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1 / 27A nonstandard wave de
omposition to ensurethe 
onvergen
e of Debye series for modelingwave propagation in animmersed anisotropi
 elasti
 plateEri
 Du
asse1,2,3,4 e.du
asse�i2m.u-bordeaux1.frMar
 Des
hamps3,2 m.des
hamps�i2m.u-bordeaux1.fr1 Arts et Metiers ParisTe
h, I2M−APy, UMR 5295, F-33400 Talen
e, Fran
e.2 Univ. Bordeaux, I2M−APy, UMR 5295, F-33400 Talen
e, Fran
e.3 CNRS, I2M−APy, UMR 5295, F-33400 Talen
e, Fran
e.4 Corresponding author. Tel. +33(0)540003138. Fax +33(0)540006964.Abstra
tWhen ultrasoni
 guided waves in an immersed plate are expressed as Debye series, they are 
onsidered as theresult of su

essive re�e
tions from the plate walls. Against all expe
tations, the Debye series 
an diverge forany geometry if inhomogeneous waves are involved in the problem. For an anisotropi
 elasti
 plate immersed ina �uid, this is the 
ase if the in
iden
e angle is greater than the �rst 
riti
al angle.Physi
ally, this divergen
e 
an be explained by the energy 
oupling between two inhomogeneous waves of samekind of polarization, whi
h are expressed by 
onjugate wavenumbers. Ea
h of these latter inhomogeneous wavesdoes not transfer energy but a linear 
ombination of them 
an do it. Mathemati
ally, this is due to the fa
t thatinhomogeneous waves do not 
onstitute a basis orthogonal in the sense of energy, 
ontrarily to homogeneouswaves. To avoid that di�
ulty, an orthogonalization of these inhomogeneous waves is required. Doing so,nonstandard upgoing and downgoing waves in the plate are introdu
ed to ensure the 
onvergen
e of the newDebye series written in the basis formed by these latter waves.The 
ase of an aluminum plate immersed in water illustrates this study by giving numeri
al results and adetailed des
ription of the latter nonstandard waves. The di�erent re�e
tion and refra
tion 
oe�
ients at ea
hplate interfa
e are analyzed in terms of Debye series 
onvergen
e and of distribution of energy �uxes betweenthe waves in the plate. From that investigation, an interesting physi
al phenomenon is des
ribed for one spe
i�
pair �angle of in
iden
e/frequen
y�. For this 
ondition, the quasi-energy brought by the in
ident harmoni
 planewave 
rosses the plate without any 
onversion to re�e
ted waves either at the �rst interfa
e or at the se
ondinterfa
e. In this zone, there is a perfe
t impedan
e mat
hing between the �uid and the plate.KeywordsUltrasoni
 wave s
attering; Immersed plate; Debye series; Nonstandard wave; Energy-�ux dire
tion.
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2 / 271 Introdu
tionThe propagation of elasti
 waves in an elasti
 layer sandwi
hed between two half-spa
es 
an be modeled byusing Debye series [1℄, i.e. the total �eld is 
onsidered as the result of multiple re�e
tions/refra
tions [2℄[3℄at the interfa
es. This te
hnique has been fruitfully used for elasti
 
ylindri
al rods [4℄[5℄, for spheri
al elasti
layers [6℄, and for plates [7℄[8℄[9℄.Unfortunately, the Debye series 
an diverge for any geometry if inhomogeneous waves are involved in the problem.For an anisotropi
 elasti
 plate immersed in a �uid (
f. Fig 1), this is the 
ase if the in
iden
e angle is greaterthan the �rst 
riti
al angle (see for example [7℄). Physi
ally, this divergen
e 
an be explained by the energy
oupling between two inhomogeneous waves of same kind of polarization, whi
h are expressed by 
onjugatewavenumbers. Ea
h of these latter inhomogeneous waves does not transfer energy but a linear 
ombination ofthem 
an do it. Mathemati
ally, this is due to the fa
t that inhomogeneous waves do not 
onstitute a basisorthogonal in the sense of energy, 
ontrarily to homogeneous waves.To avoid that di�
ulty, an orthogonalization of these inhomogeneous waves is required. Doing so, upgoing anddowngoing waves in the plate are de�ned di�erently than the usual way. It is then shown that using thesenonstandard progressive waves ensures the 
onvergen
e of the Debye series. Consequently, in our knowledge,this provides an e�
ient solution to an old unresolved problem.In the �rst part, the theoreti
al ba
kground for modeling a layer sandwi
hed between two half-spa
es by Debyeseries is reminded. In the se
ond part, the study of the multiple re�e
tions/refra
tions, in terms of energy, is donein the 
ase of the more general anisotropi
 elasti
 plates. It is emphasized that the Debye series 
an diverge whenusing the usual exponential upgoing and downgoing solutions, and that the orthogonalization, in the sense ofenergy, of su
h wave basis yields the 
onvergen
e of the series. Finally, the 
ase of an aluminum plate immersedin water illustrates this study by giving numeri
al results. From an investigation of the re�e
tion and refra
tion
oe�
ients at the two interfa
es, it is shown how their values, whi
h depend on the 
hoose of the orthogonalbasis, in�uen
e the Debye series 
onvergen
e and the interferen
es within the plate. In parti
ular, an interestingphysi
al phenomenon is des
ribed for one spe
i�
 pair �angle of in
iden
e/frequen
y�. For this 
ondition, thequasi-energy brought by the in
ident harmoni
 plane wave 
rosses the plate without any 
onversion to re�e
tedwaves either at the �rst interfa
e or at the se
ond interfa
e. In this zone, there is a perfe
t impedan
e mat
hingbetween the �uid and the plate.2 Prin
iples of Debye series modelingAn anisotropi
 elasti
 plate, parallel to the xy-plane and perpendi
ular to the z-dire
tion, is immersed in a �uidand insoni�ed by a time-harmoni
 plane wave of in
iden
e angle θ and angular frequen
y ω, the propagationdire
tion being in the xz-plane (
f. Fig 1). The re
eived energy is �rstly 
onverted into elastodynami
 wavesin the plate and then released to the �uid above (re�e
ted wave) and below (transmitted wave). The so-
alled�Debye series modeling� 
onsists in writing the elastodynami
 �eld in the plate as the sum of downgoing andupgoing waves su

essively re�e
ted at ea
h interfa
e. The energy is progressively released to the �uid at ea
hre�e
tion/refra
tion.
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Figure 1: An elasti
 plate immersed in a �uid, insoni�ed by a plane wave of in
iden
e angle θ.2.1 Theoreti
al ba
kground2.1.1 In
ident and re�e
ted �eldThe in
ident (downgoing) time-harmoni
 plane wave in the �uid is 
hara
terized by the a
ousti
 pressure
pinc( Z ) exp [iω (τ − sx x)], where:

