[D,S], so DS/[D,S] is a nilpotent group and Fact 2.23 (6) gives
DS = [D,S]D. Hence we have S = [D,S](S∩D) and since [D,S] is a homogeneous
U0,r-subgroup by Fact 2.32 (1), we obtain S = [D,S]U0,r(S ∩D) by Fact 2.30 (5).
The homogeneity of [D,S] implies S ∩D = ([D,S]∩D)U0,r(S ∩D) = U0,r(S ∩D),
and since [NG(S)

◦, S∗] = 1, S∗ is contained in D and thus in S∩D = U0,r(S∩D) ≤
U0,r(D). This is what was desired and proves that S∗ = U0,r(D)∗.

The previous paragraph implies that NG(D)◦ normalizes S∗, so D is a Carter
subgroup of G and S∗ ≤ D is contained in S. Consequently we have S∗ ⊆ S ∩S ⊆
U ∩ S = {1}, and S is homogeneous.

From now on, we may assume that there is a Carter subgroup C of G with
S∩C 6= 1, and we have to prove that S is contained in a conjugate of C. We assume
toward a contradiction that S is contained in no Carter subgroup of G. We may
assume that C is chosen such that rk(U0,r(S ∩C)) is maximal. We will now verify
that U0,r(S∩C) = 1 and that as a result [S, S∩C] = 1 (Fact 2.32 (1)). If U0,r(S∩C)
is non-trivial, we consider a Borel subgroup B containing NG(U0,r(S ∩C))◦. Then
Fact 2.30 (4) gives U0,r(S∩C) < U0,r(S∩B) and, by maximality of rk(U0,r(S∩C)),
the subgroup U0,r(S ∩B) is contained in no conjugate of C. In particular, if G has
a nilpotent Borel subgroup (condition (N)), then we have B 6= C and Corollary 5.4
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says that B is a major Borel subgroup such that B ∩C is a Carter subgroup of B.
Otherwise, G is of type (4), B contains C and B is a major Borel subgroup. Hence,
in all the cases, Theorem 4.9 (2) gives r > r0(B∩C), contradicting that U0,r(S∩C)
is non-trivial. Thus U0,r(S ∩C) is trivial, and by Fact 2.32 (4) S centralizes S ∩C.

Let x ∈ (S ∩ C) \ {1}, and let B be a Borel subgroup containing CG(x)
◦. In

particular, B contains S, and we have B 6= C. Then, if G has a nilpotent Borel
subgroup, Corollary 5.4 says that B is a major Borel subgroup and that B ∩C is a
Carter subgroup of B. Otherwise, G is of type (4). We then have C ≤ B and B is
a major Borel subgroup too. Thus, in both cases, since S is contained in no Carter
subgroup of G, Theorem 4.9 (2) gives r > r0(B ∩ C) and B = B′ ⋊ (B ∩ C). This
implies S ≤ B′ and S ∩C = 1, contradicting S ∩C 6= 1. Hence S is contained in a
conjugate of C, and we may assume S ≤ C.

We will prove that no other Carter subgroup of G contains S. We first deal
with the case when W (G) 6= 1. Since S = U0,r(C), NG(S) ≥ NG(C). As a re-
sult, NG(S) ≥ C. It follows from Facts 3.12 and 2.23 (5) that NG(S) = NG(C),
and in particular, NG(S)

◦ = C. Since this equality holds for every Carter sub-
group of G containing S, we conclude that C is unique. When G has nilpotent
Borel subgroups (condition (N)), the conclusion follows from Corollary 5.4 and the
uniqueness statement in Theorem 4.9. �

The previous result has the following consequence on the conjugacy of the Sylow
U0,r-subgroups.

Corollary 6.5. – Let r be a positive integer, and let S be a Sylow U0,r-subgroup of
G. Then S is conjugate with any Sylow U0,r-subgroup R of G satisfying S ∩R 6= 1.

Proof – We assume toward a contradiction that R is a counterexample with
rk(S ∩ R) maximal. In particular, by nilpotence of S and R, we have S ∩ R <
NS(S ∩R) and S ∩R < NR(S ∩R). Moreover, by Proposition 6.4 and by Fact 2.23
(4), the U0,r-subgroups S and R are contained in U and they are homogeneous.
Thus S ∩R is a U0,r-subgroup.

Let H = NG(S ∩ R)◦ and let S1 (resp. R1) be a Sylow U0,r-subgroup of H
containing S ∩ H (resp. R ∩ H). By Fact 2.33 (2), there exists h ∈ H such that
Rh

1 = S1. Let S2 be a Sylow U0,r-subgroup of G containing S1. Since S∩H > S∩R
is contained in S ∩ S2, there exists g ∈ G such that Sg

2 = S by maximality of
rk(S ∩R). Then we obtain

(S ∩R)hg < (R ∩H)hg ≤ Rhg
1 = Sg

1 ≤ Sg
2 = S.

But this forces

rk(S ∩R) < rk((R ∩H)hg) ≤ rk(Rhg ∩ S).

Thus, Rhg and S are conjugate by maximality of rk(S ∩R), a contradiction to our
choice of R. �

6.2. Structure of nilpotent subgroups. The following result is similar to a
classical result for algebraic groups [Hum81, Proposition 19.2].

Proposition 6.6. – For each nilpotent definable subgroup H of G, the sets Hu and
Hs are two definable subgroups satisfying H = Hu ×Hs.

Moreover, either Hs is contained in a Carter subgroup of G, or H = Hs is a
finite 2-subgroup contained in no Borel subgroup.
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Proof – For groups of type (2), this result follows from Corollary 5.8 and
Proposition 5.10, hence we may suppose that G is not of type (2). First we assume
that Z(H) is not contained in U , and we consider a non-trivial semisimple element
x in Z(H). Then CG(x) contains H. If CG(x) is not connected, then Lemma 5.3
gives H = Hs, and either Hs is contained in a Carter subgroup of G, or G is of
odd type and of Prüfer 2-rank one, x is an involution, CG(x)

◦ is a Carter subgroup
of G, and CG(x) = CG(x)

◦ ⋊ 〈i〉 for an involution i inverting CG(x)
◦. We may

assume that we are in the second case, and that H is not contained in CG(x)
◦.

