Néhémy Lim

Ibisc Ea

George Michailidis

Operator-valued Kernel-based Vector Autoregressive Models for Network Inference

Reverse-modeling of dynamical systems from time-course data still remains a challenging and canonical problem in knowledge discovery. For this learning task, a number of approaches primarily based on sparse linear models or Granger causality have been proposed in the literature. However when the dynamics are nonlinear, there does not exist a systematic answer that takes into account the nature of the underlying system. We introduce a novel family of vector autoregressive models based on different operator-valued kernels to identify the dynamical system and retrieve the target network. As in the linear case, a key issue is to control the model's sparsity. This control is performed through the joint learning of the structure of the kernel and the basis vectors. To solve this learning task, we propose an alternating optimization algorithm based on proximal gradient procedures that learn both the structure of the kernel and the basis vectors. Results on the DREAM3 competition gene regulatory benchmark networks of size 10 and 100 show the new model outperforms existing methods.

1

Introduction

In many scientific problems, high dimensional data with network structure play a key role in knowledge discovery [START_REF] Kolaczyk | Statistical Analysis of Network Data: Methods and Models[END_REF]. For example, recent advances in high throughput technologies have facilitated the simultaneous study of components of complex biological systems. Hence, molecular biologists are able to measure the expression levels of the entire genome and a good portion of the proteome and metabolome under different conditions and thus gain insight on how organisms respond to their environment. For this reason, reconstruction of gene regulatory networks from expression data has become a canonical problem in computational systems biology (Lawrence et al, 2010). Similar data structures emerge in other scientific domains. For instance, political scientists have focused on the analysis of roll call data of legislative bodies, since they allow them to study party cohesion and coalition formation through the underlying network reconstruction [START_REF] Morton | Experimental Political Science and the Study of Causality[END_REF], while economists have focused on understanding companies creditworthiness or contagion [START_REF] Gilchrist | Credit market shocks and economic fluctuations: Evidence from corporate bond and stock markets[END_REF]. Understanding climate changes implies to be able to predict the behavior of climate variables and their dependence relationship [START_REF] Parry | Climate change 2007: impacts, adaptation and vulnerability[END_REF][START_REF] Liu | Learning temporal causal graphs for relational time-series analysis[END_REF]. Two classes of network inference problems have emerged simultaneously from all these fields: the inference of association networks that represent coupling between variables of interest [START_REF] Meinshausen | High dimensional graphs and variable selection with the lasso[END_REF][START_REF] Kramer | Network inference with confidence from multivariate time series[END_REF] and the inference of "causal" networks that describe how variables influence other ones [START_REF] Murphy | Dynamic bayesian networks: representation, inference and learning[END_REF][START_REF] Perrin | Gene networks inference using dynamic bayesian networks[END_REF][START_REF] Auliac | Evolutionary approaches for the reverse-engineering of gene regulatory networks: a study on a biologically realistic dataset[END_REF][START_REF] Zou | Granger causality vs. dynamic bayesian network inference: a comparative study[END_REF][START_REF] Shojaie | Discovering graphical granger causality using a truncating lasso penalty[END_REF][START_REF] Maathuis | Predicting causal effects in large-scale systems from observational data[END_REF][START_REF] Bolstad | Causal network inference via group sparsity regularization[END_REF][START_REF] Dondelinger | Non-homogeneous dynamic bayesian networks with bayesian regularization for inferring gene regulatory networks with gradually time-varying structure[END_REF][START_REF] Chatterjee | Sparse group lasso: Consistency and climate applications[END_REF].

Over the last decade, a number of statistical techniques have been introduced for estimating networks from high-dimensional data in both cases. They divide into model-free and model-driven approaches. Model-free approaches for association networks directly estimate information-theoretic measures, such as mutual information to detect edges in the network [START_REF] Hartemink | Reverse engineering gene regulatory networks[END_REF][START_REF] Margolin I Aand Nemenman | Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context[END_REF]. Among model-driven approaches, graphical models have emerged as a powerful class of models and a lot of algorithmic and theoretical advances have occured for static (independent and identically distributed) data under the assumption of sparsity. For instance, Gaussian graphical models have been thoroughly studied (see [START_REF] Bühlmann | Statistics for High-Dimensional Data: Methods, Theory and Applications[END_REF] and references therein) under different regularization schemes to reinforce sparsity in linear models in an unstructured or a structured way. In order to infer causal relationship networks, Bayesian networks [START_REF] Friedman | Inferring cellular networks using probabilistic graphical models[END_REF][START_REF] Lèbre | Inferring dynamic genetic networks with low order independencies[END_REF] have been developed either from static data or time-series within the framework of dynamical Bayesian networks. In the case of continuous variables, linear multivariate autoregressive modeling [START_REF] Michailidis | Autoregressive models for gene regulatory network inference: Sparsity, stability and causality issues[END_REF] has been developed with again an important focus on sparse models. In this latter framework, Granger causality models have attracted an increasing interest to capture causal relationships.

However, little work has focused on network inference for continuous variables in the presence of nonlinear dynamics despite the fact that regulatory mechanisms involve such dynamics. Of special interest are approaches based on parametric ordinary differential equations [START_REF] Chou | Recent developments in parameter estimation and structure identification of biochemical and genomic systems[END_REF]) that alternatively learn the structure of the model and its parameters. The most successful approaches decompose into Bayesian Learning [START_REF] Mazur | Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling[END_REF][START_REF] Aijo | Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics[END_REF]) that allows to deal with stochasticity of the biological data, while easily incorporating prior knowledge and genetic programming [START_REF] Iba | Inference of differential equation models by genetic programming[END_REF] that provides a population-based algorithm for a stochastic search in the structure space. In this study, we start from a regularization theory perspective and introduce a general framework for nonlinear multivariate modeling and network inference. Our aim is to extend the framework of sparse linear modeling to that of sparse nonlinear modeling. In the machine learning community, a powerful tool to extend linear models to nonlinear ones is based on kernels. The famous kernel trick allows to deal with nonlinear learning problems by working implicitly in a new feature space, where inner products can be computed using a symmetric positive semi-definite function of two variables, called a kernel. In particular, a given kernel allows to build a unique Reproducing Kernel Hilbert Space (RKHS), e.g. a functional space where regularized models can be defined from data using representer theorems. The RKHS theory provides a unified framework for many kernel-based models and a principled way to build new (nonlinear) models. Since multivariate time-series modeling requires defining vector-valued models, we propose to build on operator-valued kernels and their associated reproducing kernel Hilbert space theory (Senkene and Tempel'man, 1973) that were recently introduced in machine learning by [START_REF] Micchelli | On learning vector-valued functions[END_REF] for the multi-task learning problem with vector-valued functions. Among different ongoing research on the subject [START_REF] Alvarez | Kernels for vector-valued functions: a review[END_REF], new applications concern vector field regression [START_REF] Baldassarre | Vector field learning via spectral filtering[END_REF], structured classification [START_REF] Dinuzzo | Learning low-rank output kernels[END_REF], functional regression [START_REF] Kadri | Functional regularized least squares classication with operator-valued kernels[END_REF] and link prediction [START_REF] Brouard | Semi-supervised penalized output kernel regression for link prediction[END_REF]. However, their use in the context of time series is novel.

