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Abstract

Reverse-modeling of dynamical systems from time-course data still re-
mains a challenging and canonical problem in knowledge discovery. For
this learning task, a number of approaches primarily based on sparse linear
models or Granger causality have been proposed in the literature. How-
ever when the dynamics are nonlinear, there does not exist a systematic
answer that takes into account the nature of the underlying system. We
introduce a novel family of vector autoregressive models based on differ-
ent operator-valued kernels to identify the dynamical system and retrieve
the target network. As in the linear case, a key issue is to control the
model’s sparsity. This control is performed through the joint learning of
the structure of the kernel and the basis vectors. To solve this learning
task, we propose an alternating optimization algorithm based on proxi-
mal gradient procedures that learn both the structure of the kernel and
the basis vectors. Results on the DREAM3 competition gene regulatory
benchmark networks of size 10 and 100 show the new model outperforms
existing methods.
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1 Introduction

In many scientific problems, high dimensional data with network structure play a
key role in knowledge discovery (Kolaczyk, 2009). For example, recent advances
in high throughput technologies have facilitated the simultaneous study of com-
ponents of complex biological systems. Hence, molecular biologists are able to
measure the expression levels of the entire genome and a good portion of the
proteome and metabolome under different conditions and thus gain insight on
how organisms respond to their environment. For this reason, reconstruction of
gene regulatory networks from expression data has become a canonical problem
in computational systems biology (Lawrence et al, 2010). Similar data struc-
tures emerge in other scientific domains. For instance, political scientists have
focused on the analysis of roll call data of legislative bodies, since they allow
them to study party cohesion and coalition formation through the underlying
network reconstruction (Morton and Williams, 2010), while economists have
focused on understanding companies creditworthiness or contagion (Gilchrist
et al, 2009). Understanding climate changes implies to be able to predict the
behavior of climate variables and their dependence relationship (Parry et al,
2007; Liu et al, 2010). Two classes of network inference problems have emerged
simultaneously from all these fields: the inference of association networks that
represent coupling between variables of interest (Meinshausen and Bühlmann,
2006; Kramer et al, 2009) and the inference of “causal” networks that describe
how variables influence other ones (Murphy, 1998; Perrin et al, 2003; Auliac
et al, 2008; Zou and Feng, 2009; Shojaie and Michailidis, 2010; Maathuis et al,
2010; Bolstad et al, 2011; Dondelinger et al, 2013; Chatterjee et al, 2012).

Over the last decade, a number of statistical techniques have been intro-
duced for estimating networks from high-dimensional data in both cases. They
divide into model-free and model-driven approaches. Model-free approaches for
association networks directly estimate information-theoretic measures, such as
mutual information to detect edges in the network (Hartemink, 2005; Margolin
et al, 2006). Among model-driven approaches, graphical models have emerged
as a powerful class of models and a lot of algorithmic and theoretical advances
have occured for static (independent and identically distributed) data under the
assumption of sparsity. For instance, Gaussian graphical models have been thor-
oughly studied (see Bühlmann and van de Geer (2011) and references therein)
under different regularization schemes to reinforce sparsity in linear models in
an unstructured or a structured way. In order to infer causal relationship net-
works, Bayesian networks (Friedman, 2004; Lèbre, 2009) have been developed ei-
ther from static data or time-series within the framework of dynamical Bayesian
networks. In the case of continuous variables, linear multivariate autoregressive
modeling (Michailidis and d’Alché Buc, 2013) has been developed with again an
important focus on sparse models. In this latter framework, Granger causality
models have attracted an increasing interest to capture causal relationships.

However, little work has focused on network inference for continuous vari-
ables in the presence of nonlinear dynamics despite the fact that regulatory
mechanisms involve such dynamics. Of special interest are approaches based on

2



parametric ordinary differential equations (Chou and Voit, 2009) that alterna-
tively learn the structure of the model and its parameters. The most successful
approaches decompose into Bayesian Learning (Mazur et al, 2009; Aijo and
Lahdesmaki, 2009) that allows to deal with stochasticity of the biological data,
while easily incorporating prior knowledge and genetic programming (Iba, 2008)
that provides a population-based algorithm for a stochastic search in the struc-
ture space. In this study, we start from a regularization theory perspective and
introduce a general framework for nonlinear multivariate modeling and network
inference. Our aim is to extend the framework of sparse linear modeling to
that of sparse nonlinear modeling. In the machine learning community, a pow-
erful tool to extend linear models to nonlinear ones is based on kernels. The
famous kernel trick allows to deal with nonlinear learning problems by working
implicitly in a new feature space, where inner products can be computed using
a symmetric positive semi-definite function of two variables, called a kernel. In
particular, a given kernel allows to build a unique Reproducing Kernel Hilbert
Space (RKHS), e.g. a functional space where regularized models can be defined
from data using representer theorems. The RKHS theory provides a unified
framework for many kernel-based models and a principled way to build new
(nonlinear) models. Since multivariate time-series modeling requires defining
vector-valued models, we propose to build on operator-valued kernels and their
associated reproducing kernel Hilbert space theory (Senkene and Tempel’man,
1973) that were recently introduced in machine learning by Micchelli and Pontil
(2005) for the multi-task learning problem with vector-valued functions. Among
different ongoing research on the subject (Alvarez et al, 2011), new applications
concern vector field regression (Baldassarre et al, 2010), structured classifica-
tion (Dinuzzo and Fukumizu, 2011), functional regression (Kadri et al, 2011)
and link prediction (Brouard et al, 2011). However, their use in the context of
time series is novel.

Building upon our previous work (Lim et al, 2013) that focused on a specific
model, we define a whole family of nonlinear vector autoregressive models based
on various operator-valued kernels. Once an operator-valued kernel-based model
is learnt, we compute an empirical estimate of its Jacobian, providing a generic
and simple way to extract dependence relationship among variables. We discuss
how a chosen operator-valued kernel can produce not only a good approximation
of the systems dynamics, but also a flexible and controllable Jacobian estimate.
To obtain sparse networks and get sparse Jacobian estimates, we extend the
sparsity constraint applied to the design matrix regularly employed in linear
modeling. To control smoothness of the model, the definition of the loss function
involves an ℓ2-norm penalty and additionally, may include two different kinds
of penalties, depending on the nature of the estimation problem: an ℓ1 penalty
that imposes sparsity to the whole matrix of parameter vectors, suitable when
the main goal is to ensure sparsity of the Jacobian, and a mixed ℓ1/ℓ2-norm that
allows one to deal with an unfavorable ratio between the network size and the
length of observed time-series. To optimize a loss function that contains these
non-differentiable terms, we develop a general proximal gradient algorithm.