pinc( Z ) = ainc

√
2 sz
ρ

exp[iω sz (z − h)] = ainc

√
2 sz
ρ

exp[i sz (Z − H)] , z > h , (1)
τ denoting time, sx = sin(θ) / c the slowness in the x-dire
tion, sz = cos(θ) / c the slowness in the z-dire
tion,
c the sound velo
ity in the �uid, ρ the density, 2h the thi
kness of the plate, Z = ωz and H = ωh frequen
y-position produ
ts. The 
oe�
ient √2 sz / ρ is due to normalization with respe
t to the mean power �ux in the
z-dire
tion, that is, the mean power �ux is negative and equal to − | ainc |2.Due to the Snell-Des
artes law related to the re�e
tion/refra
tion of the harmoni
 plane wave of this study, thefa
tor exp [iω (τ − sx x)], 
ontaining the dependen
e with respe
t to time τ and abs
issa x, ne
essarily appearsin all expressions of a
ousti
 �elds. Hen
e, the latter fa
tor will be then omitted below.Thus, the re�e
ted (upgoing) �eld is given by:

pref( Z ) = aref

√
2 sz
ρ

exp[−i sz (Z − H)] , z > h , (2)and its mean power �ux in the z-dire
tion is positive and equal to | aref |2.2.1.2 Transmitted �eldThe transmitted (downgoing) �eld in the �uid below the plate is 
hara
terized by:
ptr( Z ) = atr

√
2 sz
ρ

exp[i sz (Z + H)] , z < −h . (3)and its mean power �ux in the z-dire
tion is negative and equal to − | atr |2.Éri
 Du
asse & Mar
 Des
hamps Convergen
e of Debye series



4 / 272.1.3 Plate vibrationBy using Stroh sexti
 formalism (e.g., [10℄, [11℄, [12℄, [13℄, [14℄ ), the vibrational state of the elasti
 anisotropi
plate is des
ribed by the following six-dimensional ve
tor:
U( Z ) =

[

v( Z )

σz( Z )

]

, −h < z < h , (4)where v is the velo
ity ve
tor and σz the stress in the z-dire
tion.Note that this six-dimensional ve
tor is not the most 
ommonly used, the latter 
ontaining the displa
ementve
tor (−iω−1 v) and the ve
tor (iω−1 s−1
x σz) (e.g., [11℄, [15℄, [16℄).The state ve
tor U 
an be expressed as follows:
U( Z ) = N ( Z ) a = Ξ E( Z ) a , (5)where the matrix Ξ =

(

ξ1 · · · ξ6

) 
ontains the six-dimensional polarization ve
tors su
h that
ξα =

(

νT

α τT

α

)
T. The polarization ve
tors να and τα are related to the velo
ity �eld and the stress �eldin the z-dire
tion, respe
tively. The diagonal matrix E( Z ) = diag [exp(−i ςα Z )]16α66 represents the propaga-tion, ςα denoting the slowness in the z-dire
tion. The six pairs ( ςα , ξα )16α66 are the solutions of the followingeigenvalue equation:

S ξα = ςα ξα , (6)where S is the real-valued Stroh matrix de�ned by:
S =

{

−sx (n ⋄ n )−1 (n ⋄m ) − (n ⋄ n )−1

s2x
[
(m ⋄m )− (m ⋄ n ) (n ⋄ n )−1 (n ⋄m )

]
− ρ0 I3 −sx (m ⋄ n ) (n ⋄ n )−1

}

, (7)whi
h depends on the elasti
ity sti�ness tensor, the density ρ0, the slowness sx and the unit ve
tors m and n ofthe x and z axes, respe
tively.Indeed, the diamond ⋄ bilinear produ
t of two ve
tors a = (a1, a2, a3)
T and b = (b1, b2, b3)

T, asso
iated withthe elasti
 sti�ness tensor (cijkm), is the matrix (a ⋄ b ) su
h that ( a ⋄ b )im = cijkm aj bk , with the Einsteinsummation notation. This bilinear produ
t has been already introdu
ed by Lothe and Barnett in 1976 [11℄, butwith the notation (ab). We prefer the notation ( a ⋄ b ) to avoid any ambiguity with the produ
t of two numbers
a and b. Furthermore, this bilinear produ
t has been applied in the literature to unit ve
tors only whereas it
an be used with other ve
tors. Su
h notation is of interest to obtain 
ompa
t expressions of di�erent physi
alquantities, as will be emphasized in the next se
tion [see for example Eq. (35)℄.The symmetry properties of the elasti
 sti�ness tensor implies that ([11℄ and [17℄):

(b ⋄ a ) = (a ⋄ b )T and ( a ⋄ b )d = ( a ⋄ d )b . (8)In addition, for any non-zero real ve
tor a, the square matrix ( a ⋄ a ) is symmetri
 positive-de�nite [11℄.The eigenvalue problem (6) admits real solutions, i.e. ςα and ξα are real, and pairs of 
omplex 
onjugatesolutions, i.e. ςα+3 = ς∗α and ξα+3 = ξ
∗
α, where the supers
ript ∗ denotes the 
omplex 
onjugation. They
orrespond to homogeneous (or bulk) waves and 
onjugate inhomogeneous (or surfa
e) waves, respe
tively.
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5 / 272.1.4 The s
attering problem to solveThe 
ontinuity of normal 
omponent of the velo
ity ve
tor and normal stress ve
tor at ea
h interfa
e yields thefollowing 4-by-8 systems of equations:KN (H ) a
︸ ︷︷ ︸

U(H )

= ainc
︸︷︷︸

pinc(H )

hdown + aref
︸︷︷︸

pref(H )

hup , (9)at the top edge of the plate, and: KN (−H ) a
︸ ︷︷ ︸

U(−H )

= atr
︸︷︷︸

ptr(−H )

hdown , (10)at its bottom edge. The matrix K and the ve
tors hup, hdown are de�ned by:
K =














0 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1













, hup =







√

2 sz / ρ
0
0

−
√

2 ρ / sz







, hdown =







−
√

2 sz / ρ
0
0

−
√

2 ρ / sz






, (11)