Building upon our previous work [START_REF] Lim | Okvar-boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks[END_REF] that focused on a specific model, we define a whole family of nonlinear vector autoregressive models based on various operator-valued kernels. Once an operator-valued kernel-based model is learnt, we compute an empirical estimate of its Jacobian, providing a generic and simple way to extract dependence relationship among variables. We discuss how a chosen operator-valued kernel can produce not only a good approximation of the systems dynamics, but also a flexible and controllable Jacobian estimate. To obtain sparse networks and get sparse Jacobian estimates, we extend the sparsity constraint applied to the design matrix regularly employed in linear modeling. To control smoothness of the model, the definition of the loss function involves an ℓ 2 -norm penalty and additionally, may include two different kinds of penalties, depending on the nature of the estimation problem: an ℓ 1 penalty that imposes sparsity to the whole matrix of parameter vectors, suitable when the main goal is to ensure sparsity of the Jacobian, and a mixed ℓ 1 /ℓ 2 -norm that allows one to deal with an unfavorable ratio between the network size and the length of observed time-series. To optimize a loss function that contains these non-differentiable terms, we develop a general proximal gradient algorithm.

Note that selected operator-valued kernels involve a positive semi-definite matrix as a hyperparameter. The background knowledge required for its definition is in general not available, especially in a network inference task. To address this kernel design task together with the other parameters, we introduce an efficient strategy that alternatively learns the parameter vectors and the positive semi-definite matrix that characterizes the kernel. This matrix plays an important role regarding the Jacobian sparsity; the estimation procedure for the matrix parameter also involves an ℓ 1 penalty and a positive semi-definiteness constraint. We show that without prior knowledge on the relationship between variables, the proposed algorithm is able to retrieve the network structure of a given underlying dynamical system from the observation of its behavior through time.

The structure of the paper is as follows: in Section 2, we present the general network inference scheme. In Section 3, we recall elements of RKHS theory devoted to vector-valued functions and introduce operator-valued kernel-based autoregressive models. Section 4 presents the learning algorithm that estimates both the parameters of the model and the parameters of the kernel. Section 5 illustrates the performance of the model and the algorithm through extensive numerical work based on both synthetic and real data, and comparison with state-of-the-art methods.

2 Network inference from nonlinear vector autoregressive models

x t+1 = h(x t) + u t (1)
where u t is a noise term. Some models such as linear models h(x t) = Bx t or parametric models, explicitly involve a matrix that can be interpreted as a network matrix and its estimation (possibly sparse) can be directly accomplished. However, for nonlinear models this is a more involved task. Our strategy is to first learn h from the data and subsequently estimate A using the values of the instantaneous Jacobian matrix of model h, measured at each time point. The underlying idea is that partial derivatives ∂h(xt) i ∂x j t reflects the influence of explanatory variable j at time t on the value of the i-th model's output h(x t) i . We interpret that if ∂h(xt) i ∂x j t is high in absolute value, then variable j influences variable i. Several estimators of A can be built from those partial derivatives. We propose to use the empirical mean of the instantaneous Jacobian matrix of h. Specifically, denote by x 1 , . . . , x N +1 the observed time series of the network state. Then, ∀(i, j) ∈ {1, . . . , d} 2 , an estimate Ĵ(h) of the Jacobian matrix ∇h = J(h) is given by:

Ĵ(h) ij = 1 N N t=1 ∂h(x t) i ∂x j t (2)
In the remainder of the paper, we note Ĵ(h) ij the (i, j) coefficient of the empirical mean of Jacobian of h and Ĵ(h) ij (t) its value at a given time t. Each coefficient Ĵ(h) ij in absolute value gives a score to the potential influence of variable j on variable i. To provide a final estimate of A, these coefficients are sorted in increasing order and a rank matrix R is built according to the following rule: let r(i, j) be the rank of the coefficient Ĵ(h) ij among the p(p+1) 2 sorted coefficients, then we define R, the rank matrix as: R ij = r(i, j).

To get an estimate of A, coefficients of R are thresholded given a positive threshold θ: Âij = 1, if (R ij > θ), and 0, otherwise.

Note that to obtain a high quality estimate of the network, we need a class of functions h whose Jacobian matrices can be controlled during learning in such a way that they could provide good continuous approximators of A. In this work, we propose a new class of nonparametric vector autoregressive models that exhibit such properties. Specifically, we introduce Operator-valued Kernelbased Vector AutoRegressive (OKVAR) models, that constitute a rich class as discussed in the next section.

3 Operator-valued kernels and vector autoregressive models

3.1 From scalar-valued kernel to operator-valued kernel models of autoregresssion

In order to solve the vector autoregression problem set in Eq. (1) with a nonlinear model, one option is to decompose it into d tasks and use, for each task i, a scalar-valued model h i such as a kernel-based model. Dataset D N now reduces into d datasets of the form D i N = {(x ℓ , x i ℓ+1), ℓ = 1, . . . , N }. Each task i is now a regression task that we may solve by estimating a nonparametric model. For instance, kernel-based regression models are good candidates for those tasks. A unique feature of these approaches is that they can be derived from Reproducing Kernel Hilbert Space theory that offers a rigorous background for regularization. For instance, kernel-ridge regression and Support Vector Regression provide consistent estimator as soon as the chosen kernel is universal. Then, for each i = 1, . . . , d, a model based on a positive definite kernel k : R d × R d → R writes as:

h i (x t) = N ℓ=1 w i ℓ k(x ℓ , x t), (3)
where w i is the parameter vector attached to model i. Although this decomposition is well justified when the covariance matrix of noise u t is diagonal, in the general case, the d regression tasks are not independent. The purpose of this work is therefore to extend such approaches to the vector autoregression problem in order to provide (i), a general family of nonparametric models and (ii), suitable models for network inference by Jacobian estimation. We now aim to predict the state vector of a dynamical system x t+1 at time t + 1, given its state x t at time t using kernel-based models appropriate for vectors. As a vector autoregressive model is a vector-valued function, the RKHS theory based on scalar-valued kernel does not apply. However, if the kernel is chosen to be operator-valued e.g. matrix-valued in our setting, then RKHS theory devoted to operator-valued kernel provides a similar framework to build models and to justify their use. In the following, we introduce the basic building blocks of operator-valued kernel-based theory and notations to extend (3) into models of the following form:

h(x t) = N ℓ=1 K(x t , x ℓ)w ℓ , (4)
where K is an operator-valued kernel to be defined in next section and w ℓ , ℓ = 1, . . . , N are parameter vectors of dimension d.