Note that selected operator-valued kernels involve a positive semi-definite
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matrix as a hyperparameter. The background knowledge required for its def-
inition is in general not available, especially in a network inference task. To
address this kernel design task together with the other parameters, we intro-
duce an efficient strategy that alternatively learns the parameter vectors and the
positive semi-definite matrix that characterizes the kernel. This matrix plays an
important role regarding the Jacobian sparsity; the estimation procedure for the
matrix parameter also involves an ℓ1 penalty and a positive semi-definiteness
constraint. We show that without prior knowledge on the relationship between
variables, the proposed algorithm is able to retrieve the network structure of a
given underlying dynamical system from the observation of its behavior through
time.

The structure of the paper is as follows: in Section 2, we present the general
network inference scheme. In Section 3, we recall elements of RKHS theory
devoted to vector-valued functions and introduce operator-valued kernel-based
autoregressive models. Section 4 presents the learning algorithm that estimates
both the parameters of the model and the parameters of the kernel. Section 5
illustrates the performance of the model and the algorithm through extensive
numerical work based on both synthetic and real data, and comparison with
state-of-the-art methods.

2 Network inference from nonlinear vector au-

toregressive models

Let xt ∈ R
d denote the observed state of a dynamical system comprising of

d state variables. We are interested in inferring direct influences of a state
variable j on other variables i 6= j, (i, j) ∈ {1, · · · , d}2. The set of influences
among state variables is encoded by a network matrix A = (aij) of size d×d for
which a coefficient aij = 1 if the state variable j influences the state variable i,
0 otherwise. Further, we assume that a first-order stationary model is adequate
to capture the temporal evolution of the system under study, which can exhibit
nonlinear dynamics captured by a function h : Rd → R

d:

xt+1 = h(xt) + ut (1)

where ut is a noise term.
Some models such as linear models h(xt) = Bxt or parametric models,

explicitly involve a matrix that can be interpreted as a network matrix and
its estimation (possibly sparse) can be directly accomplished. However, for
nonlinear models this is a more involved task. Our strategy is to first learn h
from the data and subsequently estimate A using the values of the instantaneous
Jacobian matrix of model h, measured at each time point. The underlying idea

is that partial derivatives ∂h(xt)
i

∂xj
t

reflects the influence of explanatory variable

j at time t on the value of the i-th model’s output h(xt)
i. We interpret that if

∂h(xt)
i

∂xj
t

is high in absolute value, then variable j influences variable i. Several
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estimators of A can be built from those partial derivatives. We propose to use
the empirical mean of the instantaneous Jacobian matrix of h. Specifically,
denote by x1, . . . ,xN+1 the observed time series of the network state. Then,
∀(i, j) ∈ {1, . . . , d}2, an estimate Ĵ(h) of the Jacobian matrix ∇h = J(h) is
given by:

Ĵ(h)ij =
1

N

N∑

t=1

∂h(xt)
i

∂xj
t

(2)

In the remainder of the paper, we note Ĵ(h)ij the (i, j) coefficient of the em-

pirical mean of Jacobian of h and Ĵ(h)ij(t) its value at a given time t. Each

coefficient Ĵ(h)ij in absolute value gives a score to the potential influence of
variable j on variable i. To provide a final estimate of A, these coefficients are
sorted in increasing order and a rank matrix R is built according to the follow-

ing rule: let r(i, j) be the rank of the coefficient Ĵ(h)ij among the p(p+1)
2 sorted

coefficients, then we define R, the rank matrix as: Rij = r(i, j).
To get an estimate of A, coefficients of R are thresholded given a positive thresh-
old θ: Âij = 1, if (Rij > θ), and 0, otherwise.

Note that to obtain a high quality estimate of the network, we need a class of
functions h whose Jacobian matrices can be controlled during learning in such
a way that they could provide good continuous approximators of A. In this
work, we propose a new class of nonparametric vector autoregressive models
that exhibit such properties. Specifically, we introduce Operator-valued Kernel-
based Vector AutoRegressive (OKVAR) models, that constitute a rich class as
discussed in the next section.

3 Operator-valued kernels and vector autoregres-

sive models

3.1 From scalar-valued kernel to operator-valued kernel

models of autoregresssion

In order to solve the vector autoregression problem set in Eq. (1) with a nonlin-
ear model, one option is to decompose it into d tasks and use, for each task i, a
scalar-valued model hi such as a kernel-based model. Dataset DN now reduces
into d datasets of the form Di

N = {(xℓ, x
i
ℓ+1), ℓ = 1, . . . , N}. Each task i is now

a regression task that we may solve by estimating a nonparametric model. For
instance, kernel-based regression models are good candidates for those tasks.
A unique feature of these approaches is that they can be derived from Repro-
ducing Kernel Hilbert Space theory that offers a rigorous background for regu-
larization. For instance, kernel-ridge regression and Support Vector Regression
provide consistent estimator as soon as the chosen kernel is universal. Then, for
each i = 1, . . . , d, a model based on a positive definite kernel k : Rd × R

d → R
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writes as:

hi(xt) =

N∑

ℓ=1

wi
ℓk(xℓ,xt), (3)

where wi is the parameter vector attached to model i. Although this decom-
position is well justified when the covariance matrix of noise ut is diagonal, in
the general case, the d regression tasks are not independent. The purpose of
this work is therefore to extend such approaches to the vector autoregression
problem in order to provide (i), a general family of nonparametric models and
(ii), suitable models for network inference by Jacobian estimation. We now aim
to predict the state vector of a dynamical system xt+1 at time t + 1, given its
state xt at time t using kernel-based models appropriate for vectors. As a vec-
tor autoregressive model is a vector-valued function, the RKHS theory based
on scalar-valued kernel does not apply. However, if the kernel is chosen to be
operator-valued e.g. matrix-valued in our setting, then RKHS theory devoted
to operator-valued kernel provides a similar framework to build models and to
justify their use. In the following, we introduce the basic building blocks of
operator-valued kernel-based theory and notations to extend (3) into models of
the following form:

h(xt) =

N∑

ℓ=1

K(xt,xℓ)wℓ, (4)

where K is an operator-valued kernel to be defined in next section and wℓ, ℓ =
1, . . . , N are parameter vectors of dimension d.

