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Abstract

Reverse-modeling of dynamical systems from time-course data still re-
mains a challenging and canonical problem in knowledge discovery. For
this learning task, a number of approaches primarily based on sparse linear
models or Granger causality have been proposed in the literature. How-
ever when the dynamics are nonlinear, there does not exist a systematic
answer that takes into account the nature of the underlying system. We
introduce a novel family of vector autoregressive models based on a new
operator-valued kernel to identify the dynamical system and retrieve the
target network. As in the linear case, a key issue is to control the model’s
sparsity. This control is performed through the joint learning of the struc-
ture of the kernel and the basis vectors. To solve this learning task, we
propose an alternating optimization algorithm based on proximal gradient
procedures that learn both the structure of the kernel and the basis vec-
tors. Results on the DREAMS3 competition gene regulatory benchmark
networks of size 10 and 100 show the new model outperforms existing
methods. Another application of the model on climate data identifies
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interesting and interpretable interactions between natural and human ac-
tivity factors thus confirming the ability of the learning scheme to retrieve
dependencies between state-variables.

1 Introduction

In many scientific problems, high dimensional data with network structure play a
key role in knowledge discovery (Kolaczyk, 2009). For example, recent advances
in high throughput technologies have facilitated the simultaneous study of com-
ponents of complex biological systems. Hence, molecular biologists are able to
measure the expression levels of the entire genome and a good portion of the
proteome and metabolome under different conditions and thus gain insight on
how organisms respond to their environment. For this reason, reconstruction of
gene regulatory networks from expression data has become a canonical problem
in computational system biology (Lawrence et al, 2010). Similar data structures
emerge in other scientific domains. For instance, political scientists have focused
on the analysis of roll call data of legislative bodies, since they allow them to
study party cohesion and coalition formation through the underlying network
reconstruction (Poole and Rosenthal, 1997; Morton and Williams, 2010), while
economists have focused on understanding companies creditworthiness or con-
tagion (Gilchrist et al, 2009). Understanding climate changes implies to be able
to predict the behavior of climate variables and their dependence relationship
(Parry et al, 2007; Liu et al, 2010). Two classes of network inference problems
have emerged simultaneously from all these fields: the inference of association
networks that represent coupling between variables of interest (Meinshausen and
Bithlmann, 2006; Kramer et al, 2009) and the inference of “causal” networks
that describe how variables influence other ones (Murphy, 1998; Perrin et al,
2003; Auliac et al, 2008; Zou and Feng, 2009; Shojaie and Michailidis, 2010;
Maathuis et al, 2010; Bolstad et al, 2011; Dondelinger et al, 2012; Chatterjee
et al, 2012).

Over the last decade, a number of statistical techniques have been intro-
duced for estimating networks from high-dimensional data in both cases. They
divide into model-free approaches and model-driven approaches. Model-free ap-
proaches for association networks directly estimate information-theoretic mea-
sures, such as mutual information to detect edges in the network (Hartemink,
2005; Margolin et al, 2006). Among model-driven approaches, graphical models
have emerged as a powerful class of models and a lot of algorithmic and theoret-
ical advances have occured for static (independent and identically distributed)
data under the assumption of sparsity. For instance, Gaussian graphical mod-
els have been thoroughly studied (see (Bithlmann and van de Geer, 2011) and
references therein) to infer association networks using static data. Covariance
estimation in linear models is the key component of these methods. Covari-
ance selection has been addressed using different forms of norm-regularizers in
the loss function to reinforce sparsity in linear models in an unstructured or a
structured way. In order to infer causal relationship networks, Bayesian net-



works have been developed either from static data or time-series within the
framework of dynamical Bayesian networks. In the case of continuous variables,
linear multivariate autoregressive modeling has been developed with again an
important focus on sparse models. In this latter framework, Granger causality
models have attracted an increasing interest to capture causal relationships.

However very few works to date have focused on network inference for con-
tinuous variables in the presence of nonlinear dynamics. In this study, we start
from a regularization theory perspective and introduce a general framework for
nonlinear multivariate modeling and network inference. Our aim is to extend
the framework of sparse linear modeling to that of sparse nonlinear modeling.
In the machine learning community, a powerful tool to extend linear models
to nonlinear ones is based on kernels. The famous kernel trick allows to deal
with nonlinear learning problems by working implicitely in a new feature space,
where inner products can be computed using a symmetric semi-definite positive
function of two variables, called a kernel. In particular, a given kernel allows
to build a unique Reproducing Kernel Hilbert Space (RKHS), e.g. a functional
space where regularized models can be defined from data using representer the-
orems. The RKHS theory provides a unified framework for many kernel-based
models and a principled way to build new (nonlinear) models. Since multivari-
ate time-series modeling requires defining vector-valued models, we propose to
build on operator-valued kernels and their associated reproducing kernel Hilbert
space theory (Senkene and Tempel’'man, 1973) that were recently introduced in
machine learning by (Micchelli and Pontil, 2005) for the multi-task learning
problem with vector-valued functions. Among different ongoing research on
the subject (Alvarez et al, 2011), new applications concern vector field regres-
sion (Baldassarre et al, 2010), structured classification (Dinuzzo and Fukumizu,
2011), functional regression (Kadri et al, 2011) and link prediction (Brouard
et al, 2011). However, their use in the context of time series is novel.