Then we have H = (H ∩ CG(x)
◦) ⋊ 〈j〉 for an involution j inverting H ∩ CG(x)

◦.
It follows from this that H is a finite 2-group. Indeed, if z ∈ Z(H) ∩ CG(x)

◦, then
z = zj = z−1, and z2 = 1. Thus Z(H) is an elementary abelian 2-group. But G
is of odd type. Thus Z(H) is finite. It follows from Fact 2.8 (2) that H is finite.
Moreover, H has only 2-torsion elements since, H being nilpotent, any non-trivial
Sylow p-subgroup intersects Z(H) non-trivially. Since x ∈ CG(x)

◦ by Lemma 5.3,
x and j are two distinct involutions of H, and they commute. Therefore, if H is
contained in a Borel subgroup B of G, then the Sylow 2-subgroups of B are 2-tori
of Prüfer 2-rank at least 2 since they are connected by Fact 2.17 (2), non-trivial.
This contradicts that G has Prüfer 2-rank one. Hence H is contained in no Borel
subgroup of G, as desired. Thus we may suppose that CG(x) is connected.

Let C be a Carter subgroup of G containing x, and let B be a Borel subgroup
containing CG(x). Then either G has a nilpotent Borel subgroup (condition (N)),
and Corollary 5.4 says that B is a major Borel subgroup such that B∩C is a Carter
subgroup of B, or G is of type (4), and B is a major Borel subgroup containing
C. Consequently, Lemma 5.5 says that Hs is conjugate in CG(x) with a subset
of C, and we may assume Hs ⊆ C. This implies that C contains d(Hs), so Hs

is a definable subgroup of H. On the other hand, Hu ⊆ CG(x)
′ ⊆ U by Lemma

5.5, so CG(x)
′ contains d(Hu) and Hu is a definable subgroup of H. Now the

equality H = Hu × Hs follows from the Jordan decomposition of each element of
H (Theorem 5.12 (1) and (2)).

It remains the case when Z(H) is contained in U . We will prove that H ⊆ U . By
contradiction, we suppose that H is not contained in U . Then we find x ∈ Hs \{1},
and we may assume that x is chosen such that CH(x) is maximal for such an
element x. By the previous paragraphs, CH(x)u and CH(x)s are two definable
subgroups satisfying CH(x) = CH(x)u × CH(x)s. In particular, since Z(H) is
contained in U , we have CH(x) < H, and we obtain CH(x) < NH(CH(x)). Since
CH(x)s is definably characteristic in CH(x), NH(CH(x)) normalizes CH(x)s, and
there exists a non-trivial element z in Z(NH(CH(x))) ∩CH(x)s. Hence z is a non-
trivial semisimple element of H such that CH(x) < NH(CH(x)) ≤ CH(z), which
contradicts the maximality of CH(x). The proof is finished. �

6.3. Tori. In this subsection, we will derive an important ingredient, namely The-
orem 6.12. The notion of semisimple torus (Definition 5.1 (3)) will play a major
role.

Proposition 6.7. – The maximal semisimple tori of G are Carter subgroups. In
particular, they are conjugate and, if G is of type (4), they are abelian.

Proof – If G is of type (2), this follows from Corollaries 5.8 and 5.9, so we
may assume that G satisfies one of the conditions (N) or (W). Then G has a
non-nilpotent major Borel subgroup B0. Hence B′

0 is a non-trivial subgroup of G
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contained in U by Lemma 5.5, and thus G is not a semisimple torus. Consequently,
the semisimple tori of G are solvable.

We consider a Carter subgroup C of G. By the previous paragraph, if G satisfies
condition (N), then C is a maximal semisimple torus. Otherwise, G is of type (4),
and there is a maximal semisimple torus T containing C. The elements of T ′ are
unipotent by Lemma 5.5, and so T is abelian. Consequently we obtain T = C, and
each Carter subgroup of G is a maximal semisimple torus.

Now, since the Carter subgroups of G are conjugate by Fact 2.23 (4) and they
are abelian when G is of type (4), it remains to prove that each semisimple torus
of G is contained in a Carter subgroup of G. Let T be a semisimple torus of G.
If T is nilpotent, then it is contained in a Carter subgroup of G by Proposition
6.6, so we may assume that T is not nilpotent. Then T ′ is a non-trivial nilpotent
semisimple torus by Fact 2.10, and T ′ is contained in a Carter subgroup C of G by
Proposition 6.6. Let H = NG(T

′)◦. Then H is a solvable non-nilpotent connected
subgroup of G containing T . If G has a nilpotent Borel subgroup (condition (N)),
then Corollary 5.4 and Lemma 5.5 give T ′ ≤ H ′ ⊆ U , contradicting that T ′ is a
non-trivial semisimple torus. Otherwise, G is of type (4), and H contains C since
C is abelian. Therefore we obtain T ′ ≤ H ′ ⊆ U again, contradicting that T ′ is a
non-trivial semisimple torus. Consequently, the maximal semisimple tori of G are
Carter subgroups. �

Lemma 6.8. – Let H be a definable connected solvable subgroup of G. Then F (H)s
is a hypercentral subgroup of H. Furthermore, if G is not of type (2) and if H is
not a semisimple torus, then F (H)s is a central subgroup of H.