3.2 RKHS theory for vector-valued functions

In RKHS theory with operator-valued kernels, we consider functions with input
in some set X and with vector values in some given Hilbert space Fy. For
completeness, we first describe the general framework and then come back to
the case of interest, namely X = Fy = R

d. Denote by L(Fy), the set of all
bounded linear operators from Fy to itself. Given A ∈ L(Fy), A

∗ denotes its
adjoint. Then, an operator-valued kernel K is defined as follows:

Definition 1 (Operator-valued kernel) (Senkene and Tempel’man, 1973; Capon-
netto et al, 2008)
Let X be a set and Fy a Hilbert space. Then, K : X × X → L(Fy) is a kernel
if:

• ∀ (x, z) ∈ X × X , K(x, z) = K(z,x)∗

• ∀m ∈ N, ∀{(xi,yi), i = 1, . . . ,m} ⊆ X ×Fy,
∑m

i,j=1〈yi,K(xi,xj)yj〉Fy
≥

0

When Fy = R
d, each kernel function is matrix-valued, which means that two

inputs x and z can be compared in more details. Moreover, Senkene and Tem-
pel’man (1973); Micchelli and Pontil (2005) established that one can build a
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unique RKHS HK from a given operator-valued kernel K. The RKHS HK is
built by taking the closure of span{K(·,x)y|x ∈ X ,y ∈ Fy} endowed with the
scalar product 〈f, g〉HK

=
∑

i,j〈ui,K(ri, sj)vj〉Fy
with f(·) =

∑

i K(·, ri)ui

and g(·) =
∑

j K(·, sj)vj . The corresponding norm ‖ · ‖HK
is defined by

‖ f ‖2HK
= 〈f, f〉HK

.
For the sake of notational simplicity, we omit K and use H = HK in the

remainder of the paper. As in the scalar case, one of the most appealing features
of RKHS is to provide a theoretical framework for regularization, e.g. represen-
ter theorems. Let us consider the case of regression with a convex loss function
V . We denote by DN = {(xℓ,yℓ), ℓ = 1, . . . , N} ⊆ X × Fy the data set under
consideration.

Theorem 1 ((Micchelli and Pontil, 2005)) Let V be some prescribed loss
function, and λ > 0 the regularization parameter. Then, any minimizer of the
following optimization problem:

argmin
h∈H

L(h) =
N∑

ℓ=1

V (h(xℓ),yℓ) + λ‖h‖2H ,

admits an expansion:

ĥ(·) =
N∑

ℓ=1

K(·,xℓ)cℓ , (5)

where the coefficients cℓ, ℓ = {1, · · · , N} are vectors in the Hilbert space Fy.

Such a result justifies a new family of models of the form (5) for vector
regression in R

d. Then, the operator-valued kernel (OVK) becomes a matrix-
valued one. In case this matrix is diagonal, the model reduces to d independent
models with scalar outputs and there is no need for a matrix-valued kernel.
In other cases, when we assume that the different components of the vector-
valued function are not independent and may share some underlying structure, a
non-diagonal matrix-valued kernel allows to take into consideration similarities
between the components of the input vectors. Initial applications of matrix-
valued kernels deal with structured output regression tasks, such as multi-task
learning and structured classification. In the following, we propose to apply
this framework to autoregression. We examine different matrix-valued kernels
as well as different loss functions and discuss about their relevance for network
inference.

3.3 The OKVAR family

Let now fix X = Fy = R
d. Recall that the objective is to estimate an vector au-

toregressive model. Given the observed d−dimensional time series x1, . . . ,xN+1

that we use as the training dataset DN = {(x1,x2), . . . , (xN ,xN+1)}, the non-
parametric model h is defined as

h(xt;DN ) =

N∑

ℓ=1

K(xt,xℓ)cℓ (6)
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where K(·, ·) is a matrix-valued kernel and each cℓ (ℓ ∈ {1, . . . , N}) is a vector
of dimension d. In the following, we denote by C ∈MN,d, the matrix composed
of the N row vectors cTℓ of dimension d. We call Operator-valued Kernel Vector
Autoregression (OKVAR), the vector autoregressive models of the form given
by Eq. (6). In this study, we focus on nonlinear kernels by considering three
kernel candidates, that fulfill the properties of an operator-valued kernel, one of
them presenting the property to be universal.

Let us recall the definition of the scalar-valued Gaussian kernel kGauss :
R

d × R
d → R: kGauss(x, z) = exp(−γ||x − z||2). Please notice that in the

special case d = 1, kGauss(x, z) reduces to exp(−γ(x− z)2).
As a baseline, we first consider the Gaussian transformable kernel which

extends the standard Gaussian kernel to the matrix-valued case. If x is a vector,
we denote xm its mth coordinate. Then the Gaussian transformable kernel is
defined as follows:

Definition 2 (Gaussian (transformable) kernel)

∀(x, z) ∈ R
d × R

d, ∀(i, j) ∈ {1, . . . , d}2,KGauss(x, z)ij = kGauss(x
i, zj) (7)

Interestingly, each (i, j)-coefficient of the kernel KGauss compares the ith coor-
dinate of x to the jth coordinate of z, allowing a richer comparison between
x and z. For sake of simplicity, we will call this kernel the Gaussian kernel in
the remainder of the paper. Note that the Gaussian kernel depends on only one
single hyperparameter γ. It gives rise to the following Gaussian OKVAR model.

Definition 3 (Gaussian OKVAR)

hGauss(xt) =

N∑

ℓ=1

KGauss(xt,xℓ)cℓ (8)

An interesting feature of the Gaussian kernel-based OKVAR model is that
each coordinate i of the vector model hGauss(xt)

i can be expressed as a lin-
ear combination of nonlinear functions of variables j = 1, . . . , d: hGauss(xt)

i =
∑

ℓ

∑

j exp(−γ(xi
t − xj

ℓ)
2)cjℓ .

Decomposable kernels are another class of kernels that have been first defined
by Micchelli and Pontil (2005) in order to address multi-task regression problems
and structured classification. When based on Gaussian kernels, they are defined
as follows:

Definition 4 (Decomposable (Gaussian) kernel) Let B is a positive semi-
definite matrix of size d× d.

∀(x, z) ∈ R
d × R

d,Kdec(x, z) = kGauss(x, z)B (9)

In this kernel, B is related to the structure underlying outputs: B imposes
that some outputs are dependent. This kernel has been proved to be universal
by Caponnetto et al (2008), e.g. the induced RKHS is a family of universal
approximators. The decomposable Gaussian OKVAR model is then defined as
follows:
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Definition 5 (Decomposable Gaussian OKVAR)

hdec(xt) =

N∑

ℓ=1

exp(−γ||xt − xℓ||2)Bcℓ (10)

Let now Kdec be a decomposable Gaussian kernel with scalar parameter γ1
and matrix parameter B andKGauss be a Gaussian kernel with scalar parameter
γ2. As proposed in Lim et al (2013), we combine the Gaussian kernel and the
decomposable kernel with the Hadamard product to get a kernel that involves
nonlinear functions of single coordinates of the input vectors while imposing
some structure to the kernel through a positive semi-definite matrix B. The
resulting kernel is called the Hadamard kernel.

Definition 6 (Hadamard kernel)

∀ (x, z) ∈ R
d × R

d,KHadamard(x, z) = Kdec(x, z) ◦KGauss(x, z) (11)

where ◦ denotes the Hadamard product for matrices.

The resulting kernel KHadamard possesses the kernel property, i.e:

Proposition 1 The kernel defined by (11) is a matrix-valued kernel.

Proof: A Hadamard product of two matrix-valued kernels is a matrix-valued
kernel (proposition 4 in Caponnetto et al (2008)).