RKHS theory for vector-valued functions

In RKHS theory with operator-valued kernels, we consider functions with input in some set X and with vector values in some given Hilbert space F y . For completeness, we first describe the general framework and then come back to the case of interest, namely X = F y = R d . Denote by L(F y), the set of all bounded linear operators from F y to itself. Given A ∈ L(F y), A * denotes its adjoint. Then, an operator-valued kernel K is defined as follows:

Definition 1 (Operator-valued kernel) (Senkene and Tempel'man, 1973;[START_REF] Caponnetto | Universal multitask kernels[END_REF] Let X be a set and F y a Hilbert space. Then, K :

X × X → L(F y) is a kernel if: • ∀ (x, z) ∈ X × X , K(x, z) = K(z, x) * • ∀m ∈ N, ∀{(x i , y i), i = 1, . . . , m} ⊆ X × F y , m i,j=1 y i , K(x i , x j)y j Fy ≥ 0 When F y = R d ,
each kernel function is matrix-valued, which means that two inputs x and z can be compared in more details. Moreover, Senkene and Tempel'man (1973); [START_REF] Micchelli | On learning vector-valued functions[END_REF] established that one can build a unique RKHS H K from a given operator-valued kernel K. The RKHS H K is built by taking the closure of span{K(•, x)y|x ∈ X , y ∈ F y } endowed with the scalar product f, g

H K = i,j u i , K(r i , s j)v j Fy with f (•) = i K(•, r i)u i and g(•) = j K(•, s j)v j . The corresponding norm • H K is defined by f 2 H K = f, f H K .
For the sake of notational simplicity, we omit K and use H = H K in the remainder of the paper. As in the scalar case, one of the most appealing features of RKHS is to provide a theoretical framework for regularization, e.g. representer theorems. Let us consider the case of regression with a convex loss function V . We denote by

D N = {(x ℓ , y ℓ), ℓ = 1, . . . , N } ⊆ X × F y the data set under consideration.
Theorem 1 ([START_REF] Micchelli | On learning vector-valued functions[END_REF])) Let V be some prescribed loss function, and λ > 0 the regularization parameter. Then, any minimizer of the following optimization problem:

argmin h∈H L(h) = N ℓ=1 V (h(x ℓ), y ℓ) + λ h 2 H ,
admits an expansion:

ĥ(•) = N ℓ=1 K(•, x ℓ)c ℓ , (5)
where the coefficients

c ℓ , ℓ = {1, • • • , N } are vectors in the Hilbert space F y .
Such a result justifies a new family of models of the form (5) for vector regression in R d . Then, the operator-valued kernel (OVK) becomes a matrixvalued one. In case this matrix is diagonal, the model reduces to d independent models with scalar outputs and there is no need for a matrix-valued kernel. In other cases, when we assume that the different components of the vectorvalued function are not independent and may share some underlying structure, a non-diagonal matrix-valued kernel allows to take into consideration similarities between the components of the input vectors. Initial applications of matrixvalued kernels deal with structured output regression tasks, such as multi-task learning and structured classification. In the following, we propose to apply this framework to autoregression. We examine different matrix-valued kernels as well as different loss functions and discuss about their relevance for network inference.

The OKVAR family

Let now fix X = F y = R d . Recall that the objective is to estimate an vector autoregressive model. Given the observed d-dimensional time series x 1 , . . . , x N +1 that we use as the training dataset

D N = {(x 1 , x 2), . . . , (x N , x N +1)}, the non- parametric model h is defined as h(x t ; D N) = N ℓ=1 K(x t , x ℓ)c ℓ (6)
where K(•, •) is a matrix-valued kernel and each c ℓ (ℓ ∈ {1, . . . , N }) is a vector of dimension d. In the following, we denote by C ∈ M N,d , the matrix composed of the N row vectors c T ℓ of dimension d. We call Operator-valued Kernel Vector Autoregression (OKVAR), the vector autoregressive models of the form given by Eq. (6). In this study, we focus on nonlinear kernels by considering three kernel candidates, that fulfill the properties of an operator-valued kernel, one of them presenting the property to be universal.

Let us recall the definition of the scalar-valued Gaussian kernel k Gauss :

R d × R d → R: k Gauss (x, z) = exp(-γ||x -z|| 2). Please notice that in the special case d = 1, k Gauss (x, z) reduces to exp(-γ(x -z) 2).
As a baseline, we first consider the Gaussian transformable kernel which extends the standard Gaussian kernel to the matrix-valued case. If x is a vector, we denote x m its m th coordinate. Then the Gaussian transformable kernel is defined as follows:

Definition 2 (Gaussian (transformable) kernel) ∀(x, z) ∈ R d × R d , ∀(i, j) ∈ {1, . . . , d} 2 , K Gauss (x, z) ij = k Gauss (x i , z j) (7)
Interestingly, each (i, j)-coefficient of the kernel K Gauss compares the i th coordinate of x to the j th coordinate of z, allowing a richer comparison between x and z. For sake of simplicity, we will call this kernel the Gaussian kernel in the remainder of the paper. Note that the Gaussian kernel depends on only one single hyperparameter γ. It gives rise to the following Gaussian OKVAR model.

Definition 3 (Gaussian OKVAR)

h Gauss (x t) = N ℓ=1 K Gauss (x t , x ℓ)c ℓ (8)
An interesting feature of the Gaussian kernel-based OKVAR model is that each coordinate i of the vector model h Gauss (x t) i can be expressed as a linear combination of nonlinear functions of variables j = 1, . . . , d: h Gauss (x t) i = ℓ j exp(-γ(x i t -x j ℓ) 2)c j ℓ . Decomposable kernels are another class of kernels that have been first defined by [START_REF] Micchelli | On learning vector-valued functions[END_REF] in order to address multi-task regression problems and structured classification. When based on Gaussian kernels, they are defined as follows:

Definition 4 (Decomposable (Gaussian) kernel) Let B is a positive semi- definite matrix of size d × d. ∀(x, z) ∈ R d × R d , K dec (x, z) = k Gauss (x, z)B (9)
In this kernel, B is related to the structure underlying outputs: B imposes that some outputs are dependent. This kernel has been proved to be universal by [START_REF] Caponnetto | Universal multitask kernels[END_REF], e.g. the induced RKHS is a family of universal approximators. The decomposable Gaussian OKVAR model is then defined as follows:

Definition 5 (Decomposable Gaussian OKVAR)

h dec (x t) = N ℓ=1 exp(-γ||x t -x ℓ || 2)Bc ℓ (10)
Let now K dec be a decomposable Gaussian kernel with scalar parameter γ 1 and matrix parameter B and K Gauss be a Gaussian kernel with scalar parameter γ 2 . As proposed in [START_REF] Lim | Okvar-boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks[END_REF], we combine the Gaussian kernel and the decomposable kernel with the Hadamard product to get a kernel that involves nonlinear functions of single coordinates of the input vectors while imposing some structure to the kernel through a positive semi-definite matrix B. The resulting kernel is called the Hadamard kernel.