Proof – If G is of type (2), then G is torsion-free (Fact 3.9). By Proposition
6.7, the subgroup F (H)s is contained in a Carter subgroup of G, and by Fact 2.33
(5) and Corollary 5.8, F (H)s is contained in a Carter subgroup D of H. Since
H = F (H)D (Fact 2.23 (6)) and since F (H) = F (H)u×F (H)s (Proposition 5.10),
we conclude that F (H)s is an hypercentral subgroup of H.

Otherwise we may assume that H is not a semisimple torus. By Proposition 6.6,
F (H)s is a definable subgroup of a Carter subgroup C of G. We notice that we
have H � C since H is not a semisimple torus. Let x be a non-trivial p-element of
F (H)s for a prime p, and let S be a Sylow p-subgroup of H containing x. Then S
is a p-torus by Corollary 4.5 (in case G has a nilpotent Borel), Proposition 6.2 and
Fact 2.17 (2), and x is central in H by Fact 2.19. Thus, to finish, it will suffice to
prove that F (H)◦s is central in H. We may assume F (H)◦s 6= 1.

Let B be a Borel subgroup of G containing NG(F (H)s)
◦. Since H normalizes

F (H)s, it will suffice to prove that F (H)s ≤ Z(NG(F (H)s)
◦). If G is of type (4),

then C is abelian, so C ≤ NG(F (H)s)
◦ and B is a major Borel subgroup. It follows

from Corollary 4.10 that F (H)s ≤ F (NG(F (H)s)
◦) ∩ C = Z(NG(F (H)s)

◦).
We finish the proof handling the case when G has a nilpotent Borel. Since H is

not a semisimple torus and H ≤ NG(F (H)s)
◦ ≤ B, necessarily B 6= C. Hence, by

Corollary 5.4 B is a major Borel subgroup of G, and B ∩ C is a Carter subgroup
of B contained NG(F (H)s)

◦. Corollary 4.10 allows to finish as above. �

Corollary 6.9. – We assume that G is not of type (2). Let H be a definable con-
nected solvable subgroup of G. If F (H)s is non-trivial, then either H is a semisimple
torus, or H is contained in a major Borel subgroup.
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Proof – We may assume that H is not a semisimple torus. Let x ∈ F (H)s\{1}.
Therefore CG(x)

◦ contains H by Lemma 6.8. Now let B be a Borel subgroup
containing CG(x)

◦. If G has a nilpotent Borel subgroup, then by Corollary 5.4, B
is a major Borel subgroup. Otherwise, G is of type (4), and any Carter subgroup
of G containing x is in CG(x)

◦ ≤ B. The result follows. �

Lemma 6.10. – Let H be a solvable connected definable subgroup of G. If R is a
subgroup of H formed by semisimple elements, then there is a Carter subgroup D
of H such that R is contained in Ds.

Proof – We may assume that R is non-trivial, and that R is maximal among
the subgroups of H formed by some semisimple elements of H. Moreover, we may
assume that H is non-nilpotent by Proposition 6.6. So H is not a semisimple torus
by Proposition 6.7. Then, since F (H)s is a subgroup of H by Proposition 6.6,
and that it is hypercentral in H by Lemma 6.8, it is an hypercentral subgroup of
F (H)sR. Now, since R′ is contained in F (H)s by Fact 2.10, the subgroup F (H)sR
is nilpotent, and it is formed by semisimple elements by Proposition 6.6. Thus
R is a nilpotent group containing F (H)s, and by maximality of R, it is definable
(Proposition 6.6).

We let E = EH(R). Since by Fact 2.27 E is a connected definable subgroup
of H and that F (E) contains R, we have R = F (E)s by Proposition 6.6 and by
maximality ofR. LetD be a Carter subgroup of E (Fact 2.23 (1)). Since R = F (E)s
is hypercentral in E by Lemma 6.8, it is contained in D. Since by Facts 2.25 (2),
2.26 and 2.23 (3), D is a Carter subgroup of H, we obtain the result. �

The conjugacy of maximal semisimple tori in H now follows from Fact 2.23 (3):

Corollary 6.11. – In each proper definable connected subgroup H of G, the maximal
tori of H are conjugate.

Theorem 6.12. – In each connected solvable definable subgroup H of G, the set Hu

is a connected definable subgroup such that H = Hu⋊T for any maximal semisimple
torus T of H.

Proof – By Proposition 5.11, we may assume that G is not of type (2). More-
over, we may assume that H is not a semisimple torus.

We claim that Hu contains H ′. Since F (H) contains H ′ by Fact 2.10, we may
assume that H is contained in a major Borel subgroup by Corollary 6.9, and we
obtain H ′ ⊆ Hu by Corollary 4.10 and Proposition 6.6.

On the other hand, if T is any maximal semisimple torus of H, then Proposition
6.6 and Lemma 6.10 provide a Carter subgroup D of H such that T = Ds and
D = Du ×T . Moreover, Fact 2.23 (6) gives H = H ′D = (H ′Du)T . Thus, since Du

is definable and connected by Proposition 6.6, it remains to prove that H ′Du = Hu.
We claim that the subgroup H ′Du contains only unipotent elements. Suppose

towards a contradiction that there exists x ∈ (S ∩ H ′Du) \ {1}. By Lemma 6.10
and by conjugacy of Carter subgroups (Fact 2.23 (3)), we may assume x ∈ T . Then
we have x = hd for h ∈ H ′ ⊆ U and d ∈ Du ⊆ U . This implies h = xd−1. Since
xd−1 = d−1x with x ∈ S and d−1 ∈ U , we obtain a contradiction to the Jordan
decomposition of h ∈ U (Theorem 5.12 (1)).