Hen
e, in ea
h expression, the �rst row 
orresponds to the normal 
omponent of the velo
ity ve
tor and the lastthree rows give the normal 
omponents of the stress. Equations (9) and (10) 
onstitute a eight-by-eight linearsystem with unknowns being the two 
oe�
ients aref (re�e
ted wave above the plate) and atr (transmitted wavebelow the plate), and the six 
omponents of the ve
tor a asso
iated with the six elastodynami
 waves in theplate.Linearity implies that:
aref = r ainc , atr = t ainc and a = ainc g . (12)Consequently, the problem 
onsists in �nding the re�e
tion 
oe�
ient r, the transmission 
oe�
ient t andthe ve
tor g whi
h are transfer fun
tions 
hara
terizing the response of the �uid/plate system. Omitting thematerial dependen
e, these transfer fun
tions only depend on the in
iden
e angle θ and the frequen
y-half-thi
kness produ
t H. Though they 
an be dire
tly determined by solving Eqs. (9) and (10), it 
an be interestingto 
onsider the total �eld in the plate as the result of su

essive re�e
tions, notably in the time domain whenwe fo
us only on the �rst e
hoes. Furthermore, the latter transfer fun
tions may have poles 
orresponding toRayleigh-Lamb waves (e.g., [18℄), whi
h 
an lead to numeri
al di�
ulties. The Debye series formulation maybe an alternative to over
ome these problems. Hen
e, the present paper fo
uses on this formulation involvingsu

essive re�e
tions/refra
tions at the interfa
es, as detailed in the next se
tion and drawn in Fig. 2.
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6 / 272.2 Su

essive re�e
tions/refra
tionsThe purpose of this se
tion is to introdu
e notations useful in the next se
tions by re
alling the 
lassi
alde
omposition of a �eld as the result of su

essive re�e
tions/refra
tions.2.2.1 Upgoing and downgoing waves in the plateAs detailed below in Se
tion 3, the state ve
tor U( Z ) 
an be 
onsidered as the superposition of an upgoingwave Uup( Z ) and a downgoing wave Udown( Z ):
U( Z ) = N ( Z )

(
aup

adown

)

= Nup( Z ) aup
︸ ︷︷ ︸

Uup( Z )

+Ndown( Z ) adown
︸ ︷︷ ︸

Udown( Z )

, (13)where aup,down are three-dimensional ve
tors, and Nup,down( Z ) six-by-three matri
es.
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Figure 2: Su

essive re�e
tions/refra
tions in an immersed plate.2.2.2 The �rst re�e
tion/refra
tion at the upper interfa
eThe downgoing in
ident wave 
hara
terized by the 
oe�
ient ainc gives an upgoing re�e
ted a
ousti
 wave inthe �uid (ainc r0) exp[−i sz ( Z − H )] and a downgoing transmitted elastodynami
 wave Ndown( Z ) (ainc g0). There�e
tion 
oe�
ient r0 and the ve
tor g0 satisfy the following four-by-four linear system, derived from theboundary 
ondition (9) at the top edge of the plate:KNdown(H ) g0 − r0 hup = hdown . (14)2.2.3 Re�e
tion matri
es and transmission ve
torsThen the �rst downgoing wave in the plate arrives to the lower interfa
e and gives an upgoing re�e
ted elastody-nami
 wave and a downgoing transmitted a
ousti
 wave (see Fig. 2) 
hara
terized by the following 
oe�
ients:
g1 = Rbot g0 and t1 = tT

bot
g0 , (15)Éri
 Du
asse & Mar
 Des
hamps Convergen
e of Debye series



7 / 27the supers
ript t denoting transposition, the three-by-three re�e
tion matrix Rbot and the three-dimensionaltransmission ve
tor tbot satisfying the following equation derived from the boundary 
ondition (10) at the bottomedge of the plate: KNup(−H ) Rbot − hdown t
T

bot
= −KNdown(−H ) . (16)Similarly, the �rst re�e
ted wave in the plate rea
hes the upper interfa
e and generates a se
ond re�e
tedelastodynami
 wave and an upgoing transmitted a
ousti
 wave 
hara
terized by the following 
oe�
ients:

g2 = Rtop g1 and r2 = tT

top
g1 , (17)the re�e
tion matrix Rtop and the transmission ve
tor ttop satisfying the following equation derived from theboundary 
ondition (9): KNdown(H ) Rtop − hup t

T

top
= −KNup(H ) , (18)and so on, until in�nity.Hen
e, ea
h 2nth re�e
ted elastodynami
 wave is downgoing, U2n( Z ) = ainc Ndown( Z ) g2n , and brings about adowngoing a
ousti
 wave below the plate:

p2n+1( Z ) = ainc

√
2 sz
ρ

exp[i sz (Z + H)] t2n+1 , where t2n+1 = tT

bot
g2n . (19)Ea
h (2n−1)th re�e
ted elastodynami
 wave is upgoing, U2n−1( Z ) = ainc Nup( Z ) g2n−1 , and produ
es anupgoing a
ousti
 wave above the plate:

p2n( Z ) = ainc

√
2 sz
ρ

exp[−i sz (Z − H)] r2n , where r2n = tT

top
g2n−1 . (20)Su

essive values of the ve
tor gN are derived from the re
urren
e properties:

g2n = Rtop g2n−1 and g2n+1 = Rbot g2n , (21)as follows:
g2n = (Rtop Rbot )

n
g0 and g2n+1 = Rbot (Rtop Rbot )

n
g0 . (22)2.2.4 Global transfer fun
tionsThe state ve
tor U( Z ) 
hara
terizing the vibration of the plate is the sum of all the upgoing and downgoingwaves:

U( Z ) = ainc [Nup( Z ) gup +Ndown( Z ) gdown] , (23)where the global transfer ve
tors gdown and gup are obtained by using the so-
alled Debye series:
gdown =

∞∑

n=0

g2n =

[
+∞∑

n=0

(Rtop Rbot )
n

]

g0 , (24)and
gup =

∞∑

n=0

g2n+1 = Rbot

[
+∞∑

n=0

(Rtop Rbot )
n

]

g0 = Rbot gdown . (25)The re�e
tion 
oe�
ient r and the transmission 
oe�
ient t de�ned by Eq. (12) are derived from Eqs. (14�25):
r = r0 +

+∞∑

n=0

r2n+2 = r0 + tT

top

{

Rbot

[
+∞∑

n=0

(Rtop Rbot )
n

]

g0

}

= r0 + tT

top
gup , (26)Éri
 Du
asse & Mar
 Des
hamps Convergen
e of Debye series



8 / 27and
t =

+∞∑

n=0

t2n+1 = tT

bot

{[
+∞∑

n=0

(Rtop Rbot )
n

]

g0

}

= tT

bot
gdown . (27)The boundary 
onditions (9) and (10) are rewritten with respe
t to the global transfer fun
tions by usingEqs. (12) and (23) at the upper interfa
e:K [Nup(H ) gup +Ndown(H ) gdown] = hdown + r hup , (28)and at the lower interfa
e: K [Nup(−H ) gup +Ndown(−H ) gdown] = thdown . (29)Be
ause 
ombining Eqs. (24) and (25) leads to gdown = g0+Rtop gup , it is obvious from Eqs. (14), (16), (18)and (24�27) that the boundary 
onditions (28) and (29) are satis�ed.2.2.5 Debye seriesThe sum of the series 
ontained in Eqs. (24)�(27) 
an be analyti
ally obtained under the following 
ondition:

λmax 6 1 , (30)where λmax denotes the maximum of the absolute values of the eigenvalues of the matrix (Rtop Rbot ).Thus, the sum of this geometri
al series is immediately expressed by:
+∞∑

n=0

(Rtop Rbot )
n = ( I3 −Rtop Rbot )

−1 , (31)Ik denoting the k-by-k identity matrix. The validity of this algebrai
 transformation seems to be natural froma physi
ist's point of view, sin
e this equation results from summing multiple re�e
tions/refra
tions in theframework of linear a
ousti
s.As a natural 
onsequen
e, one 
an believe that the Debye series ne
essarily 
onverges. Paradoxi
ally, this iswrong for some angles of in
iden
e and frequen
ies. Indeed, in the 
ase of ultrasoni
 propagation in a submergedisotropi
 plate, it has been observed [8℄[7℄ that the Debye series expansion 
an diverge if the in
iden
e angle isgreater than the �rst 
riti
al angle. In a

ordan
e with literature, for an aluminum plate immersed in water, a
onvergen
e study will be summarized in Se
tion 4.The explanation of this unexpe
ted divergen
e 
an be found by the analysis of energy �uxes. This analysisis made below for an anisotropi
 elasti
 material and leads to an alternative Debye series whi
h ne
essarily
onverges.Before 
losing this se
tion, it should be noted that, beyond the physi
al aspe
t, all the equations previouslyobtained hold true whatever the de�nition of the upgoing and downgoing waves is, until the re�e
tion andrefra
tion terms g0, r0, Rbot, tbot, Rtop and ttop ensure the boundary 
onditions at ea
h interfa
e. This is whythe a
ousti
 �elds Uup( Z ) and Udown( Z ) have not been detailed above in Eq. (13). They will be expressed bytwo di�erent ways in the next se
tion.
Éri
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9 / 273 Energy 
onsiderations on upgoing and downgoing waves in the plate3.1 Non orthogonality of the exponential solution basis in the sense of energy3.1.1 Normalization of the usual exponential solution basis, upgoing and downgoing wavesLet us now detail the 
lassi
al analysis.The following alternative formulation of Eq. (5) re
alls that the state-ve
tor U( Z ) is the sum of six exponential
omponents:
U( Z ) =

6∑

α=1

aα exp(−i ςα Z) ξα . (32)The six pairs ( slowness ςα , polarization ve
tor ξα ) are de�ned above [Eq. (6)℄. (2 r) of them are real and
orrespond to homogeneous (or bulk) waves. (3− r) pairs of them are 
omplex 
onjugate and de�ne 
onjugateinhomogeneous (or surfa
e) waves.Note that the number r of upgoing (or downgoing) homogeneous waves only depends on the in
iden
e angle θ.Before the �rst 
riti
al angle of in
iden
e, the six 
omponents 
orresponds to bulk waves (r = 3). Beyond this
riti
al angle, there is at least one pair of 
onjugate inhomogeneous waves (r 6 2, e.g., [17℄).Furthermore, the polarizations 
an be arbitrarily normalized by using the fa
t that the matrix (ΞT T Ξ ) isdiagonal (orthogonality relation slightly di�erent from [11℄), that is:
∀α, β ; α 6= β =⇒ ξ

T

αTξβ = 0 , where T =
−1

4

( O I3I3 O )

, (33)O denoting the zero matrix of any dimension.The matrix T is taken su
h that ξT

αTξα is the third 
omponent of the Poynting ve
tor of the αth exponentialsolution if both the z-
omponent of the slowness and the polarization ve
tors are real-valued, i.e. ξT

αTξα is theaverage power �ux in the z-dire
tion for any homogeneous solution. That is the reason why both the matrix Tand the normalization of the polarization ve
tors [Eq. (38) below℄ are di�erent from the literature.Indeed, the slowness ve
tor sα of the αth exponential solution being [ sx 0 ςα

]T, the velo
ity ve
tor being
vα(z) = exp(−iω ςα z) να , where ςα = ς ′α − i ς ′′α, and the Hooke's law giving the stress Σα in any dire
tionde�ned by the unit ve
tor d as follows:

Σα(z) d = − (d ⋄ sα ) vα(z) = − exp(−iω ςα z) (d ⋄ sα ) να , (34)by using the properties (8) of the diamond produ
t, we obtain the Poynting ve
tor pα in the general 
ase:
pα(z) =

−1

4
[Σ∗

α(z)vα(z) +Σα(z)v
∗
α(z)] =

1

4
exp(−2ω ς ′′α z) [ (ν∗

α ⋄ να ) sα + (να ⋄ ν∗
α ) s∗α ] . (35)The average power �ux φα in the z-dire
tion is immediately dedu
ed by φα(z) = nT pα(z) . Together withEqs. (34) and (35), it implies that the polarization ve
tor of the stress in the z-dire
tion satis�es τα =

− (n ⋄ sα ) να , and that:
ξ

T

αTξα =
−1

2
ν

T

α τα =
1

2
nT (να ⋄ να ) sα , (36)is the average power �ux in the z-dire
tion for homogeneous solutions only (ς ′′α = 0 and real-valued polarization).This �ux φα is independent from the position z (energy 
onservation). On the 
ontrary, ξ

T

αTξα does notÉri
 Du
asse & Mar
 Des
hamps Convergen
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10 / 27
orrespond to a power �ux for inhomogeneous solutions but it is nevertheless used for normalization (38), asdone in the literature.Note that the orthogonality relation (33) 
an be also rewritten as follows:
∀α, β ; α 6= β =⇒ nT

[(
νβ ⋄ να

)
sα +

(
να ⋄ νβ

)
sβ
]
= 0 . (37)Assuming for simpli
ity that the six eigenvalues are di�erent, the following 
onvention is used to in
lude thesign of the energy �uxes in the z-dire
tion, instead of the normalization en
ountered in the literature (see e.g.[19, Eq. (42)℄, [12℄, [13℄, [17, Eq. (56)℄):