Definition 6 (Hadamard kernel)

∀ (x, z) ∈ R d × R d , K Hadamard (x, z) = K dec (x, z) • K Gauss (x, z) (11)
where • denotes the Hadamard product for matrices.

The resulting kernel K Hadamard possesses the kernel property, i.e:

Proposition 1 The kernel defined by (11) is a matrix-valued kernel.

Proof: A Hadamard product of two matrix-valued kernels is a matrix-valued kernel (proposition 4 in [START_REF] Caponnetto | Universal multitask kernels[END_REF]).

The Hadamard OKVAR model has the following form:

Definition 7 (Hadamard OKVAR)

h Hadamard (x t) = N ℓ=1 exp(-γ 1 ||x t -x ℓ || 2)B • K Gauss (x t , x ℓ)c ℓ (12)

Jacobians of the OKVAR models

As mentioned in the introduction, the network structure will be inferred by the empirical mean of the instantaneous Jacobian matrices Ĵ(h)(t) of h over observed time-points. At any given time point t, for a given target state variable i and a matrix-valued kernel-based model h, we have:

∀j ∈ {1, . . . , d}, Ĵ(h) ij (t) = N ℓ=1 ∂(K(x t , x ℓ)c ℓ) i ∂x j t (13)
Hence, each component of h should be a function of the state variables in such a way that the coefficients of the Jacobian reflect the dependence of the output component on some of the state variables. Due to our assumption of nonlinear dynamics of the underlying system, the kernel should contain nonlinear functions of the state variables. Moreover, a relevant matrix-valued kernel-based model should allow the sparsity of the Jacobian to be controlled through the values of its parameters. The kernels proposed previously in Section 3.3 give rise to the following expressions for instantaneous Jacobian.

Gaussian OKVAR. The (i, j)-th entry of the Jacobian at time t for the Gaussian-OKVAR model (8) writes as:

Ĵ(h Gauss) ij (t) = 2γ(x i t -x j t) exp -γ(x i t -x j t) 2 c j t ,
which implies that the c j t 's have the same impact, no matter what the target variable i is. As a consequence, it becomes impossible to control those parameters for network inference purposes.

Decomposable OKVAR. If we now consider the decomposable model, h dec , defined in (10), the corresponding (i, j)-th term of the Jacobian is given by:

Ĵ(h dec) ij (t) = N ℓ=1 ∂exp(-γ||x t -x ℓ || 2) ∂x j t (Bc ℓ) i (14)
which implies that the nonlinear term involved in the matrix-valued kernel does not differ from one pair (i, j) to another. Then, it is impossible to control specific values of the Jacobian matrix using B or the c ℓ 's.

Hadamard OKVAR. Finally, we obtain a richer class of Jacobians, more suitable for the inference task at hand, if we use Hadamard OKVAR defined in (12) for which the entries of its Jacobian at time t Ĵ(h Hadamard) ij (t) = Ĵij (t) are given by:

Ĵij (t) = N ℓ=1 ∂exp(-γ1||xt-x ℓ || 2) ∂x j t B•K Gauss (x t , x ℓ)c ℓ +exp(-γ 1 ||x t -x ℓ || 2) ∂B•K Gauss (xt,x ℓ)c ℓ ∂x j t
which after some calculations reduces to:

Ĵij (t) = 2γ 2 b ij (x i t -x j t) exp -γ 2 (x i t -x j t) 2 c j t -2γ 1 ℓ =t exp(-γ 1 ||x t -x ℓ || 2)(x j t -x j ℓ) d p=1 b ip exp -γ 2 (x i t -x p ℓ) 2 c p ℓ (15
)
The obtained expression exhibits some interesting characteristics: if we choose γ 1 very close to 0 (for γ 1 = 0, k Gauss is no more a kernel), then k Gauss (x t , x ℓ) is close to one for any pair (x t , x ℓ) and the second term in (15) is approximatively 0. Then, the value of the Jacobian for variables (i, j) is controlled by the value of b ij : hence, B is capable of imposing structure in the model. For example, for a given pair of variables (i, j), if b ij = 0, then irrespective of the values of c j ℓ , ℓ = 1, • • • , N , the corresponding Jacobian coefficient will be zero as well; i.e variable j does not influence variable i. Conversely, a non-zero coefficient b ij does not reflect influence from j to i since the c ℓ parameters can still set the corresponding coefficient in the Jacobian to zero. Thus, the parameter B captures some of the structure of the underlying network, together with C. Note that the vectors c ℓ 's and the cross-difference between coordinates in equation (15) allow us to have non-symmetric Jacobian matrices, suitable for reconstructing directed graphs.

4 Learning OKVAR with proximal gradient algorithms 4.1 Learning C for fixed kernel

In some applications, kernel K may be already specified. For instance, the transformable Gaussian kernel depends on a parameter γ that might be preset.

For a decomposable or a Hadamard kernel, the matrix B may be provided a priori. Thus, learning the resulting OKVAR model boils down to learning the matrix of model parameters C. We denote the model h C to highlight that dependence. To estimate C, we employ the following general regularized loss function :

L(C) = N t=1 ||h C (x t) -x t+1 || 2 + λ h ||h C || 2 H + Ω(C) (16)
The squared norm ||h C || 2 H = N i,j=1 c T i K(x i , x j)c j plays the role of a weighted ℓ 2 norm on C. When Ω(C) = 0, minimizing (16) turns out to solving the kernel ridge regression problem. In this case C can be computed in closed-form solution :

c = (K + λ h Id) -1 x 2:N +1 (17
)
where c is the vectorized form of matrix C, K = (K(x ℓ , x t)) ℓ,t ∈ M N d is the block-Gram matrix computed on pairs of data (x ℓ , x t), ℓ, t = 1 . . . N and x 2:N +1 ∈ R N d is the concatenated vector of data x 2 , . . . , x N +1 . However this solution is usually not sparse. In order to control the sparsity of the model, necessary for obtaining a sparse Jacobian, one may introduce an ℓ 1 -norm constraint on C, that is Ω 1 (C) = λ C C 1 where • 1 denotes both the ℓ 1 norm of a vector and that of the vectorized form of a matrix. Then the loss function becomes analogous to the one used in elastic-net type regularized models in the scalar case.