The preceding paragraphs show that (H ′Du) ⊆ Hu. We will show now that
these two sets are in fact equal. Indeed, for each x ∈ Hu then, by Facts 2.27,
2.26, and 2.25 (2) the set EH(x) is a definable connected subgroup containing a
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Carter subgroup of H, and such that x belongs to F (EH(x)). By Fact 2.23 (3),
we may assume D ≤ EH(x). Since H = H ′D, we have x = hd for d ∈ D and
h ∈ H ′ ∩ EH(x) ⊆ F (EH(x))u. In particular, this implies d ∈ F (EH(x)). But,
by Proposition 6.6, the set F (EH(x))u is a subgroup of F (EH(x)). Hence, since x
belongs to F (EH(x))u as well, we conclude d ∈ F (EH(x))u, and d ∈ D∩U = Du ≤
H ′Du. This yields x = hd ∈ H ′Du and Hu = H ′Du. �

6.4. Structure of solvable subgroups. In this final subsection, we prove the
main theorem, namely Theorem 6.16. When G has abelian Carter subgroups, the
theorem yields Corollary 6.17 that is much closer to the Borel subgroup description
in simple algebraic groups.

Lemma 6.13. – Let B be a Borel subgroup of G. If B ⊆ U , then B is torsion-free.

Proof – By Fact 2.23 (2), each decent torus of B is trivial. Consequently, using
Facts 2.13 (2) and 2.17 (2), we may assume that Up(B) is non-trivial for a prime

p. We let U = Up(B). If a B-minimal section A of U is not centralized by B, then

B/CB(A) is definably isomorphic to a definable subgroup of K∗ for a definable
algebraically closed field K of characteristic p by Fact 2.9, and Fact 2.20 shows
that B/CB(A) is a decent torus. Then there is a non-trivial decent torus in B by
Fact 2.22 (1), contradicting that each decent torus of B is trivial. Consequently
each B-minimal section of U is centralized by B. This implies that, if C denotes a
Carter subgroup of B, then C contains U , so U = Up(C).

Since B ⊆ U , C is not a Carter subgroup of G by the definition of a semisimple
element. Hence B does not contain NG(C)◦. On the other hand, we have proven
that B = NG(U)◦ ≥ NG(C)◦. This contradiction finishes the proof. �

Lemma 6.14. – Let r be a positive integer, and let S be a Sylow U0,r-subgroup of
G. If S ⊆ U , then B = NG(S)

◦ is a Borel subgroup of G, and S is contained in B′.

Proof – First we note that S is a homogeneous U0,r-group by Proposition 6.4.
Also, if S is contained in B′ for a Borel subgroup B of G, the nilpotence of B′

(Fact 2.10) as well as the unipotent structure of nilpotent groups of finite Morley
rank (Facts 2.30 (6), (7) and 2.32 (2)) imply that S = U0,r(B

′) is normal in B
and that B = NG(S)

◦. Then we may assume that, for each Borel subgroup B of
G, we have S � B′. We will assume towards a contradiction that r is a minimal
counterexample to the statement of the lemma. Thus for each positive integer s < r
and for each U0,s-Sylow subgroup R of G, the condition R ⊆ U implies the existence
of a Borel subgroup A of G satisfying R ≤ A′.

As a first step, we show that, for each Borel subgroup B of G such that S ∩B is
non-trivial, no Sylow U0,r-subgroup of B is contained in B′. Indeed, by Fact 2.33
(2) and Corollary 6.5, we may assume that S ∩ B is a Sylow U0,r-subgroup of B,
and that S ∩B is contained in B′. Then, the nilpotence of B′ (Fact 2.10) and the
unipotent structure of nilpotent groups of finite Morley rank (Facts 2.30 (6), (7)
and 2.32 (2)) imply that S∩B = U0,r(B

′) is normal in B and that B = NG(S∩B)◦.
By the nilpotence of S, we obtain S ≤ B′, contradicting our choice of S. Hence,
no Sylow U0,r-subgroup of B is contained in B′.

The second main step of the proof will consist in showing that B ∩ S = {1} for
each Borel subgroup B of G such that S ∩ B is non-trivial. We assume toward a
contradiction that B is a Borel subgroup of G such that B ∩ S and S ∩B are non-
trivial. Since S is homogeneous, we may assume that S∩B is a Sylow U0,r-subgroup
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of B by Corollary 6.5. By the previous paragraph, S ∩ B is not contained in B′.
By Fact 2.33 (4) there exists a Carter subgroup D of B in NB(S ∩B)◦, and Ds is
non-trivial by Lemma 6.10 and Fact 2.23 (3). Since D centralizes (S∩B)/[D,S∩B],
Fact 2.23 (6) gives D(S ∩ B) = [D,S ∩ B]D and S ∩ B = [D,S ∩ B](S ∩D). But
S ∩B is not contained in B′, hence S ∩D is non-trivial. Now we have to separate
three cases.

• If G is not of type (2), let x ∈ Ds \ {1}. Then, by Proposition 6.6, we have
S ∩ D ≤ Du ≤ CG(x)

◦. Moreover, CG(x)
◦ is contained in a major Borel

subgroup A. Indeed, if G has a nilpotent Borel (condition (N)), then we
have CG(x)

◦ 6⊆ S since CG(x)
◦ ≥ S ∩D 6= 1, and Corollary 5.4 justifies the

existence of A. Otherwise, G is of type (4), and since Carter subgroups are
abelian, A exists. Since S∩A ≥ S∩D is non-trivial, by Corollary 6.5 there
exists g ∈ G such that Sg ∩ A is a Sylow U0,r-subgroup of A. Then, since
S ⊆ U , Lemma 5.5 yields Sg ∩A ≤ A′, and contradicts the first step.