ςα ∈ R , ξα ∈ R
6 , ξ

T

αTξα = φα = 1 , 1 6 α 6 r ,

Im (ςα) < 0 , Im (ξα) 6= 06 , ξ
T

αTξα = 1 , r < α 6 3 ,

ςα ∈ R , ξα ∈ R
6 , ξ

T

αTξα = φα = −1 , 4 6 α 6 3 + r ,

ςα = ς∗α−3 , ξα = ξ
∗
α−3 , ξ

T

αTξα = 1 , 3 + r < α 6 6 ,

(38)su
h that the �rst three waves are upgoing (positive power �ux φα for bulk waves/de
reasing amplitude
exp(−ω ς ′′α z) with in
reasing z for surfa
e waves) and the last three waves are downgoing (negative power�ux/de
reasing amplitude with de
reasing z).Consequently, the matrix N ( Z ) =

[

Nup( Z ) Ndown( Z )
] introdu
ed in Eqs. (5) and (13) is now fully de�ned.3.1.2 Study of orthogonality in the sense of energyThe z-
omponent of the Poynting ve
tor asso
iated with the state-ve
tor U de�nes the mean power �ux φthrough the plane z = z0 , whi
h is independent from the position z0 as expe
ted due to energy 
onservation.Combining the de�nition in Eq. (32) and the normalization 
onvention given by Eq. (38) yields:

φ = U(Z0)
+ T U(Z0) = a+ J a =

r∑
α=1

| aα |2 −
3+r∑
α=4

| aα |2 +
3∑

α=r+1

aα a
∗
α+3 + a∗α aα+3 , (39.a)where the supers
ript + denotes the transposition 
ombined with the 
omplex 
onjugation. The non-diagonalHermitian matrix J is de�ned by:J = N (Z0)

+ TN (Z0) = Ξ+TΞ =









Ir O O OO O O I3−rO O −Ir OO I3−r O O








. (39.b)
Ea
h upgoing homogeneous 
omponent aα (1 6 α 6 r) 
ontributes to the total power �ux in the z-dire
tion onlyby its own power �ux | aα |2, independently from the other 
omponents. The same holds for ea
h downgoinghomogeneous 
omponent whose 
ontribution is − | aα |2 (4 6 α 6 3 + r). A homogeneous 
omponent isorthogonal to any other one in the sense of energy.On the 
ontrary, it is obvious that the 
ontribution of an inhomogeneous 
omponent depends also on its 
onjugate
omponent: ea
h 
omponent and its 
onjugate are orthogonal to themselves and to any other 
omponent butnot to ea
h other. Indeed if ea
h inhomogeneous 
omponent is 
onsidered separately (aα 6= 0 and aα+3 = 0,or aα = 0 and aα+3 6= 0), its 
ontribution to the total �ux is zero, without any energy transfer along the
z-dire
tion. On the 
ontrary, the 
onjun
tion of the two 
onjugate 
omponents, the 
oe�
ients aα and aα+3being both non-zero, 
an transfer energy along the z-dire
tion.Éri
 Du
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11 / 27Consequently, the power �ux of the sum of the in
ident and re�e
ted waves is not the sum of the �uxes ofthem. Be
ause the energy 
onservation laws do not provide relations between the square of modulus of the waveamplitudes, it 
annot be proved that the modulus of re�e
tion and refra
tion 
oe�
ients are systemati
ally lessthan unity. As a 
onsequen
e, nothing ensures the 
onvergen
e of the Debye series presented above [Eq. (31)℄,as already pointed out in [7℄.3.2 An orthogonal basis in the sense of energyViewed in this light, it is the purpose of this se
tion to show how, by redu
tion of the Hermitian form given byEq. (39), a di�erent de�nition of upgoing and downgoing waves in the plate 
an provide an alternative expansionof the Debye series. This new expansion is based on 
onsiderations about the dire
tion of the energy �ux. Notethat similar 
onsiderations are used in a di�erent 
ontext in [20℄ and [21℄ for 
ylindri
ally anisotropi
 radiallyinhomogeneous elasti
 solids. Indeed, the diagonalization of the Hermitian matrix J yields a redu
ed expressionof the power �ux φ:
φ = ã+ J̃ ã =

3∑

α=1

| ãα |2 −
6∑

α=4

| ãα |2 , where J̃ =

( I3 OO −I3 ) , (40.a)and the new 
oordinate ve
tor ã is su
h that:
ã =










Ir O O OO 1√
2
Q∗ O 1√

2
Q−1O O Ir OO −1√

2
Q∗ O 1√

2
Q−1










︸ ︷︷ ︸

a ⇐⇒ a =










Ir O O OO 1√
2
Q∗−1 O −1√

2
Q∗−1O O Ir OO 1√

2
Q O 1√

2
Q










︸ ︷︷ ︸

ã ,

Ω−1 Ω

(40.b)
the diagonal matrix Q=diag(qα)r+16α63 
ontaining arbitrarily 
hosen non-zero values qα.If all waves within the plate are homogeneous, i.e. r = 3, J = J̃, and, as expe
ted, the two approa
hes areidenti
al. Otherwise, depending on the number of inhomogeneous waves, i.e. r = 2, 1 or 0, one, two or threepairs of orthogonal waves a
tually propagating in opposite dire
tions are obtained by re
ombination of ea
h pair
(α, α + 3) of the initial 
onjugate inhomogeneous waves [Eq. (38)℄. These nonstandard upgoing and downgoingwaves are respe
tively de�ned by:

Ñα( Z ) =
1√
2

{exp[−i ςα (Z − Zα)] ξα + exp[−i ς∗α (Z − Zα)] ξ
∗
α} , (41)

Ñα+3( Z ) =
1√
2

{− exp[−i ςα (Z − Zα)] ξα + exp[−i ς∗α (Z − Zα)] ξ
∗
α} , (42)where the origin zα of the z-axis 
an be 
hosen arbitrarily, and qα=exp(i ς∗α Zα).These latter progressive waves form with the upgoing and downgoing homogeneous waves a new orthogonalbasis of the solution spa
e, in the sense of energy. The state ve
tor U( Z ) in the plate be
omes a fun
tion ofthe new 
oordinate ve
tor ã (from Eqs. (5) and (39)):

U( Z ) = N ( Z ) Ω ã = Ñ ( Z ) ã . (43)Similarly to Eq. (13), the state ve
tor is the sum of two 
ontributions Ũup( Z ) and Ũdown( Z ), whi
h are, respe
-tively, asso
iated with the upgoing and downgoing waves. These 
ontributions are given by:
Ũup( Z ) = Ñ ( Z )

(

ãup

O3

)

= Ñup( Z ) ãup and Ũdown( Z ) = Ñ ( Z )

(

O3

ãdown

)