The Hadamard OKVAR model has the following form:

Definition 7 (Hadamard OKVAR)

hHadamard(xt) =

N∑

ℓ=1

exp(−γ1||xt − xℓ||2)B ◦KGauss(xt,xℓ)cℓ (12)

3.4 Jacobians of the OKVAR models

As mentioned in the introduction, the network structure will be inferred by
the empirical mean of the instantaneous Jacobian matrices Ĵ(h)(t) of h over
observed time-points. At any given time point t, for a given target state variable
i and a matrix-valued kernel-based model h, we have:

∀j ∈ {1, . . . , d}, Ĵ(h)ij(t) =
N∑

ℓ=1

∂(K(xt,xℓ)cℓ)
i

∂xj
t

(13)

Hence, each component of h should be a function of the state variables in such
a way that the coefficients of the Jacobian reflect the dependence of the output
component on some of the state variables. Due to our assumption of nonlinear
dynamics of the underlying system, the kernel should contain nonlinear func-
tions of the state variables. Moreover, a relevant matrix-valued kernel-based
model should allow the sparsity of the Jacobian to be controlled through the
values of its parameters. The kernels proposed previously in Section 3.3 give
rise to the following expressions for instantaneous Jacobian.
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Gaussian OKVAR. The (i, j)-th entry of the Jacobian at time t for the
Gaussian-OKVAR model (8) writes as:

Ĵ(hGauss)ij(t) = 2γ(xi
t − xj

t ) exp
(

−γ(xi
t − xj

t )
2
)

cjt ,

which implies that the cjt ’s have the same impact, no matter what the target
variable i is. As a consequence, it becomes impossible to control those parame-
ters for network inference purposes.

Decomposable OKVAR. If we now consider the decomposable model, hdec,
defined in (10), the corresponding (i, j)-th term of the Jacobian is given by:

Ĵ(hdec)ij(t) =

N∑

ℓ=1

∂exp(−γ||xt − xℓ||2)
∂xj

t

(Bcℓ)
i (14)

which implies that the nonlinear term involved in the matrix-valued kernel does
not differ from one pair (i, j) to another. Then, it is impossible to control specific
values of the Jacobian matrix using B or the cℓ’s.

Hadamard OKVAR. Finally, we obtain a richer class of Jacobians, more
suitable for the inference task at hand, if we use Hadamard OKVAR defined in
(12) for which the entries of its Jacobian at time t Ĵ(hHadamard)ij(t) = Ĵij(t)
are given by:

Ĵij(t) =
∑N

ℓ=1
∂exp(−γ1||xt−xℓ||

2)

∂xj
t

B◦KGauss(xt,xℓ)cℓ+exp(−γ1||xt−xℓ||2)∂B◦KGauss(xt,xℓ)cℓ

∂xj
t

which after some calculations reduces to:

Ĵij(t) = 2γ2bij(x
i
t − xj

t ) exp
(

−γ2(xi
t − xj

t )
2
)

cjt

−2γ1
∑

ℓ 6=t

exp(−γ1||xt − xℓ||2)(xj
t − xj

ℓ)

d∑

p=1

bip exp
(
−γ2(xi

t − xp
ℓ )

2
)
cpℓ

(15)

The obtained expression exhibits some interesting characteristics: if we choose
γ1 very close to 0 (for γ1 = 0, kGauss is no more a kernel), then kGauss(xt,xℓ) is
close to one for any pair (xt,xℓ) and the second term in (15) is approximatively
0. Then, the value of the Jacobian for variables (i, j) is controlled by the value
of bij : hence, B is capable of imposing structure in the model. For example, for

a given pair of variables (i, j), if bij = 0, then irrespective of the values of cjℓ , ℓ =
1, · · · , N , the corresponding Jacobian coefficient will be zero as well; i.e variable
j does not influence variable i. Conversely, a non-zero coefficient bij does not
reflect influence from j to i since the cℓ parameters can still set the corresponding
coefficient in the Jacobian to zero. Thus, the parameter B captures some of the
structure of the underlying network, together with C. Note that the vectors cℓ’s
and the cross-difference between coordinates in equation (15) allow us to have
non-symmetric Jacobian matrices, suitable for reconstructing directed graphs.

10



4 Learning OKVAR with proximal gradient al-

gorithms

4.1 Learning C for fixed kernel

In some applications, kernel K may be already specified. For instance, the
transformable Gaussian kernel depends on a parameter γ that might be preset.
For a decomposable or a Hadamard kernel, the matrix B may be provided a
priori. Thus, learning the resulting OKVAR model boils down to learning the
matrix of model parameters C. We denote the model hC to highlight that
dependence. To estimate C, we employ the following general regularized loss
function :

L(C) =

N∑

t=1

||hC(xt)− xt+1||2 + λh||hC ||2H +Ω(C) (16)

The squared norm ||hC ||2H =
∑N

i,j=1 c
T
i K(xi,xj)cj plays the role of a weighted

ℓ2 norm on C. When Ω(C) = 0, minimizing (16) turns out to solving the
kernel ridge regression problem. In this case C can be computed in closed-form
solution :

c = (K+ λhId)
−1x2:N+1 (17)

where c is the vectorized form of matrix C, K = (K(xℓ,xt))ℓ,t ∈ MNd is
the block-Gram matrix computed on pairs of data (xℓ,xt), ℓ, t = 1 . . . N and
x2:N+1 ∈ R

Nd is the concatenated vector of data x2, . . . ,xN+1. However this
solution is usually not sparse. In order to control the sparsity of the model,
necessary for obtaining a sparse Jacobian, one may introduce an ℓ1-norm con-
straint on C, that is Ω1(C) = λC‖C‖1 where ‖ · ‖1 denotes both the ℓ1 norm
of a vector and that of the vectorized form of a matrix. Then the loss function
becomes analogous to the one used in elastic-net type regularized models in the
scalar case.

In nonparametric approaches, one key issue is to control model complexity.
A way to perform it is to make use of few parameters cℓ, which implies that
only a few data are involved in the model. By referring to Support Vector
Machine, we denote by Support Vectors data corresponding to a null vector cℓ.
Regularizing by the ℓ1-norm does not allow to set a whole vector cℓ to zero,
e.g. to exhibit support vectors. To achieve that, a structured sparsity strategy
is more appropriate by considering the columns of C, i.e. vectors cℓ’s, as a
partition of the matrix coefficients. Such a constraint Ωstruct may take the
following form:

Ωstruct(C) = λC

N∑

ℓ=1

wℓ‖cℓ‖2 (18)

As it is defined in (18), Ωstruct is the so-called mixed ℓ1/ℓ2-norm. First used
in Yuan and Lin (2006) for the group Lasso, this norm has interesting features
: it behaves like an ℓ1-norm on each vector cℓ while within each vector cℓ, the
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coefficients are subject to an ℓ2-norm constraint. wℓ’s are positive weights whose
values depend on the application. For instance, in our case, as the observed
time-course data are the response of a dynamical system to some given initial
condition, wℓ should increase with ℓ, meaning that we put emphasis on the first
time-points.