• If G is of type (2) and there is a Borel subgroup B1 containing NG(Ds)
and a Carter subgroup C of G, then S ∩ D is a nontrivial subgroup of
Du ≤ NG(Ds) ≤ B1. Since C is a Carter subgroup of B1, it covers B1/B

′

1

(Fact 2.23 (6)). Since C is a Carter subgroup of G, it is a homogeneous
U0,c-subgroup for an integer c (Fact 5.7), and we have r < c by Corollary
5.8. This implies that B1/B

′

1 is a homogeneous U0,c(G)-group and that any
Sylow U0,r-subgroup of B1 is contained in B′

1, contradicting our first step.
• Otherwise, G is of type (2), and no Borel subgroup contains NG(Ds) and
a Carter subgroup of G. By Corollary 5.8, there is a Carter subgroup C of
G containing Ds. If NC(Ds) is not abelian, then it is contained in a unique
Borel subgroup by Fact 2.35 (2), which necessarily contains NG(Ds) and
C, contradicting our hypothesis over NG(Ds). Then NC(Ds) is abelian.
Our hypothesis over NG(Ds) implies that C is not contained in NG(Ds),
so C is not abelian. We consider N = NC(NC(Ds)). It is a non-abelian
subgroup of C, so it is contained in a unique Borel subgroup B1 of G (Fact
2.35 (2)). In particular C is a Carter subgroup of B1. Now C covers B1/B

′

1

(Fact 2.23 (6)), and since C is a Carter subgroup of G, it is a homogeneous
U0,c-subgroup for an integer c (Fact 5.7), and we have r < c by Corollary
5.8. This implies that B1/B

′

1 is a homogeneous U0,c(G)-group and that any
Sylow U0,r-subgroup of B1 is contained in B′

1. Our first step shows that
Sg∩B1 is trivial for each g ∈ G. If B2 denotes a Borel subgroup containing
NG(Ds), then S ∩D ≤ Du ≤ NG(Ds) is contained in B2, and our first step
implies that B2/B

′

2 has a non-trivial U0,r-subgroup. By Corollary 5.8 and
Fact 2.33 (5), there is a Carter subgroup C2 of B2 containing NC(Ds), and
since it covers B2/B

′

2 (Fact 2.23 (6)), the subgroup U0,r(C2) is non-trivial
(Fact 2.31). Since U0,r(C2) centralizes the U0,c-group NC(Ds) (Fact 2.30
(6)), it is contained in NG(NC(Ds)) ≤ B1. But, by Corollary 6.5, there
exists g ∈ G such that Sg ∩B2 is a Sylow U0,r-subgroup of B2, so there is
b ∈ B2 such that Sgb∩B2 contains U0,r(C2) (Fact 2.33 (2)). Hence Sgb∩B1

is non-trivial, a contradiction.

Thus our three cases provides a contradiction, so we conclude that B ∩ S = {1}
for each Borel subgroup B of G such that S ∩ B is non-trivial. In particular, B is
torsion-free by Lemma 6.13.
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In the final step, we consider the smallest positive integer s such that there exists
a Borel subgroup B with S ∩ B 6= 1 and U0,s(B) 6= 1. Then we fix such a Borel
subgroup B whose Sylow U0,s-subgroups have maximal Morley rank. By Corollary
6.5, we may choose B such that S∩B is a Sylow U0,r-subgroup of B. In particular,
by the first step, S∩B is not contained in B′. Also, by Facts 2.33 (2) and (3) there
is a Carter subgroup D of B such that U0,r(D) = S∩D and S∩B = (S∩B′)(S∩D),
so S ∩D is non-trivial. Since s is minimal and B is torsion-free by the second step,
U0,s(B

′)D is nilpotent by Fact 2.30 (2) and U0,s(D) is a Sylow U0,s-subgroup of B
by Fact 2.33 (3). We consider a Borel subgroup A of G containing NG(U0,s(D))◦.
Then A contains D, so S ∩ A is non-trivial, and it follows from the second step
that A is torsion-free. Moreover, the choice of s implies that U0,t(A) is trivial for
each positive integer t < s. Since U0,s(D) is a Sylow U0,s-subgroup of B contained
in A, the choice of B implies that U0,s(D) is a Sylow U0,s-subgroup of A too.
Consequently, there is a Carter subgroup C of A in NA(U0,s(D)) by Fact 2.33
(4) and C contains U0,s(D) by Fact 2.30 (2). Now we have U0,s(C) = U0,s(D),
and NG(C)◦ is contained in NG(U0,s(C))◦ = NG(U0,s(D))◦ ≤ A, so C is a Carter
subgroup of G. This contradicts the second step which implies A ∩ S = {1}, and
completes the proof. �

Fact 6.15. – [Fré08, Lemma 10.1 and Theorem 11.1] We assume that G is of type
(2). Let B be a Borel subgroup of G containing a Carter subgroup C of G. Then
B = U ⋊ C for a definable definably characteristic nilpotent subgroup U .

Theorem 6.16. – Any Borel subgroup B of G satisfies the following decomposition

B = U ⋊D and Z∞(B) = F (B) ∩D,

where D is any Carter subgroup of B and U is a normal nilpotent connected defin-
able subgroup of B.

Furthermore, if B 6= D, then D is divisible and the following properties hold:

(1) for each prime p, either Up(U) is the unique Sylow p-subgroup of B, or each
Sylow p-subgroup of B is a p-torus contained in a conjugate of D;

(2) there is at most one positive integer r ≤ r0(D) such that there is a Sylow
U0,r-subgroup S of B not of the form U0,r(D

b) for b ∈ B. In this case, S
is a maximal abelian U0,r-subgroup and is not a Sylow U0,r-subgroup of G.

Proof – We may assume that B is non-nilpotent, that is B 6= D. By Theorem
4.9, we may assume that, either G is of type (2), or B is not a major Borel subgroup.