We introduce a new family of nonlinear vector autoregressive models based
on a new operator-valued kernel. Once an operator-valued kernel-based model
is learnt, we compute an empirical estimate of its Jacobian, providing a generic
and simple way to extract dependence relationship among variables. Therefore,
the operator-valued kernel proposed here was designed to produce not only a
good approximation of the systems dynamics, but also a flexible and control-
lable Jacobian estimate. To obtain sparse networks, we focus on sparsity of
the Jacobian, thus extending the sparsity constraint applied to the design ma-
trix regularly employed in linear modeling. We minimize an elastic-net-like cost
function to simultaneously control smoothing of the model and sparsity. Learn-
ing such models requires identification of both the kernel hyperparameter, here
a semi-definite positive matrix, and the parameter vectors. We propose a novel
learning and efficient strategy that alternatively uses a proximal gradient algo-
rithm to learn the parameter vectors and an exponentiated gradient algorithm
for learning the semi-definite positive matrix that characterizes the kernel. We
show that without prior knowledge on the relationship between variables, the
proposed algorithm is able to retrieve the network structure of a given underly-
ing dynamical system from the observation of its behavior through time.



The structure of the paper is as follows: in Section 2, we present the general
network inference scheme. In Section 3, we recall elements of RKHS theory
devoted to vector-valued functions and introduce operator-valued kernel based
autoregressive models. Section 4 presents the learning algorithm that estimates
both the parameters of the model and the parameters of the kernel. Section 5
illustrates the performance of the model and the algorithm through extensive
numerical work based on both synthetic and real data.

2 Network inference from nonlinear vector au-
toregressive models

Let x; € R? denote the observed state of a dynamical system comprising of
d state variables. We are interested in inferring direct influences of a state
variable i on another variable j # i, (i,5) € {1,...,d}?. Further, we assume
that a first-order stationary model is adequate to capture the temporal evolution
of the system under study, which can exhibit nonlinear dynamics captured by
a function h : R — R%:

Xi41 = h(Xt) + u; (1)

where u; is a noise term.

For models where the network matrix A is explicitly given (e.g. linear models
h(z:) = Ax; or parametric models), its estimation (possibly sparse) can be
directly accomplished. However, for nonlinear models this is a more involved
task. Our strategy is to first learn h from the data and subsequently estimate
A by averaging the values of the empirical Jacobian matrix of h, over the whole
set of time points. Specifically, denote by g, ..., xxy_1 the observed time series
of the network state. Then, V(i,5) € {1,...,d}?, an estimate of the adjacency

matrix A is given by:
N-2
N 1 Bh(xt)z
A = 2
J g (N 1 B(Xt)j ( )

t=0

where g is a thresholding function that outputs 0 or 1. In the remainder of
the paper, we note J;;(h) the (4, j) coefficient of the average Jacobian of h and
Jij(h)(t) its value at a given time ¢.

Note that to obtain a high quality estimate of the network, we need a class of
functions h whose Jacobian matrices can be controlled during learning in such
a way that they could provide good continuous approximators of A. In this
work, we propose a new class of nonparametric vector autoregressive models
that exhibit such properties. Specifically, we introduce Operator-valued Kernel-
based Vector AutoRegressive (OKVAR) models, that constitute a rich class as
discussed in the next section.



3 Operator-valued kernels and vector autoregres-
sive models

3.1 Elements of RKHS theory for vector-valued functions

We start by introducing the basic building blocks of our model and the necessary
notation. In RKHS theory with operator-valued kernels, we consider functions
with input in some set X and with vector values in some given Hilbert space
Fy. For completeness, we first describe the general framework and then come
back to the case of interest, namely X = F, = R% Denote by L(F,), the set
of all bounded linear operators from F, to 1tbelf Given A € L(F,), A* denotes
its adjoint. Then, an operator-valued kernel K is defined as follows:

Definition 1 (Operator-valued kernel) (Senkene and Tempel’man, 1973; Capon-

netto et al, 2008)
Let X be a set and F, a Hilbert space. Then, K : X x X — L(F,) is a kernel

if:
oV (2,2) EX XX, K(x,2) = K(z,2)*
o Vm € N, V{(z;,yi)}]21 C X x Fy, 32051 (vis K (i, 25)y5) 7, > 0

The following theorem whose proof can be found in Senkene and Tempel’'man
(1973); Micchelli and Pontil (2005) establishes that one can build a unique
RKHS from a given operator-valued kernel.

Theorem 1 ((Senkene and Tempel’man, 1973; Micchelli and Pontil, 2005))

Let X be a set and F, be a Hilbert space. If K : X x X — L(F,) is an operator-
valued kernel, then there exists a unique RKHS Hy which admits K as the
reproducing kernel; that is

Ve e X, Vy € Fy, (h, K(-,2)y)n = (h(2),y)F, - (3)

The RKHS Hg is built by taking the closure of span{K(:,z)ylx € X,y €
Fy} endowed with the scalar product (f, ), = >2; ;(wi, K(ri, s;)v;) 7, with
f() =22 K(,r)ugand g(+) = 3°; K(-, s;)v;. The corresponding norm || - [|3,
is defined by | f 3= (£. /)t

For the sake of notational simplicity we omit K and use H = H g in the re-
mainder of the paper. As in the scalar case, one of the most appealing features
of RKHS is to provide a theoretical framework for regularization, e.g. represen-
ter theorems. Let us consider the case of regression with convex loss functions
and denote by Sy = { (i, y¢>}£\;61 C X x F, the data set under consideration.

Theorem 2 ((Micchelli and Pontil, 2005)) Let V be a convex loss func-
tion, and A > 0 the regularization parameter. Let Sy be the data set {(xo,y0),- - -
Then, the minimizer of the following optimization problem:

argmin £(h ZV (2:),y:) + ARl
heH

) ($N727 YN72)}-



admits an erpansion:
N-2
Z K :Eg Cy, (4)
£=0

where the coefficients cg, £ = {0,--- , N —2} are vectors in the Hilbert space F,.