We can thus note that (16) is a convex loss function that is a sum of two
terms: fC which is differentiable with respect to C and gC which is non-smooth,
but nevertheless convex and subdifferentiable with respect to C:

L(C) =

N∑

t=1

∥
∥
∥
∥
∥

N∑

ℓ=1

K(xt,xℓ)cℓ − xt+1

∥
∥
∥
∥
∥

2

+ λh

N∑

t,ℓ=1

c
T
t K(xt,xℓ)cℓ

︸ ︷︷ ︸

fC(C)

+Ω(C)
︸ ︷︷ ︸

gC(C)

This leads us to employ a proximal gradient algorithm, which is appropriate
for solving this problem. Its steps are outlined in Algorithm 1:

Algorithm 1 Solve Problem (16)

Inputs : C0 ∈MNd;M ;ǫc;LC

Initialize : m = 0;y(1) = c(0); t(1) = 1; STOP=false
while m < M and STOP=false do
Step 0: m← m+ 1

Step 1: c(m) = prox 1
LC

(gC)
(

y(m) − 1
LC
∇

y(m)fC(y
(m))

)

if ||c(m) − c(m−1)|| ≤ ǫc then
STOP:=true

else

Step 2: t(m+1) = 1+
√

1+4t(m)2

2

Step 3: y(m) = c(m) + t(m)−1
t(m+1)

(
c(m) − c(m−1)

)

end if
end while

The algorithm relies on the following:

• LC is a Lipschitz constant of ∇CfC the derivative of fC for variable C

• For s > 0, the proximal operator of a function g applied to some v ∈ R
Nd

is given by: proxs(g)(v) = argmin
u

{
g(u) + 1

2s ||u− v||2
}

• Intermediary variables t(m) and y(m) in Step 2 and Step 3 respectively
are introduced to accelerate the proximal gradient method (Beck and
Teboulle, 2010).

The proximal operator of Ω1 or Ωstruct is the elementwise shrinkage or soft-
thresholding operator Ts : RNd → R

Nd :

12



Let G be a partition of the indices of v, for a given subset of indices I ∈ G,

Ts(v)I =

(

1− s

‖vI‖2

)

+

vI

where vI ∈ R
|I| denotes the coefficients of v indexed by I. Then, the proximal

gradient term in the mth iteration is given by:

prox 1
LC

(gC)

(

y(m) − 1

LC
∇

y(m)fC(y
(m))

)

Iℓ

= Tsℓ
(

y(m) − 1

LC
∇

y(m)fC(y
(m))

)

Iℓ

For gC = Ωstruct, sℓ = λCwℓ

LC
and Iℓ, ℓ = 1, . . . , N is the subset of indices

corresponding to the ℓ-th column of C, while for gC = Ω1, sℓ =
λC

LC
and Iℓ, ℓ =

1, . . . , Nd is a singleton corresponding to a single entry of C.
We also need to calculate LC a Lipschitz constant of ∇Cf . We can notice

that fC(C) can be rewritten as:

fC(C) = ‖Kc− x2:N+1‖2 + λhc
TKc

Hence,
∇CfC(C) = 2K([K+ λhId]c− x2:N+1)

Using some algebra, we can establish that:
For c1, c2 ∈ R

Nd,

||∇CfC(c1)−∇CfC(c2)|| ≤ 2ρ
(
K2 + λhK

)

︸ ︷︷ ︸

LC

‖c1 − c2‖

where ρ(K2 + λhK), is the largest eigenvalue of K2 + λhK.
Remark : It is of interest to notice that Algorithm 1 is very general and may
be used as long as the loss function can be split into two convex terms, one of
which is differentiable.

4.2 Learning C and the kernel

Other applications require the learning of kernel K. For instance, in order to
tackle the network inference task, one may choose a Gaussian decomposable
kernel Kdec or a Gaussian transformable kernel KHadamard. When bandwidth
parameters γ are preset, the positive semi-definite matrix B underlying these
kernels imposes structure in the model and has to be learnt. This leads to the
more involved task of simultaneously learning the matrix of the model param-
eters C as well as B. Thus, we aim to minimize the following loss function for
the two models hdec and hHadamard:

L(B,C) =

N∑

t=1

||hB,C(xt)− xt+1||2 + λh||hB,C ||2H +Ω(C) + Ω(B) (19)
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with Ω(C) a sparsity-inducing norm (Ω1 or Ωstruct), Ω(B) = λB ||B||1 and
subject to the constraint that B ∈ S+d where S+d denotes the cone of positive
semi-definite matrices of size d × d. For fixed C, the squared norm of hB,Ĉ

imposes a smoothing constraint on B, while the ℓ1 norm of B aids in controlling
the sparsity of the model and its Jacobian.

Further, for fixed B, the loss function L(Bfixed, C) is convex in C and con-
versely, for fixed C, L(B,Cfixed) is convex in B. We propose an alternating
optimization scheme to minimize the overall loss L(B,C). Since both loss func-
tions L(Bfixed, C) and L(B,Cfixed) involve a sum of two terms, one being dif-
ferentiable and the other being sub-differentiable, we employ proximal gradient
algorithms to achieve the minimization.

For fixed B̂, the loss function becomes:

L(B̂, C) =

N∑

t=1

||hB̂,C(xt)− xt+1||2 + λh||hB̂,C ||2H +Ω(C), (20)

while for given Ĉ, it is given by:

L(B, Ĉ) =

N∑

t=1

||hB,Ĉ(xt)− xt+1||2 + λh||hB,Ĉ ||2H + λB ||B||1 (21)

In summary, the general form of the algorithm is given in Algorithm 2.

Algorithm 2 Solve Problem (19)

Inputs : B0 ∈ S+d ; ǫB ; ǫC
Initialize : m = 0; STOP=false
while STOP=false do

Step 1: Given Bm, minimize the loss function (20) and obtain Cm

Step 2: Given Cm, minimize the loss function (21) and obtain Bm+1

if m > 0 then
STOP:=||Bm −Bm−1|| ≤ ǫB and ||Cm − Cm−1|| ≤ ǫC

end if
Step 3: m← m+ 1

end while

At iteration m, Bm is fixed, kernel K is thus defined. Hence, estimation of
Cm in Step 1 boils down to applying Algorithm 1 to minimize (20).

4.2.1 Learning the matrix B for fixed C

For given parameter matrix C, the loss function L(B, Ĉ) is minimized subject
to the constraint that B is positive semi-definite.

L(B, Ĉ) =

N∑

t=1

||hB,Ĉ(xt)− xt+1||2 + λh||hB,Ĉ ||2H
︸ ︷︷ ︸

fB(B)

+λB ||B||1
︸ ︷︷ ︸

g1,B(B)

+1S+
d
(B)

︸ ︷︷ ︸

g2,B(B)

(22)
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where 1S+
d

denotes the indicator function : 1S+
d
(B) = 0 if B ∈ S+d , +∞ other-

wise.
Note that fB is differentiable with respect to B, while both g1,B and g2,B

are non-smooth, but convex and sub-differentiable with respect to B. When
there is more than one non-smooth function involved in the loss function to
minimize, we cannot use the same proximal gradient algorithm as delineated in
Algorithm 1. We decide to adopt a strategy proposed by Raguet et al (2011),
where the authors generalize the classic forward-backward splitting algorithm
to the case of an arbitrary number of non-smooth functions. The method has
recently proven successful for the estimation of matrices with sparsity and low
rank constraints (Richard et al, 2012). Our algorithm is presented below.