If D is a Carter subgroup of G, then B is a major Borel subgroup of G, so G is of
type (2). In particular, G is torsion-free and satisfies the assertion (1). Moreover,
Fact 6.15 provides the decomposition B = U ⋊D. Now, since D is a homogeneous
Sylow U0,c-subgroup of G for an integer c (Fact 5.7 and Corollary 5.8), the assertion
(2) is satisfied, and the subgroup F (B) ∩ D is the Sylow U0,c-subgroup of F (B).
Then we have F (B) = U × (F (B) ∩D) by Fact 5.6. Since D is a Carter subgroup
of B, it contains the hypercenter of B, and we have Z∞(B) ≤ F (B) ∩ D. Since
F (B) ∩ D centralizes U and since D is nilpotent, we find Z∞(B) = F (B) ∩ D as
desired, and we may assume that D is not a Carter subgroup of G.

First we show that D is divisible. We may assume that G is not of type (2), since
it is torsion-free in this case. If D is not divisible, then by Fact 2.6 Up(D) 6= 1 for
a prime p. By Lemma 6.13, we have B 6⊆ U . Fact 2.23 (3) and Lemma 6.10 imply
Ds 6= 1. By Proposition 6.6, Ds is a connected definable subgroup of a Carter
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subgroup C of G and Ds centralizes Du. Since Du contains Up(D) (Corollary 6.3),
the subgroup Ds centralizes Up(D). Moreover, by Corollary 5.4 if G has a nilpotent
Borel, and by the commutativity of Carter subgroups otherwise (if G is of type (4)),
we have NG(Ds)

◦ 6≤ B since B is not a major Borel subgroup. But Fact 2.34 (1)
says that B is the only Borel subgroup containing NG(Ds)

◦ ≥ Up(D) 6= 1, hence
we have a contradiction, and D is divisible.

Secondly, D is abelian. Indeed, D < NG(D)◦, and the conclusion follows from
Fact 2.35 (2).

Thirdly, we show that B = B′ ⋊ D. By Fact 2.23 (6), we have B = B′D, and
DB′′/B′′ is a Carter subgroup of B/B′′. Then, since D is abelian, Fact 2.23 (7)
yields B/B′′ = B′/B′′ ⋊DB′′/B′′, therefore D ∩ B′ is contained in B′′. By Facts
2.32 (2) and (3), we have

B′ = A× U0,1(B
′)× · · · × U0,r0(B′)(B

′),

where A is definable, connected, definably characteristic and of bounded exponent,
and where U0,s(B

′) is a homogeneous U0,s-subgroup for each s ∈ {1, 2, . . . , r0(B
′)}.

If D ∩A is non-trivial, there is a prime p such that Up(B
′) is non-trivial and, since

D is abelian and divisible, D contains a non-trivial p-torus T . Then Up(B
′)T is a

locally finite p-subgroup of G contradicting Corollary 6.3. Hence D ∩ A is trivial,
and we may assume that D ∩ U0,r(B

′) is non-trivial for a positive integer r. We
notice that, since B′ is contained in U (Theorem 6.12), each Sylow U0,r-subgroup
of B is contained in U by Fact 2.33 (2) and Proposition 6.4. On the other hand,
since D ∩ B′ is contained in B′′, the structure of B′ implies that D ∩ U0,r(B

′)′ is
non-trivial. So B is the unique Borel subgroup containing U0,r(B

′) by Fact 2.35 (2),
and U0,r(B

′) is a Sylow U0,r-subgroup of G by Lemma 6.14 and Proposition 6.4 (1).
Since D is not a Carter subgroup of G, we have NG(D)◦ � B, and NG(U0,r(D))◦ is
contained in a Borel subgroup A 6= B. In particular, D is contained in A and is not
a Carter subgroup of A. Let S = NU0,r(B′)(U0,r(D))◦. Then S ≤ A ∩ B is abelian
by Fact 2.35 (2), and since S contains CU0,r(B′)(U0,r(D))◦, it is a maximal abelian
subgroup of U0,r(B

′). On the other hand, D ∩ U0,r(B
′)′ is non-trivial, so U0,r(B

′)
is not abelian and we have S < NU0,r(B′)(S)

◦. By maximality of S in U0,r(B
′), the

group NU0,r(B′)(S)
◦ is not abelian. This implies that B is the only Borel subgroup

containing NG(S)
◦ (Fact 2.35 (2)). Now, if SA is a Sylow U0,r-subgroup of A

containing S, then SA is a homogeneous U0,r-subgroup by Proposition 6.4 (1), and
NSA

(S)◦ is a U0,r-subgroup. But NSA
(S)◦ ≤ NG(S)

◦ is contained in B, hence it
is contained in U0,r(B). Since U0,r(B

′) is a Sylow U0,r-subgroup of G and that
it is normal in B, we have U0,r(B) = U0,r(B

′) by Fact 2.33 (2) and NSA
(S)◦ is

contained in U0,r(B
′). Thus, since S is a maximal abelian subgroup of U0,r(B

′),
and since NSA

(S)◦ ≤ A ∩ B is abelian by Fact 2.35 (2), we obtain NSA
(S)◦ = S.

Therefore the nilpotence of SA yields SA = S and S is a Sylow U0,r-subgroup of
A. Consequently, NG(S)

◦ contains a Carter subgroup of A by Fact 2.33 (4) and
all the Carter subgroups of NG(S)

◦ are Carter subgroups of A (Fact 2.23 (3)).
In particular, D is a Carter subgroup of A, contradicting that D is not a Carter
subgroup of A. This proves B = B′ ⋊D.