In nonparametric approaches, one key issue is to control model complexity. A way to perform it is to make use of few parameters c ℓ , which implies that only a few data are involved in the model. By referring to Support Vector Machine, we denote by Support Vectors data corresponding to a null vector c ℓ . Regularizing by the ℓ 1 -norm does not allow to set a whole vector c ℓ to zero, e.g. to exhibit support vectors. To achieve that, a structured sparsity strategy is more appropriate by considering the columns of C, i.e. vectors c ℓ 's, as a partition of the matrix coefficients. Such a constraint Ω struct may take the following form:

Ω struct (C) = λ C N ℓ=1 w ℓ c ℓ 2 (18)
As it is defined in (18), Ω struct is the so-called mixed ℓ 1 /ℓ 2 -norm. First used in [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] for the group Lasso, this norm has interesting features : it behaves like an ℓ 1 -norm on each vector c ℓ while within each vector c ℓ , the coefficients are subject to an ℓ 2 -norm constraint. w ℓ 's are positive weights whose values depend on the application. For instance, in our case, as the observed time-course data are the response of a dynamical system to some given initial condition, w ℓ should increase with ℓ, meaning that we put emphasis on the first time-points. We can thus note that (16) is a convex loss function that is a sum of two terms: f C which is differentiable with respect to C and g C which is non-smooth, but nevertheless convex and subdifferentiable with respect to C:

L(C) = N t=1 N ℓ=1 K(xt, x ℓ)c ℓ -xt+1 2 + λ h N t,ℓ=1 c T t K(xt, x ℓ)c ℓ f C (C)
+ Ω(C)

g C (C)
This leads us to employ a proximal gradient algorithm, which is appropriate for solving this problem. Its steps are outlined in Algorithm 1:

Algorithm 1 Solve Problem (16)

Inputs : C 0 ∈ M N d ;M ;ǫ c ;L C Initialize : m = 0; y (1) = c (0) ; t (1) = 1; STOP=false while m < M and STOP=false do Step 0: m ← m + 1 Step 1: c (m) = prox 1 L C (g C) y (m) -1 L C ∇ y (m) f C (y (m)) if ||c (m) -c (m-1) || ≤ ǫ c then STOP:=true else
Step 2:

t (m+1) = 1+ √ 1+4t (m) 2 2
Step 3:

y (m) = c (m) + t (m) -1 t (m+1) c (m) -c (m-1) end if end while
The algorithm relies on the following:

• L C is a Lipschitz constant of ∇ C f C the derivative of f C for variable C
• For s > 0, the proximal operator of a function g applied to some v ∈ R N d is given by: prox s (g)(v) = argmin u g(u) + 1 2s ||u -v|| 2

• Intermediary variables t (m) and y (m) in Step 2 and Step 3 respectively are introduced to accelerate the proximal gradient method [START_REF] Beck | Gradient-based algorithms with applications to signal recovery problems[END_REF].

The proximal operator of Ω 1 or Ω struct is the elementwise shrinkage or softthresholding operator T s : R N d → R N d :

Let G be a partition of the indices of v, for a given subset of indices I ∈ G,

T s (v) I = 1 - s v I 2 + v I
where v I ∈ R |I| denotes the coefficients of v indexed by I. Then, the proximal gradient term in the m th iteration is given by:

prox 1 L C (g C) y (m) - 1 L C ∇ y (m) f C (y (m)) I ℓ = T s ℓ y (m) - 1 L C ∇ y (m) f C (y (m)) I ℓ For g C = Ω struct , s ℓ = λ C w ℓ L C
and I ℓ , ℓ = 1, . . . , N is the subset of indices corresponding to the ℓ-th column of C, while for g C = Ω 1 , s ℓ = λ C L C and I ℓ , ℓ = 1, . . . , N d is a singleton corresponding to a single entry of C.

We also need to calculate L C a Lipschitz constant of ∇ C f . We can notice that f C (C) can be rewritten as:

f C (C) = Kc -x 2:N +1 2 + λ h c T Kc Hence, ∇ C f C (C) = 2K([K + λ h Id]c -x 2:N +1)
Using some algebra, we can establish that:

For c 1 , c 2 ∈ R N d , ||∇ C f C (c 1) -∇ C f C (c 2)|| ≤ 2ρ K 2 + λ h K L C c 1 -c 2
where ρ(K 2 + λ h K), is the largest eigenvalue of K 2 + λ h K.

Remark : It is of interest to notice that Algorithm 1 is very general and may be used as long as the loss function can be split into two convex terms, one of which is differentiable.

Learning C and the kernel

Other applications require the learning of kernel K. For instance, in order to tackle the network inference task, one may choose a Gaussian decomposable kernel K dec or a Gaussian transformable kernel K Hadamard . When bandwidth parameters γ are preset, the positive semi-definite matrix B underlying these kernels imposes structure in the model and has to be learnt. This leads to the more involved task of simultaneously learning the matrix of the model parameters C as well as B. Thus, we aim to minimize the following loss function for the two models h dec and h Hadamard :

L(B, C) = N t=1 ||h B,C (x t) -x t+1 || 2 + λ h ||h B,C || 2 H + Ω(C) + Ω(B) (19)
with Ω(C) a sparsity-inducing norm (Ω 1 or Ω struct), Ω(B) = λ B ||B|| 1 and subject to the constraint that B ∈ S + d where S + d denotes the cone of positive semi-definite matrices of size d × d. For fixed C, the squared norm of h B, Ĉ imposes a smoothing constraint on B, while the ℓ 1 norm of B aids in controlling the sparsity of the model and its Jacobian.

Further, for fixed B, the loss function L(B f ixed , C) is convex in C and conversely, for fixed C, L(B, C f ixed) is convex in B. We propose an alternating optimization scheme to minimize the overall loss L(B, C). Since both loss functions L(B f ixed , C) and L(B, C f ixed) involve a sum of two terms, one being differentiable and the other being sub-differentiable, we employ proximal gradient algorithms to achieve the minimization.

For fixed B, the loss function becomes:

L(B, C) = N t=1 ||h B,C (x t) -x t+1 || 2 + λ h ||h B,C || 2 H + Ω(C), (20
)
while for given Ĉ, it is given by:

L(B, Ĉ) = N t=1 ||h B, Ĉ (x t) -x t+1 || 2 + λ h ||h B, Ĉ || 2 H + λ B ||B|| 1 (21)
In summary, the general form of the algorithm is given in Algorithm 2.

Algorithm 2 Solve Problem (19)

Inputs : B 0 ∈ S + d ; ǫ B ; ǫ C Initialize : m = 0; STOP=false while STOP=false do
Step 1: Given B m , minimize the loss function (20) and obtain C m

Step 2: Given C m , minimize the loss function (21) and obtain

B m+1 if m > 0 then STOP:=||B m -B m-1 || ≤ ǫ B and ||C m -C m-1 || ≤ ǫ C end if Step 3: m ← m + 1 end while At iteration m, B m is fixed, kernel K is thus defined. Hence, estimation of C m in
Step 1 boils down to applying Algorithm 1 to minimize (20).