Such a result justifies a new family of models of the form (4) for vector
regression in R%. Then, the operator-valued kernel (OVK) becomes a matrix-
valued one. In case this matrix is diagonal, the model reduces to d independent
models with scalar outputs and there is no need for a matrix-valued kernel.
In other cases, when we assume that the different components of the vector-
valued function are not independent and may share some underlying structure, a
non-diagonal matrix-valued kernel allows to take into consideration similarities
between the components of the input vectors. Initial applications of matrix-
valued kernels deal with structured output regression tasks, such as multi-tasks
learning and structured classification. For both tasks, a decomposable kernel
based on the product of a scalar kernel k; and a positive semi-definite matrix
B has been proposed.

3.2 The OKVAR model

The problem under consideration differs from structured prediction ones and
hence some care is required to choose an appropriate kernel. Recall that the
objective is to estimate an autoregressive model, which takes the following form:

given the observed d—dimensional time series xg,...,Xy_1, h is defined as
N-2
h(x¢;SN) = K(x¢,%¢).Co (5)
(=0

where K(-,-) is a matrix-valued kernel and each ¢, (¢ € {0,...,N — 2}) is a
vector of dimension d. In the following, we denote by C € MYN~14 the matrix
composed of the N — 1 row vectors cg of dimension d.

As mentioned in the introduction, the network structure will be inferred
by the empirical mean J of the instantaneous Jacobian matrices J(t) of h over
observed time-points. At any given time point ¢, for a given target state variable
1 and a matrix-valued kernel-based model h, we have:

N—

l\’)

O(K thé )ee)

Vie{l,...,d}, Ji;(t) 5
X}

(6)

£=0

Hence, each component of h should be a function of the state variables in such
a way that the coefficients of the Jacobian reflect the dependence of the output
component on some of the state variables. Due to our assumption of nonlinear
dynamics of the underlying system, the kernel should contain nonlinear func-
tions of the state variables. Moreover, a relevant matrix-valued kernel-based
model should allow the sparsity to be controlled of the Jacobian through the



values of its parameters. As an example, let us take a look at a decomposable
kernel. In our setting (X = F, = R%), this kernel takes the following form:

V(x,2z) € R x RY K (x,2) = ki(x,2)B (7)

where B is a positive semi-definite matrix of size d x d and k; is a Gaussian
kernel with hyperparameter vi: ki(x,2z) = exp(—y1 || x — z [|?). One could
think that B could be used to encode the network. If we build a model h; from
this kernel K7, we see that the nonlinear term involved in the matrix-valued
kernel does not differ from one pair (7, j) to another. Then, the corresponding
(4,4)-th term of the Jacobian is given by:

N-2

T(ha)i(t) =

£=0

akl(xt‘axf) (BC()i (8)
Ox]

which implies that it is impossible to control specific values of the Jacobian ma-
trix using B or the ¢’s. To obtain a richer class of Jacobians than those induced
by the decomposable kernels, more suitable for the inference task at hand, we
therefore introduce a new matrix-valued kernel, based on the Hadamard product
of two matrix-valued kernels, one being a decomposable kernel and the other, a
transformable kernel. First defined in Caponnetto et al (2008), transformable
kernels are based on a scalar kernel and a map 7T from X to some Haussdorf
space on which the scalar kernel is defined. In this work, we focus on a Gaus-
sian kernel ks with parameter v2 and a projection mapping. For ¢ € {1,---,d},
let us define the projection on the ¢-th dimension as Ty : R¢ — R. For a
given x € R%, then Ty(x) = 2%, where z? is the ¢-th component of vector
X. The following transformable kernel can be shown to be a matrix-valued
one:v (x,y) €RYxRAY (p,q) €{1,...,d}*%

Ko(%,¥)pq = k2(Ty(x), Ty(y)) = exp(—72(2? —y*)?) (9)

Note that an interesting feature of this kernel is that each coordinate i of

the vector model ha(x;)" can be expressed as a linear combination of nonlinear

functions of variables j: ha(x:)" = Y2, >, exp(—v2(xf — x§)?)cj. However, the
(4, j)-th entry of the Jacobian at time ¢ becomes

J(h2)5() = 29a(a} — o) exp (—ra(at —a)?) .

which implies that the cg’s have the same impact, no matter what the target
variable 7 is. As a consequence, it becomes impossible to control those parame-
ters for network inference purposes.

Nevertheless, if we combine those two kernels appropriately, we can both
keep the nonlinear functions of single variables and use the matrices B and
C' to directly control the values of the Jacobian. The kernel K we propose is
the Hadamard product of the decomposable kernel K; with the transformable
kernel Ks:

V (x,y) € R x RY, K(x,y) = ki (x,y)B o Ka(x,y) (10)



The resulting kernel K possesses the kernel property, i.e:

Proposition 1 The kernel defined by (10) is a matriz-valued kernel, where o
denotes the Hadamard product for matrices.

Proof: A Hadamard product of two matrix-valued kernels is a matrix-valued
kernel (proposition 4 in Caponnetto et al (2008)).