Algorithm 3 Solve problem (21)

Inputs : M ; ǫ; ǫL; ǫB ;Z
(0)
1 , Z

(0)
2 ∈ S+d ;α ∈]0, 1[; ∀m ∈ N, ηm ∈]0, 2/LB [; ∀m ∈

N, µm ∈ Iµ

Initialize : m = 0;B0 = αZ
(0)
1 + (1− α)Z

(0)
2 ; STOP=false

while m < M and STOP=false do
Step 1.1: Z

(m+1)
1 = Z

(m)
1 +µm

(

prox ηm
α
(gB,1)

(

2Bm − Z
(m)
1 − ηm∇BfB(Bm)

)

−Bm

)

Step 1.2: Z
(m+1)
2 = Z

(m)
2 +µm

(

prox(gB,2)
(

2Bm − Z
(m)
2 − ηm∇BfB(Bm)

)

−Bm

)

Step 2: Bm+1 = αZ
(m+1)
1 + (1− α)Z

(m+1)
2

if L(Bm+1, Ĉ) ≤ ǫ and |L(Bm+1, Ĉ) − L(Bm, Ĉ)| ≤ ǫL and ||Bm+1 −
Bm||Fro ≤ ǫB then
STOP:=true

end if
Step 3: m← m+ 1

end while

Two proximal operators need to be computed. The proximal operator of g1,B
is the soft-threshold operator while the proximal operator corresponding to the
indicator function 1S+

d
is the projection onto the cone of positive semidefinite

matrices : for Q ∈ Sd, prox(gB,2)(Q) = ΠS+
d
(Q) = argminB∈S+

d
||B − Q||Fro.

Sequence (Bm) is guaranteed to convergence under the following assumptions
(Theorem 2.1 in Raguet et al (2011)):
Set limηm = η,

(A) (i) 0 < limµm ≤ limµm < min
(

3
2 ,

1+2/(LBη)
2

)

(ii)
∑+∞

m=0 ‖u2,m‖ < +∞, and for i ∈ {1, 2},
∑+∞

m=0 ‖u1,m,i‖ < +∞

(B) (i) 0 < limηm ≤ η < 2
LB

(ii) Iµ =]0, 1]

where for i ∈ {1, 2}, u1,m,i denotes the error at iteration m when computing the
proximal operator prox(gB,i) and u2,m is the error when applying ∇BfB to its
argument.
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This algorithm also makes use of the following gradient computations. Here
we present the computations for kernel KHadamard, but all of them still hold for
a decomposable kernel by setting KGauss = 1.

Specifically, we get:

• for ∂
∂bij

∥
∥
∥hB,Ĉ(xt)− xt+1

∥
∥
∥

2

∂

∂bij

∥
∥
∥hB,Ĉ(xt)− xt+1

∥
∥
∥

2

=
∂

∂bij

d∑

p=1

(

hB,Ĉ(xt)
p − xp

t+1

)2

= 2

(
N∑

ℓ=1

kGauss(xt,xℓ)KGauss(xt,xℓ)ijc
j
ℓ

)
(

hB,Ĉ(xt)
i − xi

t+1

)

+2

(
N∑

ℓ=1

kGauss(xt,xℓ)KGauss(xt,xℓ)jic
i
ℓ

)
(

hB,Ĉ(xt)
j − xj

t+1

)

• for ∂
∂bij
||hB,Ĉ ||2H

∂

∂bij
||hB,Ĉ ||2H =

∂

∂bij

N∑

t=1

N∑

ℓ=1

cTt KHadamard(xt,xℓ)cℓ

=

N∑

t=1

N∑

ℓ=1

citkGauss(xt,xℓ)KGauss(xt,xℓ)ijc
j
ℓ + cjtkGauss(xt,xℓ)KGauss(xt,xℓ)jic

i
ℓ

We again need to compute a Lipschitz constant LB for ∇BfB(B). After some
calculations, one can show the following inequality :
For B1, B2 ∈ S+d ,

‖∇BfB(B1)−∇BfB(B2)‖2Fro ≤ L2
B ‖B1 −B2‖2Fro

with

L2
B = 4

d∑

i,j=1

(
N∑

t=1

(
N∑

ℓ=1

kGauss(xt,xℓ)KGauss(xt,xℓ)ijc
j
ℓ

)(
N∑

ℓ=1

d∑

q=1

kGauss(xt,xℓ)KGauss(xt,xℓ)iqc
q
ℓ

)

+

N∑

t=1

(
N∑

ℓ=1

kGauss(xt,xℓ)KGauss(xt,xℓ)jic
i
ℓ

)(
N∑

ℓ=1

d∑

q=1

kGauss(xt,xℓ)KGauss(xt,xℓ)jqc
q
ℓ

))2

5 Results

5.1 Implementation

The performance of the developed OKVAR model family and the proposed op-
timization algorithms were assessed on simulated data from a biological system
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(DREAM3 challenge data set). These algorithms include a number of tuning

parameters. Specifically, in Algorithm 3, we set Z
(0)
1 = Z

(0)
2 = B0 ∈ S+d , α = 0.5

and µm = 1. Parameters of the kernels were also fixed a priori : parameter γ
was set to 0.2 for a transformable Gaussian kernel and to 0.1 for a decomposable
Gaussian kernel. In the case of a Hadamard kernel, two parameters need to be
chosen : parameter γ2 of the transformable Gaussian kernel remains unchanged
(γ2 = 0.2). On the other hand, as discussed in Section 3.4, parameter γ1 of the
decomposable Gaussian kernel is fixed to a low value (γ1 = 10−5) since it does
not play a key role in the network inference task.

5.2 DREAM3 dataset

We start our investigation by considering data sets obtained from the DREAM3
challenge (Prill et al, 2010). DREAM stands for Dialogue for Reverse Engi-
neering Assessments and Methods (http://wiki.c2b2.columbia.edu/dream/
index.php/The_DREAM_Project) and is a scientific consortium that organizes
challenges in computational biology and especially for gene regulatory network
inference. In a gene regulatory network, a gene i is said to regulate another
gene j if the expression of gene i at time t influences the expression of gene
j at time t + 1. The DREAM3 project provides realistic simulated data for
several networks corresponding to different organisms (e.g. E. coli, Yeast, etc.)
of different sizes and topological complexity. We focus here on size-10 and size-
100 networks generated for the DREAM3 in-silico challenges. Each of these
networks corresponds to a subgraph of the currently accepted E. coli and S.
cerevisiae gene regulatory networks and exhibits varying patterns of sparsity
and topological structure. They are referred to as E1, E2, Y1, Y2 and Y3 with
an indication of their size. The data were generated by imbuing the networks
with dynamics from a thermodynamic model of gene expression and Gaussian
noise. Specifically, 4 and 46 time series consisting of 21 points were available
respectively for size-10 and size-100 networks.