= Ñdown( Z ) ãdown , (44)Éri
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12 / 27su
h that the total power �ux φ in the z-dire
tion [Eq. (40)℄ is the di�eren
e of the upgoing �ux | ãup |2 minusthe downgoing �ux | ãdown |2.Of 
ourse, by using this new de�nition of upgoing and downgoing waves, when they are inhomogeneous, all theasso
iated re�e
tion and refra
tion terms are di�erent from those obtained by the usual way. They are 
al
ulatedby reporting the expression (44) in the boundary equations (14), (16) and (18) and they are identi�ed by a tildeto di�erentiate them: g̃0, r̃0, R̃bot, t̃bot, R̃top and t̃top.The non-uniqueness of this basis has to be pointed out. Indeed, for ea
h set of zα values, a di�erent basisis de�ned with upgoing and downgoing �uxes whi
h 
an be modi�ed although the total power �ux in the z-dire
tion remains equal to | ãup |2 − | ãdown |2. To keep the symmetry of the problem, it seems natural that allthe zα parameters are taken equal to zero. The 
hoi
e of these parameters will be dis
ussed for the isotropi

ase in the last se
tion.3.3 Spatial stru
ture of the orthogonal wavesBy separating real and imaginary parts of the slowness in the z-dire
tion and of the polarization ve
tor su
hthat:
ςα = ς ′α − i ς ′′α and ξα = ξ

′
α − i ξ′′

α (45)and by in
luding the impli
it dependen
y on position x and time τ , Equations (41) and (42) leads to thefollowing expressions of the physi
al �elds, with δz = z − zα:
Vα(x, z, τ) = Re

{√
2 exp[iω (τ − sx x− ς ′α δz)]

[
cosh (ω ς ′′α δz) ξ

′
α + i sinh (ω ς ′′α δz) ξ′′

α

]} (46)for the upgoing wave, and:
Vα+3(x, z, τ) = Re

{√
2 exp[iω (τ − sx x− ς ′α δz)]

[
sinh (ω ς ′′α δz) ξ

′
α + i cosh (ω ς ′′α δz) ξ′′

α

]}

, (47)for the downgoing wave.The latter equations show an ellipti
 polarization [22℄ ex
ept for δz = 0 (linear polarization). The amplitudeexponentially in
reases with the absolute value of δz sin
e the mean power �ux φ along the z-dire
tion remainsequal to unity for the upgoing wave and to −1 for the downgoing wave.The wavefronts for the polarization 
omponent in the dire
tion d are de�ned by Vα,α+3(x, z, τ) · d = 0 forany given time τ . Note that the ve
tor d is six-dimensional and either its last three 
omponents or �rst three
omponents are zero, su
h that to de�ne a polarization dire
tion of either velo
ity or stress, respe
tively. Thus,after some algebra we obtain the following equations of the wavefronts:
sx (x− x0) = −ς ′α δz +

1

ω
arctan

[
ξ
′′
α · d

ξ
′
α · d tanh (ω ς ′′α δz)

] (48)for the upgoing wave, the position x0 being any arbitrary value, and:
sx (x− x0) = −ς ′α δz −

1

ω
arctan

[
ξ
′
α · d

ξ
′′
α · d tanh (ω ς ′′α δz)

] (49)for the downgoing wave.In the 
ase of an isotropi
 medium (see Appendix A), the real part ς ′α of the slowness in the z-dire
tion iszero. The velo
ity �eld in the x dire
tion for the upgoing P wave is obtained from Eqs. (46) and (A.10.a) anddrawn in Fig 3. Eq. (48) simply be
omes: ω sx (x− x0) = − arctan [tanh (δZ)], where δZ=ω√s2x − c−2
L δz. TheÉri
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oordinates of nonstandard progressive waves in isotropi
 elasti
 media. Thedashed lines 
orrespond to wavefronts. (a) Tangent of the angle ψ between the normal of the wavefronts and the

x-axis: tanψ = dmax/ cosh(2 δZ).tangent of the angle between the x-dire
tion and the Poynting ve
tor of the P wave [de�ned by Eq. (A.11)℄ isproportional to cosh(2 δZ)−1, as for the ve
tors normal to the wavefronts.If we have a glan
e on the Poynting ve
tors p̃α,α+3 of the upgoing/downgoing orthogonal waves, the velo
ityve
tor being:
ṽα,α+3(z) =

1√
2

exp(−iω ς ′α δz) [ ± exp(−ω ς ′′α δz) να + exp(ω ς ′′α δz) ν
∗
α ] (50)and the stress tensor in any dire
tion l being de�ned by:

Σ̃α,α+3(z) l =
−1√
2

exp(−iω ς ′α δz) [ ± exp(−ω ς ′′α δz) ( l ⋄ sα ) να + exp(ω ς ′′α δz) ( l ⋄ s∗α ) ν
∗
α ] , (51)these Poynting ve
tors are expressed as follows:

p̃α,α+3(z) = j̃α S
(δz)± j̃α I

, (52.a)where
j̃α S

(δz) =
1

4
cosh(2ω ς ′′α δz) [ (ν∗

α ⋄ να ) sα + (να ⋄ ν∗
α ) s∗α ] , (52.b)is proportional to the sum of the Poynting ve
tors of the 
onjugate inhomogeneous waves [Eq. (35)℄, and

j̃α I
=

1

4
[ (να ⋄ να ) sα + (ν∗

α ⋄ ν∗
α ) s∗α ] , (52.
)represents the intera
tion between the 
onjugate inhomogeneous waves.From Eqs. (35), (38), (52) and the orthogonality relation (37), it is obvious that nT j̃α S

(δz)=0 and nT j̃α I
=1 , i.e.the ve
tor j̃α S

is in the xy plane whereas the third 
omponent of the ve
tor j̃α I
is normalized by 
onstru
tion.For an isotropi
 material, the uniform �ux j̃α I

is verti
al (in the z-dire
tion) and the horizontal �ux j̃α S
(δz) isin the x-dire
tion and proportional to cosh(2ω ς ′′α δz) (see Appendix A).
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14 / 273.4 Relations between the energy �uxes in the z -dire
tionThrough the energy 
onservation equations, some re�e
tion and refra
tion 
oe�
ients are related between them.These equations depend on the interfa
e investigated and on the de�nition of upgoing and downgoing waves.For the re�e
tion/refra
tion of the in
ident wave at the upper interfa
e, in the standard exponential basis, onlythe r homogeneous waves transmit energy in the z�dire
tion as shown by the following 
onservation equation:
| r0 |2 +

r∑
α=1

∣
∣ g0,α

∣
∣
2
= 1 . (53)As demonstrated above [Eq. (39)℄, the amplitudes ( g0,α )r<α63
of the inhomogeneous waves are not in
luded inthe latter equation.On the 
ontrary, in the orthogonal basis, it is obvious that ea
h downgoing wave transmit energy, whi
h leadsto:

| r̃0 |2 + | g̃0 |2 = 1 . (54)Same types of relations are obtained when studying the re�e
tions at ea
h interfa
e. In the standard exponentialbasis, the energy 
onservation 
an involve intera
tion �uxes if inhomogeneous waves exist, i.e. above the �rst
riti
al angle. The energy relations are written as follows:r∑
α=1