Next, we introduce the following OKVAR model based on the matrix-valued
kernel K:

N—2
h(xe; Sn) = Y ka(xe,%0) B o Ko (x4, %).c (11)
=0
and the entries of its Jacobian at time ¢t J(h)(t) = J(t) are given by:
Jij(t) = é\'oz WBOKQ(Xt,Xz)C[+k1(Xt,Xz).%;?7xm
which after some calculations reduces to:
Jij(t) = 2yebij(z} — ) eXP( o (@t — l’i)Z) ¢
—27 Z K (x¢, x¢) (2] — 2 Z bip exp ( —zh)?) & (12)
£t

The obtained expression exhibits some interesting characteristics: if we choose
~1 very close to 0 (for v1 = 0, k1 is no more a kernel), then ki (x¢,x¢) is close
to one for any pair (x¢,x¢) and the second term in (12) is approximatively 0.
Then, the value of the Jacobian for variables (,7) is controlled by the value
of b;;: hence, B is capable of imposing structure in the model. For example,
for a given pair of variables (4, j), if b;; = 0, then irrespective of the values of
cjé, {=0,---,N —2, the corresponding Jacobian coefficient will be zero as well;
i.e variable j does not influence variable 7. Conversely, a non-zero coefficient b;;
does not reflect non-influence from j to ¢ since the ¢ parameters can still set
the corresponding coefficient in the Jacobian to zero. Thus, the parameter B
captures some of the structure of the underlying network, together with C'. Note
that the vectors ¢’s and the cross-difference between coordinates in equation (12)
allow us to have non-symmetric Jacobian matrices, suitable for reconstructing
directed graphs.

4 Learning the OKVAR model

We employ a loss function analogous to the one used in elastic-net type reg-
ularized models in the scalar case. The main goal is to simultaneously learn
the matrix of the model parameters C, as well as B, the positive semi-definite
matrix underlying the kernel K. Thus, we aim to minimize the following loss
function:

=z
N

L(B,C)= ) |Ih(xs;B,C) = xp11||* + B, C) (13)

~+
I
(=]



with Q(B,C) = M||hp,cll?, + Ac||C||1 + Ag||B||1 and subject to the constraint
that B € S; and C € MN~1d where Sd+ denotes the cone of positive semi-
definite matrices of size d x d. Note that || - ||; denotes both the ¢; norm of a
vector and that of the vectorized form of a matrix.

For fixed B, the squared norm ||hp c||3, = Do k(xi,x5)el (k1 (x4, %0) B o K2(x4,%;)) €
plays the role of a weighted ¢5 norm on C, while the ¢1 norm of C' controls the
sparsity of the model, necessary for obtaining a sparse Jacobian. For fixed C,
the squared norm of h imposes a smoothing constraint on B, while again the ¢,
norm of B aids in controlling the sparsity of the model and its Jacobian.

Further, for fixed B, the loss function £(Bjf;zeq, C) is convex in C and con-
versely, for fixed C, L(B,Cfizeq) is convex in B. We propose an alternating
optimization scheme to minimize the overall loss £(B, C). Since both loss func-
tions L(Bjiged, C') and L(B,Cyigeq) involve a sum of two terms, one being
differentiable and the other being sub-differentiable we employ proximal gradi-
ent algorithms (Beck and Teboulle, 2010) to achieve the minimization. Further,
to increase the efficiency of the optimization procedure, we implement a block-
coordinate descent strategy focusing on a given vector ¢, at each round of the
procedure, instead of learning the whole C in one step. Incorporating the min-
imization of the £** column vector of C' implies that we allow the algorithm to
incorporate (or not) the ¢/* time-point, given the presence of the ¢, constraint.
Instead, we could have chosen to apply the block coordinate gradient descent
to the j*" row of C; in that case, the emphasis is on eliminating the influence
of the j** variable through the corresponding Jacobian coefficient Jij. We have
chosen to favor parsimony in the data through the time dimension. For fixed B
and for a specific index ¢ for the target coordinate ¢, (a column of C') the loss
function becomes:

N—

l\')

1h(x6; B, C) = xe1|I* + Mallhg ollF + Aclleel,  (14)
t=0
while for given C, it is given by:

N—-2
L(B,C) =Y [Ih(x4; B, C) = xu41ll* + Ml o3, + Al Bl (15)
t=0

In summary, the general form of the algorithm is given in Algorithm (1).

4.1 Learning a vector cy, for fixed B and index /.

Note that the resulting convex loss function is a sum of two terms: f., which is
differentiable with respect to ¢, and g., which is non-smooth, but nevertheless
convex and subdifferentiable with respect to cg:

N—-2||N-2
E(B,C,E)I Z ZK(xt,Xk)ck—XtJrl + An Z ct (x¢, Xk Ck—l—)\cZHctH1+)\c||Ce||1
t=0 || k=0 k=0 Py, —~

ey (ce)

fcg (ee)
(16)



Algorithm 1 Learning elasticcOKVAR (13)

Inputs : By € S;;EB;EC
Initialize : m = 0; £ = 1 STOP=false
while STOP=false do
Step 1: Given B, and ¢, minimize 14 and obtain ¢y,
Step 2: Update the ¢** column of C,, with Ci.m
Step 3: Given C,,, minimize the loss function (15) and obtain By, 41
if m > 0 then
STOP::HB’"L - Bm—l” < ep and ||C'm - C’m—l” < e€c
end if
Step 4: m <+ m+1
Step 5: ¢ ={+ 1 mod[N-1]
end while

This leads us to employ a proximal gradient algorithm, which is appropriate for
solving this subproblem. Its steps are outlined in Algorithm 2: The algorithm

Algorithm 2 Solve Problem (14)

Inputs : ¢, Cy € MWD \e.;Lipschitz constant of Ve, t Le, =
2p(0 07 K (x4, %) K (%4, %0) + A KK (%0, %))
Initialize : m = O;yél) = cgo);t(l) = 1; STOP=false
while m < M and STOP=false do
Step 0: m <+ m+1
Step 1: ¢ = prox s (ge,) (V" = 15V 0 o, (™))
cy 14 e

if ||c§m) - cgm_l)H < ¢c then
STOP:=true
else

Step 2: ¢(m+1) — Leyitarm?