In all the experiments conducted, we assess the performance of our model
using the area under the ROC curve (AUROC) and under the Precision-Recall
curve (AUPR) for regulation ignoring the sign (positive vs negative influence).
For the DREAM3 data sets we also show the best results obtained from other
competing teams using only time course data. The challenge made available
other data sets, including ones obtained from perturbation (knock-out/knock-
down) experiments, as well as observing the organism in steady state, but these
were not considered in the results shown in the ensuing tables.

Further, several time series may also be available, because of multiple related
initial conditions and/or technical replicates. In this case, the procedure is
repeated accordingly. Hence, the predictions of each run on each time series are
combined to build a consensus network. Specifically, for each run, we compute a
rank matrix as described in Section 2. Then the coefficients of these matrices are
averaged and eventually thresholded to obtain a final estimate of the adjacency
matrix.
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5.2.1 Effects of hyperparameters, noise and sample size

Next, we study the impact of different parameters including hyperparameters
λC and λB , the sample size of the dataset (number of time points) and the noise
level. Results for the DREAM3 size-10 E1 network are given in Table 1 and
Figure 1, respectively.

Table 1: Consensus AUROC and AUPR (given in %) for the DREAM3 size-10
E1 network using different hyperparameters. λh = 1

λB

10−2 10−1 1
10−2 79.1/31.5 81.5/32.1 73.5/21.2

λC 10−1 79.7/36.5 76.9/21.6 66.7/25.9
1 78.1/25.9 71.0/20.7 61.4/16.0

(a) (b)

Figure 1: Consensus AUROC (blue lines) and AUPR (red lines) for the
DREAM3 size-10 E1 network (a) using N = 7, 14 and 21 time points (b) adding
zero-mean Gaussian noise with standard deviations σ = 0, 0.05, 0.1 and 0.3.
λh = 1, λC = 10−2, λB = 10−1.

We notice that both AUROC and AUPR values are not that sensitive to
small changes in the hyperparameters (Table 1), which strongly indicates that
it is sufficient to pick them within a reasonable range of values. Furthe, as
expected, performance deteriorates with increasing levels of noise and decreasing
number of time points (Figure 1).

5.2.2 Comparison between OKVAR models

Next, we propose to compare the OKVAR models outlined in Table 2 and
investigate how relevant these models are regarding the network inference task.

Table 3 shows that the transformable Gaussian and the decomposable Gaus-
sian kernels can achieve good performance on selected DREAM3 size-10 datasets,
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Table 2: Synthetic table of studied OKVAR models.

OKVAR models

hRidge
Gauss hℓ1

Gauss h
ℓ1/ℓ2
Gauss hℓ1

dec h
ℓ1/ℓ2
dec hℓ1

Hadamard h
ℓ1/ℓ2
Hadamard

Kernel Transformable Gaussian Decomposable Gaussian Hadamard
Loss Eq. (16) Eq. (19)
Ω(C) 0 Ω1 Ωstruct Ω1 Ωstruct Ω1 Ωstruct

Table 3: Consensus AUROC and AUPR (given in %) for the DREAM3 size-10
networks. Studied OKVAR models refer to Table 2. The numbers in boldface
are the maximum values of each column.

AUROC AUPR
OKVAR models E1 E2 Y1 Y2 Y3 E1 E2 Y1 Y2 Y3

hRidge
Gauss 68.8 37.7 62.1 68.6 66.7 15.6 11.2 15.5 46.9 32.9

hℓ1
Gauss 69.3 38.0 61.9 69.3 66.7 15.7 11.3 15.2 47.4 32.8

h
ℓ1/ℓ2
Gauss 68.7 37.1 62.4 68.6 66.7 15.5 11.1 15.6 47.5 32.6

hℓ1
dec 67.0 68.5 38.2 45.4 38.3 23.6 20.8 7.4 21.1 16.8

h
ℓ1/ℓ2
dec 65.9 47.8 45.3 56.6 38.5 23.1 14.0 8.3 28.5 16.8

hℓ1
Hadamard 81.2 46.2 47.7 76.2 70.5 23.5 12.7 8.7 50.1 39.5

h
ℓ1/ℓ2
Hadamard 81.5 78.7 76.5 70.3 75.1 32.1 50.1 35.4 37.4 39.7

although none of these two kernels alone can faithfully recover all of the net-
works, no matter the types of sparsity-inducing norms employed. On the other
hand, the Hadamard kernel-based model learnt with a mixed ℓ1/ℓ2-norm reg-
ularization consistently outranks other OKVAR models. On the whole, these
results tend to corroborate the discussion presented in Section 3.4. In the re-
mainder of the paper, we focus on Hadamard kernel-based models that will be
referred to as OKVAR-Prox.

5.2.3 Comparison with state-of-the-art methods

The performance of the OKVAR approach for prediction of the network struc-
ture is assessed on two types of tasks: DREAM3 size-10 datasets whose ratio
between the number of measurements and the network size is of 21/10 and
size-100 datasets which come with a much more unfavorable ratio of 21/100.

Results are presented in Tables 4 and 5 for size-10 and size-100 data sets,
respectively. The entries of these tables correspond to the following methods:
(i) OKVAR + True B corresponds to an OKVAR model with the true adjacency
matrix given, and projected onto the positive semidefinite cone. (ii) OKVAR-
Prox was learnt using a mixed ℓ1/ℓ2-norm constraint on model parameters for
size-10 datasets and an ℓ1-norm for size-100 datasets. (iii) The LASSO algo-
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rithm corresponds to an ℓ1-regularized linear least squares regression model of
the form xt+1,i = xtβ, applied to each dimension (gene i). An edge is assigned
for each nonzero β coefficient. The LASSO algorithm employed all the available
time series and a final consensus network is built in the same fashion as de-
lineated above. (iv) G1DBN is an algorithm that performs Dynamic Bayesian
Network inference using first-order conditional dependencies (Lèbre, 2009). (v)
GPODE is a structure inference method based on non-parametric Gaussian pro-
cess modeling and parameter estimation of ordinary differential equations (Aijo
and Lahdesmaki, 2009). (vi,vii) Finally, the two last rows present the results
from two competing teams that exhibited a very good performance based only
on similar time-series data. Although there is no information on the structure of
Team 236’s algorithm, its authors responded to the post-competition DREAM3
survey stating that their method employs Bayesian models with an in-degree
constraint (Prill et al, 2010). Team 190 (Table 4) reported in the same survey
that their method is also Bayesian with a focus on nonlinear dynamics and local
optimization.