Now we show that Z∞(B) = Z(B) = F (B)∩D. Since we have Z(B) ≤ Z∞(B) ≤
F (B) ∩D by Fact 2.23 (5), we have just to prove that F (B) ∩D is central in B.
Firstly we show that F (B) ∩ D is torsion-free. Indeed, we may assume that G is
not of type (2), so F (B) is contained in U by Corollary 6.9. Since D is abelian
and divisible, for each prime p, each p-element x of F (B) ∩ D lies in a p-torus,
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and is semisimple by Fact 2.23 (2). Since F (B) is contained in U , this implies that
F (B)∩D is torsion-free, as desired. On the other hand, for each positive integer r,
if U1 is a non-trivial U0,r-subgroup in F (B)∩D, then U1 is contained in the Sylow
U0,r-subgroup S of F (B). Since S ≥ U1 is not contained in B′, Proposition 6.4
implies that either S ⊆ S and there is a Carter subgroup C of G containing S, or
S ⊆ U . In the last case, there is a Borel subgroup B0 6= B containing S by Lemma
6.14, and S is abelian by Fact 2.35 (2). If S ⊆ S and if C is a Carter subgroup of
G containing S, then C is not contained in B and S is abelian by Fact 2.35 (2).
Now S is central in F (B) by Fact 2.30 (7). Consequently, since D is abelian, U1

centralizes F (B) and D. Hence U1 is central in B. Therefore Fact 2.30 (7) provides
F (B) ∩D ≤ Z(B), and the equality Z∞(B) = Z(B) = F (B) ∩D holds.

We verify assertion (1). We may assume that G is not of type (2), so we have
B′ ≤ U by Lemma 6.8. Let p be a prime integer. If there is a p-element in B \B′,
then there is a non-trivial p-element in D ≃ B/B′. Since D is abelian and divisible,
the maximal p-torus T of D contains all the p-elements of D. But Fact 2.23 (2)
and (3) imply that T is a maximal p-torus of B, and Corollary 6.3 says that T is a
Sylow p-subgroup of B. Hence the conjugacy of Sylow p-subgroups in B (Fact 2.16)
allows to conclude (1) in this case. Thus we may assume that all the p-elements of
B are contained in B′ ⊆ U , and Corollary 6.3 finishes the proof of (1).

Finally, we prove assertion (2). We may assume r0(D) > 0. Let A be a Borel
subgroup containing NG(U0(D))◦ ≥ NG(D)◦ > D. In particular, we have A 6= B.
By Fact 2.35 (1), there is a positive integer r such that ((A∩B)◦)′ is a homogeneous
U0,r-subgroup. Let s ≤ r0(D), and let S be a Sylow U0,s-subgroup of B. By Fact
2.33 (3), there is a Carter subgroup Q of B such that S = U0,s(B

′)U0,s(Q). We
assume S 6= U0,s(Q), that is U0,s(B

′) 6= 1. By Fact 2.23 (3), Q = Db for b ∈ B. On
the other hand, by Fact 2.30 (2), the subgroup SU0(D

b) is nilpotent. If s < r0(D),
then U0(D

b) centralizes S (Fact 2.30 (6)), and S ≤ B ∩ Ab is abelian by Fact
2.35 (2). If s = r0(D) and U0(D) ⊆ S, then S is contained in a Carter subgroup
of G by Proposition 6.4 (2). Since B does not contain a Carter subgroup of G,
Fact 2.35 (2) implies that S is abelian. If s = r0(D) and U0(D) 6⊆ S, then we
have S ⊆ U by Proposition 6.4 (1). In this case, S is contained in B′

S for a Borel
subgroup BS (Lemma 6.14). Since s = r0(D) > 0 and D ∩ B′ = 1, we have
BS 6= B. Again Fact 2.35 (2) implies that S is abelian. Thus, in all the cases,
S is abelian and centralizes U0(D

b). Then S is contained in (Ab ∩ B)◦. Let now,
H = (Ab∩B)◦. Since Db is a Carter subgroup of H, we have S = U0,s(H

′)U0,s(D
b)

by Fact 2.33 (3). In particular, since S 6= U0,s(D
b), we have U0,s(H

′) 6= 1. Hence,
since H ′ = (((A ∩ B)◦)′)b is a homogeneous U0,r-subgroup, we obtain s = r. In
particular, this proves the uniqueness statement in assertion (2).

In order to complete the proof, it remains to prove that S is a maximal abelian
U0,r-subgroup and is not a Sylow U0,r-subgroup of G. Before going any further,
we verify that H is a maximal intersection of Borel subgroups in G with respect to
containment. We will use condition (ii) of Fact 2.36 (1) to verify this. Since S is an
abelian Sylow U0,r-subgroup of B, all the Sylow U0,r-subgroups of B are abelian
by Fact 2.33 (2), and the Sylow U0,r-subgroup of F (B) is central in F (B) by Fact
2.30 (7). Thus, since F (B) contains B′ by Fact 2.10, the U0,r-group H ′ centralizes
B′. On the other hand, since Db ≤ H, Db normalizes H ′, and so B = B′ ⋊ Db

normalizes H ′. This implies that B = NG(H
′)◦. In particular, B ≥ CG(H

′)◦. The
maximality follows.
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An immediate consequence of the last paragraph is that S is a maximal abelian
U0,r-subgroup of G. Indeed, if SA is a maximal abelian U0,r-subgroup of G con-
taining S, then SA ≤ CG(S)

◦ ≤ CG(H
′)◦ ≤ B. Thus, S = SA by maximality of S

in B.
It remains to prove that S is not a Sylow U0,r-subgroup of G. Before proceeding

towards this conclusion, we verify that B′ does not contain S. If B′ contains S, then
S is normal in B and B = NG(S)

◦. By Fact 2.33 (1), S is a Sylow U0,r-subgroup
of G. Then NAb(S)◦ ≤ B contains a Carter subgroup CAb of Ab by Fact 2.33 (4),
and CAb is a Carter subgroup of H. Thus CAb and Db are conjugate in H (Fact
2.23 (3)), and Db is a Carter subgroup of Ab, contradicting that D is not a Carter
subgroup of A. Hence B′ does not contain S.