2
m m (m) _ m m—1
™ )+t () i)

Step 3: y
end if
end while

relies on the following: the proximal operator applied to a function g for a given
y € R? is given by: prox,(g)(y) = argmin, {g(u) + 5;|/u — y||*}. Denote by
Te : R® — R? the shrinkage/soft threshold operator:

Fori=1...d,

To(x); (|| — o) +sgn(z;)
r,—a ifz;>a
= 0 f—a<z<a

z,+a ifz; <-—a

10



Then, the proximal gradient term in the m!* iteration is given by:

m m 1 m
pI‘OX 1 (gw) (y( )*Liv (M)fce( ))> = TAC <YE )*nyémfce(}é )))

Ley Le,

We first need to calculate the derivative of fe,(cg) for variable c:

e The derivative of the sum of squared errors with respect to ¢y is given by:
2
N—2 N-2
80e H§ K(xy,X)cp — Xt+1H =0 2K (x¢,%xy) (E eeo K (x¢,x1)c) — xt+1>

e Using the property of operator-valued kernels, K (x, Xg) = K(Xg, x¢), the
derivative of ||hp,c||3, with respect to ¢, becomes: a Zt =0 2 T K (xy, x5 )¢, =

2 tho (Xé> Xt)Ct

Hence,

N-2 N-2
Ve, fe,(ce) =2 Z K(x¢,x¢) (Z K (x4, xg)ck — X1 + Alct> (17)
t=0 k=0

Moreover, we need to define the Lipschitz constant L, involved in the proximal
gradient algorithm. Using some algebra and properties of the norm, we can
establish that: For c};, cf € R%:

N—-2
chtzfcz(C%)_vwfcz(c%)” <2p (Z K(Xfaxt)K<XtaXf) + AlK(X€7X@)> '||C%_

t=0

Le,

el

4.2 Learning the matrix B for fixed C

For given parameter matrix C, the loss function £(B, C’) is minimized subjecto
to the constraint that B is positive semi-definite.

N-2
|Ih(x¢: B, C) = x¢11]1” + MalIR[13, + M5Bl (18)
t=0 M v
95(B) hp(B)
f8(B)

Note that both fp and gp are differentiable with respect to B, while hp is
non-smooth, but convex and sub-differentiable with respect to B. In order to
efficiently estimate B in the cone of semidefinite positive matrices, we adopt a
strategy based on gradient updates for matrix exponentials (Tsuda et al, 2005),
originally introduced for online learning problems. Instead of the gradient, we
use the subgradient due to the presence of the ¢; norm term. This approach
solves the following surrogate optimization problem:

gl;%nﬁ(B,C) + A(B, B), (19)

11



where A(B, B) denotes the Bregman divergence between the unknown B and
a target B. In practice, B corresponds to the value of B from the previous
iteration of the algorithm. The role of the A(-,-) term is to keep the new value
of B close to the previous update.

The solution to (19) is given by

B= exp(logB —nsym(VgL(B, C’))) (20)

The corresponding gradient descent algorithm is presented below. This algo-

Algorithm 3 Algorithm for solving problem (20)

Given an estimate for the matrix C' we proceed as follows:

Inputs : 7,

Initialize : G = log Boia

Step 1: For all ¢ € {O , N — 2} predict X471 = 22\7262 K (x¢,%¢)Cp

Step 2: Form G = G — nsym(VBE( o1, C))

Step 3: Obtain the spectral decomposition G = VAVT

Step 4: Update Bpew = (Vexp(A — al)VT)/(trace(exp(A — al)), where
O = Imax; Azz

where B,;q denotes the value of B from the previous iteration.

rithm makes use of the following gradient computations. For ease of presen-
tation, we derive the gradient VzL(B,()) in element-wise form. We adopt
the following notation: (-); denotes the j — th row of the corresponding vec-
tor, (), the i-th element of the j-th row and (-);; the (4, j)-th element of the
corresponding matrix. Specifically, for the first term we get

d N—2 2
afB(B) — 9 X¢41 — Z(kl(xt,Xg)BOKQ(Xt,Xg))Cg
8bij 6bij 1 .

£=0

N-—-2 N-2 d
= -2 (Z kl(xt,Xe)Kz(Xt,Xz)ijCé> (XiH Z D ke (e, X0)big Ko (%4, X¢)ig
/=0 q:l

£=0

N-—-2 _ d
—9 (Z kl(xt,Xg)KQ(Xt,Xg)jiCé> <x§+1 Zkl (x4, %0 quKg(Xth)ch(

£=0 (=0 g=1
For the second term, note that
N—1N-1
P12 = D73 ef (ki (xe.x0) B o Ka(x4,%0)) ¢
t=1 (=1
to get
N—2N-2
d95(B ; i ;
c')b(“ ) _ Ah cikor (e, Xo) Ko (e, X0) 1565 + k1 (%e, %0) K2 (%t, X¢) jicy
K t=0 (=0
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For the third term, a subgradient can be computed for the ¢; norm term as:

Ohp(B) _ , OlIBlh
by, B 0b,,

AB, if bj; >0
—Ap, otherwise

5 Performance Assessment

The performance of the developed OKVAR model and the proposed optimiza-
tion algorithm was assessed on two tracks: using simulated data from a biological
system (DREAM3 challenge data set) and real climate data (Climate data set).
DREAMS3 dataset