Table 4: Consensus AUROC and AUPR (given in %) for OKVAR-Prox, LASSO,
GPODE, G1DBN, Team 236 and Team 190 (DREAM3 competing teams) run
on DREAM3 size-10 networks. The numbers in boldface are the maximum
values of each column.

AUROC AUPR
Size-10 E1 E2 Y1 Y2 Y3 E1 E2 Y1 Y2 Y3

OKVAR + True B 96.2 86.9 89.2 75.6 86.6 75.2 67.7 47.3 52.3 58.6

OKVAR-Prox 81.5 78.7 76.5 70.3 75.1 32.1 50.1 35.4 37.4 39.7

LASSO 69.5 57.2 46.6 62.0 54.5 17.0 16.9 8.5 32.9 23.2
GPODE 60.7 51.6 49.4 61.3 57.1 18.0 14.6 8.9 37.7 34.1
G1DBN 63.4 77.4 60.9 50.3 62.4 16.5 36.4 11.6 23.2 26.3
Team 236 62.1 65.0 64.6 43.8 48.8 19.7 37.8 19.4 23.6 23.9
Team 190 57.3 51.5 63.1 57.7 60.3 15.2 18.1 16.7 37.1 37.3

The AUROC and AUPR values obtained for size-10 networks (Table 4)
strongly indicate that OKVAR-Prox outperforms state-of-the-art models and
the teams that exclusively used the same set of time series data in the DREAM3
competition, except for size-10 Y2 (nearly equivalent AUPR). In particular, we
note that the OKVAR consensus runs exhibited excellent AUPR values com-
pared to those obtained by other approaches.

A comparison of competing algorithms for size-100 networks (Table 5) shows
that the OKVAR method again achieves superior AUROC results compared to
Team 236, although it only lags behind by a slight margin for size-100 Y1 and
Y3 in terms of AUPR. Team 236 was the only team that exclusively used time
series data for the size-100 network challenge, since Team 190 did not submit any
results. No results are provided for the GPODE method on size-100 networks
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either since the algorithm requires a full combinatorial search when no prior
knowledge is available, which is computationally intractable for large networks.
The OKVAR method is outranked by G1DBN for size-100 E2 in terms of AUPR
and for size-100 Y2 with quite comparable AUROC values. It is noticeable that
the AUPR values in all rows are rather small (lower than 10%) compared to
their size-10 counterparts. Such a decrease suggests that the AUPR values can
be impacted more strongly by the lower density of the size-100 networks, where
the non-edges class severely outnumbers the edges class, rather than the choice
of algorithm. Such difficult tasks require much more available time-series to
achieve better results in terms of AUROC and AUPR. Therefore, for size-100
datasets, we applied a pure ℓ1-norm constraint on model parameters, allowing
any C coefficients to be set to 0 rather than a mixed ℓ1/ℓ2-norm regularization
that would have been too stringent in terms of data parsimony.

Finally, it is worth noting that OKVAR-Prox would have ranked in the top
five and ten, respectively for size-10 and size-100 challenges, while the best
results employed knock-out/knock-down data in addition to time-series data,
the latter being rich in information content (Michailidis, 2012).

Table 5: Consensus AUROC and AUPR (given in %) for OKVAR-Prox, LASSO,
G1DBN, Team 236 (DREAM3 competing team) run on DREAM3 size-100 net-
works. The numbers in boldface are the maximum values of each column.

AUROC AUPR
Size-100 E1 E2 Y1 Y2 Y3 E1 E2 Y1 Y2 Y3

OKVAR + True B 96.2 97.1 95.8 90.6 89.7 43.2 51.6 27.9 40.7 36.4

OKVAR-Prox 65.4 64.0 54.9 56.8 53.5 4.6 2.6 2.3 5.0 6.3

LASSO 52.2 55.0 53.2 52.4 52.3 1.4 1.3 1.8 4.3 6.1
G1DBN 53.4 55.8 47.0 58.1 43.4 1.6 6.3 2.2 4.6 4.4
Team 236 52.7 54.6 53.2 50.8 50.8 1.9 4.2 3.5 4.6 6.5

5.2.4 Comparison with OKVAR-Boost

In previous work (Lim et al, 2013), a boosting algorithm (OKVAR-Boost) com-
bining features from L2-boosting and randomization-based algorithms was de-
signed. At each boosting iteration, a Hadamard kernel-based OKVAR model
was learnt on a random subspace. One main difference between OKVAR-Boost
and OKVAR-Prox concerns the learning strategy. While B and C are learnt
jointly for the latter, the learning of B and C is decoupled in OKVAR-Boost,
meaning that B is firstly estimated by means of a statistical independence test
and then C is learnt using an elastic-net regularized loss. A comparison of the
two related algorithms is given in Table 6.

OKVAR-Prox achieves better AUROC values than OKVAR-Boost for size-
10 networks, except for the E1 network, while there is no clear winner in terms of
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Table 6: Consensus AUROC and AUPR (given in %) for OKVAR-Prox and
OKVAR-Boost run on DREAM3 size-10 and size-100 networks. The numbers
in boldface are the maximum values of each column.

AUROC AUPR
Size-10 E1 E2 Y1 Y2 Y3 E1 E2 Y1 Y2 Y3

OKVAR-Prox 81.5 78.7 76.5 70.3 75.1 32.1 50.1 35.4 37.4 39.7
OKVAR-Boost 85.3 74.9 68.9 65.3 69.5 58.3 53.6 28.3 26.8 44.3

Size-100 E1 E2 Y1 Y2 Y3 E1 E2 Y1 Y2 Y3
OKVAR-Prox 65.4 64.0 54.9 56.8 53.5 4.6 2.6 2.3 5.0 6.3
OKVAR-Boost 71.8 77.2 72.9 65.0 64.3 3.6 10.7 4.2 7.3 6.9

AUPR. On size-100 inference tasks, OKVAR-Boost which benefits from projec-
tions on random subspaces patently outperforms OKVAR-Prox which operates
directly in the 100-dimensional space with a limited amount of time points.

6 Conclusion

Network inference from multivariate time-series represents a key problem in
numerous scientific domains. In this paper, we addressed it by introducing
and learning a new family of nonlinear vector autoregressive models based on
operator-valued kernels. The new models generalize linear vector autoregressive
models and benefit from the framework of regularization. To obtain a sparse
network estimate, we define appropriate non-smooth penalties on the model pa-
rameters and a proximal gradient algorithm to deal with them. Some of the
chosen operator-valued kernels are characterized by a positive semi-definite ma-
trix that also plays a role in the network estimation. In this case, an alternating
optimization scheme based on two proximal gradient procedures is proposed to
learn both kinds of parameters. Results obtained from benchmark size-10 and
size-100 biological networks show very good performance of the OKVAR model.
Future extensions include applications of OKVAR to other scientific fields, the
use of the model in ensemble methods, and the application of proximal gradient
algorithms to other structured output prediction tasks.
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