Learning the matrix B for fixed C

For given parameter matrix C, the loss function L(B, Ĉ) is minimized subject to the constraint that B is positive semi-definite. Note that f B is differentiable with respect to B, while both g 1,B and g 2,B are non-smooth, but convex and sub-differentiable with respect to B. When there is more than one non-smooth function involved in the loss function to minimize, we cannot use the same proximal gradient algorithm as delineated in Algorithm 1. We decide to adopt a strategy proposed by [START_REF] Raguet | Generalized forward-backward splitting[END_REF], where the authors generalize the classic forward-backward splitting algorithm to the case of an arbitrary number of non-smooth functions. The method has recently proven successful for the estimation of matrices with sparsity and low rank constraints [START_REF] Richard | Estimation of simultaneously sparse and low rank matrices[END_REF]. Our algorithm is presented below.

L(B, Ĉ) = N t=1 ||h B, Ĉ (x t) -x t+1 || 2 + λ h ||h B, Ĉ || 2 H f B (B) + λ B ||B|| 1 g 1,B (B) + 1 S + d (B)
Algorithm 3 Solve problem (21)

Inputs : M ; ǫ; ǫ L ; ǫ B ; Z (0) 1 , Z (0) 2 ∈ S + d ; α ∈]0, 1[; ∀m ∈ N, η m ∈]0, 2/L B [; ∀m ∈ N, µ m ∈ I µ Initialize : m = 0; B 0 = αZ (0) 1 + (1 -α)Z (0)
2 ; STOP=false while m < M and STOP=false do

Step 1.1:

Z (m+1) 1 = Z (m) 1 +µ m prox ηm α (g B,1) 2B m -Z (m) 1 -η m ∇ B f B (B m) -B m
Step 1.2:

Z (m+1) 2 = Z (m) 2 +µ m prox(g B,2) 2B m -Z (m) 2 -η m ∇ B f B (B m) -B m
Step 2:

B m+1 = αZ (m+1) 1 + (1 -α)Z (m+1) 2 if L(B m+1 , Ĉ) ≤ ǫ and |L(B m+1 , Ĉ) -L(B m , Ĉ)| ≤ ǫ L and ||B m+1 - B m || F ro ≤ ǫ B then STOP:=true end if
Step 3: m ← m + 1 end while Two proximal operators need to be computed. The proximal operator of g 1,B is the soft-threshold operator while the proximal operator corresponding to the indicator function 1 S + d is the projection onto the cone of positive semidefinite matrices : for

Q ∈ S d , prox(g B,2)(Q) = Π S + d (Q) = argmin B∈S + d ||B -Q|| F ro .
Sequence (B m) is guaranteed to convergence under the following assumptions (Theorem 2.1 in [START_REF] Raguet | Generalized forward-backward splitting[END_REF]

): Set limη m = η, (A) (i) 0 < limµ m ≤ limµ m < min 3 2 , 1+2/(L B η) 2 (ii) +∞ m=0 u 2,m < +∞, and for i ∈ {1, 2}, +∞ m=0 u 1,m,i < +∞ (B) (i) 0 < limη m ≤ η < 2 L B (ii) I µ =]0, 1]
where for i ∈ {1, 2}, u 1,m,i denotes the error at iteration m when computing the proximal operator prox(g B,i) and u 2,m is the error when applying ∇ B f B to its argument. This algorithm also makes use of the following gradient computations. Here we present the computations for kernel K Hadamard , but all of them still hold for a decomposable kernel by setting K Gauss = 1.

Specifically, we get:

• for ∂ ∂bij h B, Ĉ (x t) -x t+1 2 ∂ ∂b ij h B, Ĉ (x t) -x t+1 2 = ∂ ∂b ij d p=1 h B, Ĉ (x t) p -x p t+1 2 = 2 N ℓ=1 k Gauss (x t , x ℓ)K Gauss (x t , x ℓ) ij c j ℓ h B, Ĉ (x t) i -x i t+1 +2 N ℓ=1 k Gauss (x t , x ℓ)K Gauss (x t , x ℓ) ji c i ℓ h B, Ĉ (x t) j -x j t+1 • for ∂ ∂bij ||h B, Ĉ || 2 H ∂ ∂b ij ||h B, Ĉ || 2 H = ∂ ∂b ij N t=1 N ℓ=1 c T t K Hadamard (x t , x ℓ)c ℓ = N t=1 N ℓ=1 c i t k Gauss (x t , x ℓ)K Gauss (x t , x ℓ) ij c j ℓ + c j t k Gauss (x t , x ℓ)K Gauss (x t , x ℓ) ji c i ℓ
We again need to compute a Lipschitz constant L B for ∇ B f B (B). After some calculations, one can show the following inequality :

For B 1 , B 2 ∈ S + d , ∇ B f B (B 1) -∇ B f B (B 2) 2 F ro ≤ L 2 B B 1 -B 2 2 F ro with L 2 B = 4 d i,j=1 N t=1 N ℓ=1 k Gauss (x t , x ℓ)K Gauss (x t , x ℓ) ij c j ℓ N ℓ=1 d q=1 k Gauss (x t , x ℓ)K Gauss (x t , x ℓ) iq c q ℓ + N t=1 N ℓ=1 k Gauss (x t , x ℓ)K Gauss (x t , x ℓ) ji c i ℓ N ℓ=1 d q=1 k Gauss (x t , x ℓ)K Gauss (x t , x ℓ) jq c q ℓ 2 5 Results

Implementation

The performance of the developed OKVAR model family and the proposed optimization algorithms were assessed on simulated data from a biological system (DREAM3 challenge data set). These algorithms include a number of tuning parameters. Specifically, in Algorithm 3, we set

Z (0) 1 = Z (0) 2 = B 0 ∈ S + d , α = 0.
5 and µ m = 1. Parameters of the kernels were also fixed a priori : parameter γ was set to 0.2 for a transformable Gaussian kernel and to 0.1 for a decomposable Gaussian kernel. In the case of a Hadamard kernel, two parameters need to be chosen : parameter γ 2 of the transformable Gaussian kernel remains unchanged (γ 2 = 0.2). On the other hand, as discussed in Section 3.4, parameter γ 1 of the decomposable Gaussian kernel is fixed to a low value (γ 1 = 10 -5) since it does not play a key role in the network inference task.

DREAM3 dataset

We start our investigation by considering data sets obtained from the DREAM3 challenge [START_REF] Prill | Towards a rigorous assessment of systems biology models: The dream3 challenges[END_REF]. DREAM stands for Dialogue for Reverse Engineering Assessments and Methods (http://wiki.c2b2.columbia.edu/dream/ index.php/The_DREAM_Project) and is a scientific consortium that organizes challenges in computational biology and especially for gene regulatory network inference. In a gene regulatory network, a gene i is said to regulate another gene j if the expression of gene i at time t influences the expression of gene j at time t + 1. The DREAM3 project provides realistic simulated data for several networks corresponding to different organisms (e.g. E. coli, Yeast, etc.) of different sizes and topological complexity. We focus here on size-10 and size-100 networks generated for the DREAM3 in-silico challenges. Each of these networks corresponds to a subgraph of the currently accepted E. coli and S. cerevisiae gene regulatory networks and exhibits varying patterns of sparsity and topological structure. They are referred to as E1, E2, Y1, Y2 and Y3 with an indication of their size. The data were generated by imbuing the networks with dynamics from a thermodynamic model of gene expression and Gaussian noise. Specifically, 4 and 46 time series consisting of 21 points were available respectively for size-10 and size-100 networks.