We start our investigation by considering data sets obtained from the DREAM3
challenge (Prill et al (2010)). DREAM stands for Dialogue for Reverse Engi-
neering Assessments and Methods http://wiki.c2b2.columbia.edu/dream/
index.php/The_DREAM_Project and is a scientific consortium that organizes
challenges in computational biology and especially for gene regulatory network
inference. In a gene regulatory network, a gene i is said to regulate another gene
j if the expression of gene ¢ at time ¢ influences the expression of gene j at time
t + 1. Its behavior as a dynamical system can be observed through time-series
of gene expression. The DREAMS3 project provides realistic simulated data
for several networks corresponding to different organisms (e.g. E-Coli, Yeast,
etc.) of different sizes and topological complexity. We focus here on size-10
and size-100 networks generated for the DREAMS3 in-silico challenges. Each of
these networks corresponds to a subgraph of the currently accepted FE. coli and
S. cerevisiae gene regulatory networks and exhibits varying patterns of sparsity
and topological structure. They are referred to as Ecolil, Ecoli2, Yeastl, Yeast2
and Yeast3 with an indication of their size. The data were generated by imbuing
the networks with dynamics from a thermodynamic model of gene expression
and Gaussian noise. Specifically, 4 and 46 time series consisting of 21 points
corresponding respectively to size-10 and size-100 networks were selected for our
assessment investigation.

In all the experiments conducted, we assess the performance of our model
using the area under the ROC curve (AUROC) and under the Precision-Recall
curve (AUPR) for regulation ignoring the sign (positive vs negative influence).
For the DREAMS3 data sets we also show the best results obtained from other
competing teams using only time course data. The challenge made available
other data sets, including ones obtained from perturbation (knock-out/knock-
down) experiments, as well as observing the organism in steady state, but these
were not considered in the results shown in the ensuing Tables. Hence, in our
evaluation we address the challenging problem of network based only on time-
series data.
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The alternate optimization scheme to learn the elastic-OKVAR model de-
pends on the positive semidefinite matrix By given at the start of the algorithm,
which may produce different solutions for each initialization. To address that
issue, the algorithm was run nRun = 10 times. Hence, the predictions of each
run are combined to build a consensus network. Specifically, for each pair of
nodes, we compute the frequency that the edge appears over multiple runs and if
the frequency exceeds a preset threshold, the edge remains in the final predicted
network, otherwise it is discarded.

Further, multiple (L) time series may also be available, because of multiple
related initial conditions and/or technical replicates. In this case, the procedure
is repeated accordingly and the L - nRun obtained networks are combined as
described above to provide a final consensus network. We set Aij =1 if and
only if Zfzanun |A§;)| > foons - L-nRun, where A is the estimated adjacency
matrix for run number 7 and feons € [0,1] is the consensus threshold level for
edge acceptance.

Table 1: AUROC for the OKVAR model (A, = 1, A¢ = 1, A = 0.1), LASSO,
Team 236 and Team 190 (DREAMS3 competing teams) run on DREAMS3 size-10
networks. Due to multiple runs and multiple time-series, average + standard
deviation (OKVAR (1TS)) and consensus (OKVAR, (4TS)) results are given for
the OKVAR model. The numbers in boldface are the maximum values of each
method.

Size-10 Ecolil Ecoli2 Yeastl  Yeast2 Yeast3
OKVAR + True B 0.956 0.918 0.806 0.781 0.780
OKVAR (1T5) 0.619 0.611 0.549 0.658 0.650

+ 0.104 £ 0.140 +0.070 £0.068 +£0.100
OKVAR (4TS) 0.717 0.724 0.644 0.687  0.705

LASSO 0.500 0.547 0.528 0.627 0.582
Team 236 0.621 0.650 0.646 0.438 0.488
Team 190 0.573 0.515 0.631 0.577 0.603

The performance of the OKVAR algorithm for prediction of the network
structure is presented in Tables 1,2,3,4. The entries of these Tables correspond
to the following methods: the base OKVAR learner alone when the true B
is provided, the OKVAR model with multiple runs using a single time series
and all the available time series, a LASSO algorithm that aims to obtain a
sparse network structure and finally the results from two competing teams that
exhibited a very good performance based only on similar time-series data.

Note that the base learner corresponds to an elastic-OKVAR model with
the true adjecency matrix given, and projected onto the positive semidefinite
cone. The row presenting the results of the LASSO algorithm corresponds to
an ¢;-regularized linear least squares regression model of the form x;41; = x5,
applied to each dimension (gene ). An edge is assigned for each nonzero 3 coef-
ficient. The LASSO algorithm employed all the available time series and a final
consensus network is built in the same fashion as delineated above. Although
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Table 2: AUPR for the OKVAR model (A, = 1,A\¢ = 1, A = 0.1), LASSO,
Team 236 and Team 190 (DREAMS3 competing teams) run on DREAMS3 size-10
networks. Due to multiple runs and multiple time-series, average + standard
deviation (OKVAR (1TS)) and consensus (OKVAR (4TS)) results are given for
the OKVAR model. The numbers in boldface are the maximum values of each
method.

Size-10 Ecolil Ecoli2  Yeastl Yeast2  Yeast3
OKVAR + True B 0.752 0.677 0.473 0.523 0.586
OKVAR (1T5) 0.182 0.267 0.138 0.414 0.376

£+ 0.088 £0.169 £0.049 +0.104 =£0.117
OKVAR (47T5S) 0.385 0.678 0.430 0.363 0.447

LASSO 0.119 0.531 0.244 0.305 0.255
Team 236 0.197 0.378 0.194 0.236 0.239
Team 190 0.152 0.181 0.167 0.371 0.373

there is no information on the structure of team 236’s algorithm, its authors
responded to the post-competition DREAMS3 survey stating that their method
employs Bayesian models with an in-degree constraint (Prill et al (2010)). Team
190 (Tables 1,2) reported in the same survey that their method is also Bayesian
with a focus on nonlinear dynamics and local optimization.