∣
∣ g2n,α

∣
∣2 =

r∑
α=1

∣
∣ g2n+1,α

∣
∣2 +

3∑

α=r+1

(
g2n,α g

∗
2n+1,α + g∗

2n,α g2n+1,α

)
+ | t2n+1 |2 , (55)at the lower interfa
e, and:r∑

α=1

∣
∣ g2n+1,α

∣
∣
2
=

r∑
α=1

∣
∣ g2n+2,α

∣
∣
2 −

3∑

α=r+1

(
g2n+1,α g

∗
2n+2,α + g∗

2n+1,α g2n+2,α

)
+ | r2n+2 |2 , (56)at the upper interfa
e.In the orthogonal basis, the energy 
onservation is simply written as follows:

| g̃2n |2 =
∣
∣ g̃2n+1

∣
∣2 +

∣
∣ t̃2n+1

∣
∣2 ,

∣
∣ g̃2n+1

∣
∣2 =

∣
∣ g̃2n+2

∣
∣2 +

∣
∣ r̃2n+2

∣
∣2 , (57)at lower and upper interfa
es, respe
tively. Hen
e, by 
ombining Eqs. (19), (20), (21) and (57), the followingequation of 
onservation is found:

| r̃α |2 +
∣
∣ t̃α
∣
∣
2
= 1 , (58)whi
h relates ea
h 
olumn-ve
tor r̃α of the matrix R̃top,bot and ea
h 
omponent t̃α of the ve
tor t̃top,bot.This is the key point to guarantee the Debye series 
onvergen
e. As a matter of fa
t, from the latter equation,it is made 
lear that the absolute values of the eigenvalues of the produ
t R̃top R̃bot are ne
essarily less or equalthan one, be
ause the matri
es R̃top and R̃bot are one-lips
hitzian matri
es, i.e. ∣∣∣ R̃top,bot u

∣
∣
∣ 6 | u | for anyve
tor u.
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15 / 274 Numeri
al results for an aluminum plate immersed in waterTo �x ideas, numeri
al results are reported and dis
ussed in this se
tion. Even though the theoreti
al resultsobtained in the last se
tions are valuable for any anisotropies and any planes of in
iden
e, this analysis is re-stri
ted for simpli
ity to the 
on
rete example of an aluminum plate immersed in water, for whi
h the parametervalues and some physi
al quantities are given in Table 1.(a)Aluminum WaterDensity Longitudinal velo
ity Transverse velo
ity Density Sound velo
ity
ρ0 = 2700 kg ·m−3 cL = 6420m·s−1 cT = 3040m·s−1 ρ = 1000 kg ·m−3 c = 1550m·s−1(b)Longitudinal Transverse RayleighAdimensional slowness cT

cL
≈ 0.474

cT
cT

= 1
cT
cR

≈ 1.069Criti
al angle: θ
X
=arcsin( c / c

X
) θL ≈ 13.97̊ θT ≈ 30.66̊ θR ≈ 33.01̊Table 1: Numeri
al values for aluminum and water: (a) velo
ities and densities; (b) dimensionless slownesses and
riti
al angles.4.1 Convergen
e study of the Debye SeriesFirst of all, for inspe
tion purpose, the 
onvergen
e of the multiple re�e
tion/refra
tion is analyzed for boththe 
lassi
al and the new approa
hes. To this end, for the 
lassi
al solutions, in Fig. 4, the maximum λmaxof the absolute values of eigenvalues, de�ned in Eq. (30), is plotted in a 3D graph versus the dimensionlesshalf-thi
kness h (= ω h / cT ) and the angle of in
iden
e θ. In the darker areas the series diverges, i.e. λmax > 1,while in the lighter zones, it 
onverges, i.e. λmax < 1. Indeed, the two 
riti
al angles θL and θT play a 
ru
ialrole in the separation of 
onvergen
e and divergen
e zones. The dispersion 
urves of Lamb waves, obtained for
omplex frequen
ies [23℄, are plotted also on Fig. 4, sin
e these 
urves parti
ipate as well to the 
onvergen
e arealimits. It is remarkable to observe that the dispersion 
urves of the A0 and S0 modes separate very a

uratelytwo su
h zones. In addition, it is of interest to note that the interse
tion points between the line θ = θL andthese dispersion 
urves de�ne alternative zones of 
onvergen
e or not.Keeping in mind these observations, let us 
ompare the global re�e
tion and the sum of the series trun
atedat n = nmax, for the given dimensionless half-thi
kness h = 2. Figures 5-a and 5-b present these 
oe�
ientsas a fun
tion of the angle of in
iden
e θ, for the 
lassi
al approa
h and the solution proposed in this paper,respe
tively, and for various nmax = 0, 2 and 10. Obviously, for angles of in
iden
e less than the �rst 
riti
alangle θL, both results are identi
al, sin
e not any inhomogeneous wave is involved in the re�e
tion/refra
tionpro
ess. Di�eren
es appear just after this angle (or after θT ). The divergen
e of the series is visible in Figure 5-a for the 
lassi
al solution, between this angle (or θT ) and θ1 (or θ2), in agreement with the 
onvergen
estudy presented in Fig. 4. In 
ontrast, for the new series, the 
onvergen
e is ensured for all angles of in
iden
e.However, by analyzing the behavior when nmax in
reases on Fig. 5-b, it should be observed that this 
onvergen
eis relatively slow.As has been pointed out in the previous se
tion, the 
hoi
e of the dimensionless origins z

SV
=ωzSV / cT andz

P
=ωzP / cT is arbitrary [
f. Eqs. (41�42) and Appendix A.2℄. These origins 
an be di�erent for ea
h partialwave. In addition, this 
hoi
e in�uen
es the rapidity of the series 
onvergen
e, while 
onvergen
e is ensuredfor any values of the parameters z

SV
and z

P
. For this reason, the latter 
omments on Fig. 5-b are relative tothis 
hoi
e i.e. 
orresponds to z