In all the experiments conducted, we assess the performance of our model using the area under the ROC curve (AUROC) and under the Precision-Recall curve (AUPR) for regulation ignoring the sign (positive vs negative influence). For the DREAM3 data sets we also show the best results obtained from other competing teams using only time course data. The challenge made available other data sets, including ones obtained from perturbation (knock-out/knockdown) experiments, as well as observing the organism in steady state, but these were not considered in the results shown in the ensuing tables.

Further, several time series may also be available, because of multiple related initial conditions and/or technical replicates. In this case, the procedure is repeated accordingly. Hence, the predictions of each run on each time series are combined to build a consensus network. Specifically, for each run, we compute a rank matrix as described in Section 2. Then the coefficients of these matrices are averaged and eventually thresholded to obtain a final estimate of the adjacency matrix.

Effects of hyperparameters, noise and sample size

Next, we study the impact of different parameters including hyperparameters λ C and λ B , the sample size of the dataset (number of time points) and the noise level. Results for the DREAM3 size-10 E1 network are given in Table 1 and Figure 1, respectively.

Table 1: Consensus AUROC and AUPR (given in %) for the DREAM3 size-10 E1 network using different hyperparameters.

λ h = 1 λ B 10 -2
10 -1 1 10 -2 79.1/31.5 81.5/32.1 73.5/21.2 λ C 10 -1 79.7/36.5 76.9/21.6 66.7/25.9 1 78.1/25.9 71.0/20.7 61.4/16.0 We notice that both AUROC and AUPR values are not that sensitive to small changes in the hyperparameters (Table 1), which strongly indicates that it is sufficient to pick them within a reasonable range of values. Furthe, as expected, performance deteriorates with increasing levels of noise and decreasing number of time points (Figure 1).

Comparison between OKVAR models

Next, we propose to compare the OKVAR models outlined in Table 2 and investigate how relevant these models are regarding the network inference task.

Table 3 shows that the transformable Gaussian and the decomposable Gaussian kernels can achieve good performance on selected DREAM3 size-10 datasets, Eq. (16) Eq. (19) although none of these two kernels alone can faithfully recover all of the networks, no matter the types of sparsity-inducing norms employed. On the other hand, the Hadamard kernel-based model learnt with a mixed ℓ 1 /ℓ 2 -norm regularization consistently outranks other OKVAR models. On the whole, these results tend to corroborate the discussion presented in Section 3.4. In the remainder of the paper, we focus on Hadamard kernel-based models that will be referred to as OKVAR-Prox.

Ω(C) 0 Ω 1 Ω struct Ω 1 Ω struct Ω 1 Ω struct

Comparison with state-of-the-art methods

The performance of the OKVAR approach for prediction of the network structure is assessed on two types of tasks: DREAM3 size-10 datasets whose ratio between the number of measurements and the network size is of 21/10 and size-100 datasets which come with a much more unfavorable ratio of 21/100.

Results are presented in Tables 4 and5 for size-10 and size-100 data sets, respectively. The entries of these tables correspond to the following methods: (i) OKVAR + True B corresponds to an OKVAR model with the true adjacency matrix given, and projected onto the positive semidefinite cone. (ii) OKVAR-Prox was learnt using a mixed ℓ 1 /ℓ 2 -norm constraint on model parameters for size-10 datasets and an ℓ 1 -norm for size-100 datasets. (iii) The LASSO algo-rithm corresponds to an ℓ 1 -regularized linear least squares regression model of the form x t+1,i = x t β, applied to each dimension (gene i). An edge is assigned for each nonzero β coefficient. The LASSO algorithm employed all the available time series and a final consensus network is built in the same fashion as delineated above. (iv) G1DBN is an algorithm that performs Dynamic Bayesian Network inference using first-order conditional dependencies [START_REF] Lèbre | Inferring dynamic genetic networks with low order independencies[END_REF]. (v) GPODE is a structure inference method based on non-parametric Gaussian process modeling and parameter estimation of ordinary differential equations [START_REF] Aijo | Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics[END_REF]. (vi,vii) Finally, the two last rows present the results from two competing teams that exhibited a very good performance based only on similar time-series data. Although there is no information on the structure of Team 236's algorithm, its authors responded to the post-competition DREAM3 survey stating that their method employs Bayesian models with an in-degree constraint [START_REF] Prill | Towards a rigorous assessment of systems biology models: The dream3 challenges[END_REF]. Team 190 (Table 4) reported in the same survey that their method is also Bayesian with a focus on nonlinear dynamics and local optimization. The AUROC and AUPR values obtained for size-10 networks (Table 4) strongly indicate that OKVAR-Prox outperforms state-of-the-art models and the teams that exclusively used the same set of time series data in the DREAM3 competition, except for size-10 Y2 (nearly equivalent AUPR). In particular, we note that the OKVAR consensus runs exhibited excellent AUPR values compared to those obtained by other approaches.

A comparison of competing algorithms for size-100 networks (Table 5) shows that the OKVAR method again achieves superior AUROC results compared to Team 236, although it only lags behind by a slight margin for size-100 Y1 and Y3 in terms of AUPR. Team 236 was the only team that exclusively used time series data for the size-100 network challenge, since Team 190 did not submit any results. No results are provided for the GPODE method on size-100 networks either since the algorithm requires a full combinatorial search when no prior knowledge is available, which is computationally intractable for large networks. The OKVAR method is outranked by G1DBN for size-100 E2 in terms of AUPR and for size-100 Y2 with quite comparable AUROC values. It is noticeable that the AUPR values in all rows are rather small (lower than 10%) compared to their size-10 counterparts. Such a decrease suggests that the AUPR values can be impacted more strongly by the lower density of the size-100 networks, where the non-edges class severely outnumbers the edges class, rather than the choice of algorithm. Such difficult tasks require much more available time-series to achieve better results in terms of AUROC and AUPR. Therefore, for size-100 datasets, we applied a pure ℓ 1 -norm constraint on model parameters, allowing any C coefficients to be set to 0 rather than a mixed ℓ 1 /ℓ 2 -norm regularization that would have been too stringent in terms of data parsimony.