The AUROC and AUPR values obtained for size-10 networks (Tables 1,2)
strongly indicate that the OKVAR model outperforms the LASSO model and
the teams that exclusively used the same set of time series data in the DREAM3
competition except for size-10 Yeastl (equivalent AUROC). In particular, we
note that the OKVAR consensus runs exhibited excellent AUPR values com-
pared to those obtained by teams 236 and 190.

A comparison of competing algorithms for size-100 networks (Tables 3.4)
shows that the OKVAR method again achieves superior AUROC results com-
pared to Team 236, the only team that exclusively used time series data for the
size-100 network challenge, since Team 190 did not submit any results. The
OKVAR method only lags behind by a slight margin for size-100 Yeastl and
Yeast3 in terms of AUPR. It is noticeable that the AUPR values in all rows
are rather small (lower than 10%) compared to their size-10 counterparts. Such
a decrease suggests that the AUPR values can be impacted more strongly by
the lower density of the size-100 networks, where the non-edges class severely
outnumbers the edges class, rather than the choice of algorithm. Such difficult
tasks require much more available time-series to achieve better results in terms
of AUROC and AUPR. Finally, it is worth noting that that the OKVAR model
would have ranked in the top five and ten, respectively for size-10 and size-100
challenges, while the best results employed knock-out/knock-down data in addi-
tion to time-series data, the latter being rich in information content Michailidis
(2012).

Climate dataset
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Our second example examines climate data, originally presented in Liu et al
(2010). It contains measurements on climate forcing factors and feedback mech-
anisms obtained from different databases. In this study, we extracted monthly
measurements for 12 variables for the year 2002 (i.e. 12 time-points) that include
temperature (TMP), precipitation (PRE), vapor (VAP), cloud cover (CLD),
wet days (WET), frost days (FRS), Methane (CH4), Carbon Dioxide (CO2),
Hydrogen (H2), carbon monoxide (CO), solar radiation (SOL) and aerosols
(AER). The measurements were obtained from 125 meteorological stations lo-
cated throughout the United States, corresponding to an equally spaced 2.5 X
2.5 grid. We used the developed OKVAR model to identify and explore depen-
dencies between natural and anthropogenic' factors. The model allows learning
a separate causal model for each of the multivariate time series for a specific
area in the United States. Therefore, for the sake of exposition clarity, we first

linked to human activity

Table 3: AUROC for the OKVAR model (A, = 0.01,\¢ = 0.01, A\ = 0.01),
LASSO, Team 236 (DREAMS3 competing team) run on DREAMS size-100 net-
works. Due to multiple runs and multiple time-series, average + standard de-
viation (OKVAR (1T8)) and consensus (OKVAR (46TS)) results are given for
the OKVAR model. The numbers in boldface are the maximum values of each
method.

Size-100 Ecolil Ecoli2 Yeastl Yeast2 Yeast3
OKVAR + True B 0.962 0.971 0.958 0.906 0.897
OKVAR (1T8) 0.558 0.555 0.499 0.525 0.499

£+ 0.051 £ 0.062 £+ 0.025 =+ 0.022 +£0.021
OKVAR (46TS) 0.618 0.620 0.537 0.553 0.522
LASSO 0.519 0.512 0.507 0.530 0.506
Team 236 0.527 0.546 0.532 0.508 0.508

Table 4: AUPR for the OKVAR model (A, = 0.01,\¢ = 0.01,\p = 0.01),
LASSO, Team 236 (DREAM3 competing team) run on DREAMS3 size-100 net-
works. Due to multiple runs and multiple time-series, average + standard de-
viation (OKVAR (1T8)) and consensus (OKVAR (46TS)) results are given for
the OKVAR model. The numbers in boldface are the maximum values of each
method.

Size-100 Ecolil Ecoli2 Yeast1 Yeast2 Yeast3
OKVAR + True B 0.432 0.516 0.279 0.407 0.364
OKVAR (1T8) 0.017 0.016 0.017 0.042 0.056

+ 0.004 +0.004 £ 0.002 £ 0.004 =£0.005
OKVAR (46TS) 0.029 0.093 0.024 0.052 0.053
LASSO 0.016 0.057 0.016 0.044 0.044
Team 236 0.019 0.042 0.035 0.046 0.065
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consider only a single location, in northern Texas.

Table 5: Average(x10%)+standard deviation(x10°) BIC for the climate data
set on 1 location (Northern Texas). The OKVAR algorithm was run 10 times
for each couple of hyperparameters.