Finally, assume towards a contradiction that S is a Sylow U0,r-subgroup of G.
Since H ′ ≤ B′ ⊆ U , S ⊆ U by Proposition 6.4 (1). Let BS = NG(S)

◦. By Lemma
6.14, BS is a Borel subgroup of G satisfying S ≤ B′

S . It then follows using the
conclusion of the preceding paragraph that B 6= BS . Since H ′ ≤ S ≤ H, H ≤
NG(S)

◦ = BS . Hence, B ∩BS is also a maximal intersection. Since B ≥ NG(H
′)◦,

Fact 2.36 (2) implies that r0(B) > r0(BS). Since S is a Sylow U0,r-subgroup of G,
S is abelian and S ⊳ BS , we conclude that S = U0,r(F (BS)). Fact 2.36 (3) yields a
contradiction. �

The following corollary is a direct consequence from Theorme 6.16.

Corollary 6.17. – If a Borel subgroup B of G has an abelian Carter subgroup D,
then it satisfies the following decomposition

B = B′ ⋊D and Z(B) = F (B) ∩D.

7. Toward a Jordan decomposition for K∗-groups

The simple K∗-groups of finite Morley rank form the backbone of the inductive
approach to the Cherlin-Zilber conjecture, and the geometric nature of the struc-
tural information conveyed by a Jordan decomposition is likely to allow to make
advances towards the resolution of this problem. Our goal in starting this work was
to establish a Jordan decomposition for connected minimal simple groups of finite
Morley rank. Connected minimal simple groups form the basis of any inductive
approach to the Cherlin-Zilber conjecture. Their structure is thus poor in terms of
inductive information. Nevertheless, the theory of solvable groups of finite Morley
rank is invaluable.

The progress made throughout the present article raises the following natural
question: can we extend the Jordan decomposition to the entire class of simple
K∗-groups of finite Morley rank? The reader should recall that a minimal coun-
terexample to the Cherlin-Zil’ber conjecture is a simple K∗-group of finite Morley
rank, equivalently a simple K∗-group of finite Morley rank is a group of finite Mor-
ley rank all of whose proper definable simple sections are algebraic groups over
algebraically closed fields. In particular, connected minimal simple groups are K∗-
groups. This generalization will involve only simple groups of odd type since the
structure of simple groups of even type are known to be algebraic [ABC08].

Despite their partial character, our existing results suffice to form the basis of
an induction. Indeed, in a non-minimal simple K∗-group, thanks to the presence of
definable simple sections, there will be always be involutions, hence, infinite Sylow
2-subgroups. On the one hand, this eliminates a considerable number of technical
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problems encountered above, on the other hand, using inductive arguments based
on the presence these definable simple sections one can show that the Weyl groups
are not trivial. As a result, the above analysis of minimal simple groups of types
(3) and (4) are sufficient to form an induction basis. Indeed, it is easy to prove the
following dichotomy:

Lemma 7.1. – Let G be a simple K∗-group of finite Morley rank. Then one of the
following conditions is true:

(1) either G is minimal
(2) or the Weyl group of G is of even order.

We should emphasize that the expression “the Weyl group” is justified in the con-
text of non-minimal simple K∗-groups as well. Indeed, the presence of non-trivial
divisible torsion (p-tori) in a non-minimal simple K∗-group implies the presence of
non-trivial maximal decent tori, and these are conjugate. Moreover, the following
lemma shows that the initial step of the minimal analysis is also available in general:

Lemma 7.2. – Let G be a simple K∗-group of finite Morley rank of odd type. Then
the following isomorphisms hold:

W (G) ≃ NG(C)/C ≃ NG(S)/CG(S) ,

where C is any Carter subgroup of G while S is a maximal 2-torus.

The proof is just the first part of the proof of Fact 3.1. It depends on another
crucial fact still available in this context, namely the conjugacy of Carter subgroups
for simple K∗-groups of finite Morley rank [Fré08], and on an inductive reasoning
that implies that CG(S) is still solvable.

These motivate to undertake an analogue of the first subsequent major step in
the minimal case, namely the self-normalization of Borel subgroups (Fact 3.8). In
the general non-minimal context, it is likely that one will have to replace Borel
subgroups by other classes of subgroups generalizing some of their properties, e.g.
the maximal, definable, connected subgroups.

It is highly probable that the self-normalization conclusion will not be achieved
fully, and one will be content with proving that there exist no involutions in the
quotient of the normalizer by the subgroup in question. This restriction is caused
by lack of torsion information in a general simple K∗-group. Indeed, the main
definite numerical result known in this direction concerns only 2-tori:

Fact 7.3. – Let G be a simple K∗-group of finite Morley rank of odd type, which
is not algebraic. Then G has Prufer 2-rank at most two.

On the other hand, this fact supported by other major works on semisimple torsion
(e.g. [BC08b]) yields convincing evidence that the elimination of 2-torsion can be
achieved. We expect that this partial information, supported by richer inductive
information of the non-minimal case, will be sufficient to continue the analysis
leading to the sought for generalization of the Jordan decomposition.

This generalization will necessitate an extended analysis around the following
main lines:

• the analysis of intersections of maximal, definable, connected subgroups,
i.e. an extension of the Bender method developed in [Bur07];
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• the study of K-group configurations that arise in the analysis of a sim-
ple K∗-group of Prüfer 2-rank at most 2 and of the related simple group
automorphisms;

• an extension of the work by Deloro in [Del08].

The presence of the last item in the preceding list is justified by our experience
that, with sufficiently strong conditions, maximal, definable, connected subgroups
tend to be solvable. For instance, if G is a simple K∗-group of finite Morley rank
of Prüfer 2-rank 1 and H a maximal, definable, connected subgroup such that
NG(H)/H is of even order, then one can easily show that H is solvable, a con-
clusion which yields a setting reminiscent of connected, minimal, simple groups.
The configurations that arise when one replaces the Prüfer 2-rank assumption by
2 justify the analyses proposed in the first two items of the above list.
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[FJ05] Olivier Frécon et Éric Jaligot. The existence of Carter subgroups in groups of finite
Morley rank. J. Group Theory, 8:623–633, 2005.
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