Finally, it is worth noting that OKVAR-Prox would have ranked in the top five and ten, respectively for size-10 and size-100 challenges, while the best results employed knock-out/knock-down data in addition to time-series data, the latter being rich in information content [START_REF] Michailidis | Statistical challenges in biological networks[END_REF]. In previous work [START_REF] Lim | Okvar-boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks[END_REF], a boosting algorithm (OKVAR-Boost) combining features from L 2 -boosting and randomization-based algorithms was designed. At each boosting iteration, a Hadamard kernel-based OKVAR model was learnt on a random subspace. One main difference between OKVAR-Boost and OKVAR-Prox concerns the learning strategy. While B and C are learnt jointly for the latter, the learning of B and C is decoupled in OKVAR-Boost, meaning that B is firstly estimated by means of a statistical independence test and then C is learnt using an elastic-net regularized loss. A comparison of the two related algorithms is given in Table 6. OKVAR-Prox achieves better AUROC values than OKVAR-Boost for size-10 networks, except for the E1 network, while there is no clear winner in terms of AUPR. On size-100 inference tasks, OKVAR-Boost which benefits from projections on random subspaces patently outperforms OKVAR-Prox which operates directly in the 100-dimensional space with a limited amount of time points.

Conclusion

Network inference from multivariate time-series represents a key problem in numerous scientific domains. In this paper, we addressed it by introducing and learning a new family of nonlinear vector autoregressive models based on operator-valued kernels. The new models generalize linear vector autoregressive models and benefit from the framework of regularization. To obtain a sparse network estimate, we define appropriate non-smooth penalties on the model parameters and a proximal gradient algorithm to deal with them. Some of the chosen operator-valued kernels are characterized by a positive semi-definite matrix that also plays a role in the network estimation. In this case, an alternating optimization scheme based on two proximal gradient procedures is proposed to learn both kinds of parameters. Results obtained from benchmark size-10 and size-100 biological networks show very good performance of the OKVAR model. Future extensions include applications of OKVAR to other scientific fields, the use of the model in ensemble methods, and the application of proximal gradient algorithms to other structured output prediction tasks.

Figure 1 :

 1 Figure 1: Consensus AUROC (blue lines) and AUPR (red lines) for the DREAM3 size-10 E1 network (a) using N = 7, 14 and 21 time points (b) adding zero-mean Gaussian noise with standard deviations σ = 0, 0.05, 0.1 and 0.3. λ h = 1, λ C = 10 -2 , λ B = 10 -1 .

Table 2 :

 2 Synthetic table of studied OKVAR models.

	OKVAR models

Table 3 :

 3 Consensus AUROC and AUPR (given in %) for the DREAM3 size-10 networks. Studied OKVAR models refer to Table2. The numbers in boldface are the maximum values of each column.

				AUROC					AUPR		
	OKVAR models	E1	E2	Y1	Y2	Y3	E1	E2	Y1	Y2	Y3
	h Ridge Gauss h ℓ1 Gauss h ℓ1/ℓ2 Gauss h ℓ1 dec h ℓ1/ℓ2 dec h ℓ1 Hadamard h ℓ1/ℓ2 Hadamard	68.8 37.7 62.1 68.6 66.7 15.6 11.2 15.5 46.9 32.9 69.3 38.0 61.9 69.3 66.7 15.7 11.3 15.2 47.4 32.8 68.7 37.1 62.4 68.6 66.7 15.5 11.1 15.6 47.5 32.6 67.0 68.5 38.2 45.4 38.3 23.6 20.8 7.4 21.1 16.8 65.9 47.8 45.3 56.6 38.5 23.1 14.0 8.3 28.5 16.8 81.2 46.2 47.7 76.2 70.5 23.5 12.7 8.7 50.1 39.5 81.5 78.7 76.5 70.3 75.1 32.1 50.1 35.4 37.4 39.7

Table 4 :

 4 Consensus AUROC and AUPR (given in %) for OKVAR-Prox, LASSO, GPODE, G1DBN, Team 236 and Team 190 (DREAM3 competing teams) run on DREAM3 size-10 networks. The numbers in boldface are the maximum values of each column.

				AUROC					AUPR		
	Size-10	E1	E2	Y1	Y2	Y3	E1	E2	Y1	Y2	Y3
	OKVAR + True B 96.2 86.9 89.2 75.6 86.6 75.2 67.7 47.3 52.3 58.6
	OKVAR-Prox	81.5 78.7 76.5 70.3 75.1 32.1 50.1 35.4 37.4 39.7
	LASSO	69.5 57.2 46.6 62.0 54.5 17.0 16.9	8.5	32.9 23.2
	GPODE	60.7 51.6 49.4 61.3 57.1 18.0 14.6	8.9	37.7 34.1
	G1DBN	63.4 77.4 60.9 50.3 62.4 16.5 36.4 11.6 23.2 26.3
	Team 236	62.1 65.0 64.6 43.8 48.8 19.7 37.8 19.4 23.6 23.9
	Team 190	57.3 51.5 63.1 57.7 60.3 15.2 18.1 16.7 37.1 37.3

Table 5 :

 5 Consensus AUROC and AUPR (given in %) for OKVAR-Prox, LASSO, G1DBN, Team 236 (DREAM3 competing team) run on DREAM3 size-100 networks. The numbers in boldface are the maximum values of each column.

				AUROC					AUPR		
	Size-100	E1	E2	Y1	Y2	Y3	E1	E2	Y1	Y2	Y3
	OKVAR + True B 96.2 97.1 95.8 90.6 89.7 43.2 51.6 27.9 40.7 36.4
	OKVAR-Prox	65.4 64.0 54.9 56.8 53.5 4.6	2.6	2.3	5.0	6.3
	LASSO	52.2 55.0 53.2 52.4 52.3	1.4	1.3	1.8	4.3	6.1
	G1DBN	53.4 55.8 47.0 58.1 43.4	1.6	6.3	2.2	4.6	4.4
	Team 236	52.7 54.6 53.2 50.8 50.8	1.9	4.2	3.5	4.6	6.5
	5.2.4 Comparison with OKVAR-Boost							

Table 6 :

 6 Consensus AUROC and AUPR (given in %) for OKVAR-Prox and OKVAR-Boost run on DREAM3 size-10 and size-100 networks. The numbers in boldface are the maximum values of each column. 78.7 76.5 70.3 75.1 32.1 50.1 35.4 37.4 39.7 OKVAR-Boost 85.3 74.9 68.9 65.3 69.5 58.3 53.6 28.3 26.8 44.3

				AUROC					AUPR		
	Size-10	E1	E2	Y1	Y2	Y3	E1	E2	Y1	Y2	Y3
	OKVAR-Prox 81.5 Size-100 E1	E2	Y1	Y2	Y3	E1	E2	Y1	Y2	Y3
	OKVAR-Prox	65.4 64.0 54.9 56.8 53.5	4.6	2.6	2.3	5.0	6.3
	OKVAR-Boost 71.8 77.2 72.9 65.0 64.3	3.6	10.7 4.2	7.3	6.9

Acknowledgements FA-B's work was supported in part by ANR (call SYSCOM-2009, ODESSA project). GM's work was supported in part by NSF grants DMS-1161838 and DMS-1228164 and NIH grant 1-R21-GM-101719-01-A1