AB
107° 1074 1073 1072 10~ T
10~° 1.53 + 1.12 143 +£1.47 | 1.45 £1.84 | 1.41 +1.20 | 1.43 £ 1.22
107 11.38 £ 1.05 [ 1.45+ 160 | 1.46 £ 1.21 | 1.54 + 1.76 | 1.44 + 1.02
Ao | 1073 1.50 4+ 1.80 1.44 +1.26 | 1.44+ 1.61 | 1.57 &+ 1.27 | 1.43+ 0.87
1072 1.57 £1.72 142 +1.78 | 1.41 £1.62 | 1.53 = 1.16 | 1.39 £0.90
107 1T 1.46 + 1.41 1.51 =195 | 1.40 £ 1.67 | 1.56 &= 1.68 | 1.50 £ 1.55

Similarly to our previous experimental work, we used a grid search in order
to set up the hyperparameters of the model. We looked for a combination of
Ac and Ap values that minimize the mean of the Bayesian Information Crite-
rion (BIC) computed over ten independent runs, using the data of the northern
Texas location. As can be seen in Table 5, we selected the values 10™% and
1075 for A¢ and A, respectively. With this set up, we subsequently applied
the OKVAR algorithm to the data sets for all available locations. A consensus
graph was constructed by retaining only those directed edges whose frequency
over multiple runs exceeded a predefined selection threshold. To ease the inter-
pretation of the extracted graph, we considered a stringent selection threshold
of 0.8. Indeed, considering the extreme complexity of the system under study,
ultimately, dependencies might be found between most variables. However, in
this experiment we are interested to identify the strongest and most robust re-
lationships between the variables under consideration. For our first experiment
focusing on the norte Texas dataset, this resulted in a parsimonious directed
graph shown in Figure la.

In their work, Liu et al (2010) inspected more closely the general in-links
to Temperature (TMP) and found that it was mostly affected by solar radiance
(SOL), cloud cover (CLD), wet day (WET) and aerosols (AER). While the WET
variable has not been retained in our final model, we also found that TMP is
affected by SOL. It is directly related with AER while it is indirectly influenced
by CLD through SOL.

Most of the edges that the OKVAR model identified are reasonable and
supported by external knowledge about their interactions: specifically, Aerosols
(AER) interact with Hydrogen (H2) through atmospheric chemistry and lower
the presence of vapor (VAP) by favoring water condensation. Solar radiance
(SOL) is impacted by both Cloud cover (CLD) and vapor concentration (VAP).
Temperature is influenced by precipitation (PRE) and solar radiance (SOL).
Finally, Carbon Dioxide concentrations (CO2) depends on Methane (CH4) and
aerosols (AER) concentrations as eventually, those compounds will degrade into
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Figure 1: (a) Consensus graph (selection threshold = 0.8) extracted from the
climate causal model applied to the north Texas data set, based on 10 inde-
pendent runs of the OKVAR algorithm. (b) Partitioning of the causal models
learned by the OKVAR model, over the United States. All extracted causal
graphs have been clustered and labeled using spectral clustering.

CO2. Finally, Clouds (CLD) trap the aerosols (AER) which might be cleaned
later on by rain. However, this causality might be reversed as the concentration
in aerosols has an impact on the cloud cover.

On the contrary, the impact of solar radiance (SOL) on Carbon Dioxide (CO2)
Concentration is unclear. Photosynthesis which is activated by the sun and
consumes CO2, might explain this feature but this explanation is unlikely.

It is worth noting that errors tend to appear with direct loops. Indeed, edges
with opposite direction compared to those we mentioned above (TMP = SOL
and SOL = VAP) do not seem relevant.

In addition, some causal relationships such as TMP = AER or TMP = SOL
would be more likely if they were reversed as one expects solar radiance (SOL)
and aerosols (AER) to promote temperature increase. The same applies to CLD
= VAP as the likelihood of clouds (CLD) appearing increases with vapor (VAP)
presence.

Of course, some causal influences are still missing in our final model. One
would expect an influence of the cloud cover (CLD) on the precipitations (PRE),
or an impact of the concentration of greenhouse gazes such as Carbon Dioxide
(CO2) or Methane (CH4) on the temperature (TMP). However, most of these
edges appeared in the initial consensus graph and would have been recovered
with a lower selection threshold.

Since the physical and chemical processes at work in the atmosphere do not
change drastically from one state to another, one would expect that the causal
graphs learned across the US exhibits a certain degree of similarity. However,
in the meantime, it is very likely that causal graphs corresponding to distant
areas will show topological differences due to regional specificities regarding both
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climate and human activity. In order to assess the stability of our approach,
we repeated the former experiment by applying the OKVAR model to all 125
available data sets generated on different locations, thus obtaining 125 causal
models.

We defined the structured similarity s between two graphs GG; and G5 based
on the Hamming Distance between the corresponding adjacency matrices A
and Ap: 5(G1,Ga) =1 — 2 i |A1;; — Aa;;|. A spectral clustering algorithm
(Ng et al, 2001) using this similarity matrix with the number of classes set to 3
was applied; the number of clusters selected a priori was based on the number
of hidden variables considered in Liu et al (2010) for their latent variable model
focusing on spatial interactions. Spectral clustering relies on the spectral de-
composition of the Laplacian of the similarity matrix, followed by an application
of a k-means algorithm in the new feature space. Figure 1b shows the labels
of the resulting graphs and their corresponding location on map of the United
States. A very clear segmentation of geographical locations emerges, exhibiting
the same network structure. There is a split between the northern and southern
parts of the country from the Atlantic coast all the way to Rocky Mountains
possibly due to climate (typically temperature) differences, while a third zone
covers the West, where high levels of CO2 concentration play a role.

6 Conclusion

Network inference from multivariate time-series represents a key problem in
numerous scientific domains. In this paper, we address it by introducing and
learning a nonlinear vector autoregressive model based on a novel operator-
valued kernel. The model generalizes linear vector autoregressive models, and
the proposed operator-valued kernel is governed by a semi-definite matrix which
is learnt together with the other parameters of the model by minimizing an
elastic-net cost function. An alternating optimization scheme based on a prox-
imal gradient algorithm and a matrix exponentiated gradient algorithm is de-
rived. Results obtained from benchmark size-10 and size-100 networks as well
as from real datasets show very good performance of the OKVAR model. Fu-
ture extensions include the use of the model in ensemble methods and also
applications to other scientific fields.
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