SV
=z

P
=0 in that 
ase. From that point of view, it 
an even be possible thatÉri
 Du
asse & Mar
 Des
hamps Convergen
e of Debye series
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e
Figure 4: Study of the 
onvergen
e of Debye series for an aluminum plate immersed in water.Maximum λmax of the absolute values of eigenvalues of the (Rtop Rbot ) matrix versus the dimensionless frequen
y-half-thi
kness produ
t h = ω h / cT and the in
iden
e angle θ. Only P and SV waves are 
onsidered. The light zone
orresponds to the 
onvergen
e (λmax < 1 ) and the dark zone to the divergen
e (λmax > 1 ).the series 
onverges either rapidly or slowly for the same 
on�guration (�uid, solid, plate thi
kness and angle ofin
iden
e). To illustrate our purpose, Fig. 6 shows, for various z

SV
and z

P
, the maximum λ̃max of the absolutevalues of the eigenvalues of the matrix (R̃top R̃bot), whi
h 
hara
terizes the series 
onvergen
e [see Eqs. (30-31)℄.On this 3D plot, the dark and light areas 
orrespond to rapid and slow 
onvergen
es, respe
tively. For the angleof in
iden
e 
hosen (θ=34.0̊ ), if both origins are at the symmetry 
enter of the plate (i.e. z

SV
=z

P
=0), the
onvergen
e is in between these two extreme 
ases, as observed on Fig. 5-b.4.2 The �rst re�e
tion/refra
tion at the upper interfa
eAnother 
onsequen
e of the arbitrary 
hoi
e of the z-origins 
on
erns the re�e
tion and the transmission at the�rst interfa
e. The asso
iated 
oe�
ients, i.e. r̃0, g̃0 SV

and g̃0P
, do not a�e
t dire
tly the 
onvergen
e of theseries but they provide the input power �ux in the plate, this latter �ux being then spread out between thedi�erent re�e
tions and transmissions at the two interfa
es.Let us inspe
t �rst the behavior of these 
oe�
ients for the 
lassi
al 
ase (see Fig. 7-a). As well known, forsu
h plate, i.e. when the slower wave speed for bulk waves in the plate is greater than the �uid wave speed,the re�e
tion 
oe�
ient r0 has an absolute value equal to unity after the larger 
riti
al angle and, at the sametime, the modulus of the transmission 
oe�
ients g0 SV and g0P are greater than unity. This is not at all inÉri
 Du
asse & Mar
 Des
hamps Convergen
e of Debye series



17 / 27(a) (b)

0 10 20 30 40

0.

0.2

0.4

0.6

0.8

1.

1.2

1.4

1.6

PSfrag repla
ements
In
iden
e angle θ [̊ ]

Re�e
tion
o
e�
ients

θL θTθ1 θ2

0 10 20 30 40

0.

0.2

0.4

0.6

0.8

1.

1.2

1.4

1.6

PSfrag repla
ements
In
iden
e angle θ [̊ ]

Re�e
tion
o
e�
ients

θS0 θA0
θA1

Figure 5: Convergen
e study for a dimensionless half-thi
kness h = ω h / cT = 2 (a) in the exponential basis and (b) inthe orthogonal symmetri
 basis (zα=0 for all α). The absolute value of the global re�e
tion 
oe�
ient | r | (plain) is
ompared to ∣∣∣∣
∣

nmax∑

n=0

r2n

∣
∣
∣
∣
∣
for nmax=0 (�rst re�e
tion, dotted), nmax=2 (dashed) and nmax=10 (−·).
ontradi
tion with the energy 
onservation law, sin
e the asso
iated relation, Eq. (53) in this 
ase, does notinvolve the inhomogeneous waves. The amplitude of su
h waves is a priori not bounded. In 
ontrast, when allthe wave amplitudes are 
onne
ted by Eq. (53), i.e. θ < θL, all 
oe�
ients have absolute value less than unity.By using the wave de
omposition in the orthogonal basis, the re�e
tion and refra
tion 
oe�
ients remainun
hanged for ea
h �xed pair ( δh

SV
, δh

P
), δh

SV,P
=ω
(
h−z

SV,P

)
/ cT being the dimensionless relative positionsof the upper interfa
e with respe
t to the z-origins of the nonstandard sv- and p-waves, respe
tively (see alsoAppendix A.3 for more details). These re�e
tion and refra
tion 
oe�
ients are plotted on Fig. 7-b to Fig. 7-dfor three di�erent pairs. Indeed, by virtue of Eq. (54), it is observed that the 
oe�
ients g̃0 SV

and g̃0P
haveabsolute value less than unity for any angles of in
iden
e. Of 
ourse, all these 
oe�
ients are di�erent fromthose of the 
lassi
al approa
h after the 
riti
al angle θL, sin
e the inhomogeneous waves are di�erently de�ned.For instan
e, the absolute value of the re�e
tion 
oe�
ient r̃0 is not equal to unity and the re�e
tion 
oe�
ients

g̃0 SV
and g̃0P

are nonzero, for θ > θT , although these 
oe�
ients are relative to the �rst interfa
e only. Sin
e thesquare of the absolute values of all the re�e
tion or refra
tion 
oe�
ients give dire
tly the re�e
ted or refra
tedenergy �uxes in the z-dire
tion, this means that some energy is transmitted inside the plate, even for su
h angleof in
iden
e.Taking into a

ount the dependen
e of the re�e
tion and refra
tion 
oe�
ients on the pair ( δh
SV
, δh

P
) natu-rally leads to the question: �Is it possible to mat
h the impedan
es at the �rst interfa
e by 
onveniently 
hoosingthe z-origins z

SV,P
?� The 
onditions of existen
e of su
h possibility are dis
ussed theoreti
ally in Appendix A.3for the isotropi
 
ase and presented numeri
ally on Fig. 8. For all the angles of in
iden
e appearing in these�gures in between two gray verti
al zones, the re�e
tion 
oe�
ient r̃0 is rigorously zero sin
e the values of thedimensionless relative positions δh

SV,P
have been 
hosen in a

ordan
e with Eq. (A.17). As predi
ted, aroundthe Rayleigh 
onditions and 
lose to the angle of in
iden
e of 90̊ , the impedan
e 
an be totally mat
hed su
hthat the energy brought by the in
ident wave is totally transmitted inside the solid at the �rst interfa
e. Thevalues of the dimensionless relative positions are reported on Figs. 8-a and 8-b for the two inspe
ted zones. Theabsolute value of the asso
iated transmission 
oe�
ients g0 SV and g0P are plotted on Figs. 8-
 and 8-d. TheÉri
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λ̃maxFigure 6: λ̃max, the maximum of the absolute values of the matrix R̃top R̃bot, with respe
t to the dimensionlessorigins zP and zSV, for an angle of in
iden
e of 34◦and a dimensionless half-thi
kness h=2.The absolute minimum λ̃max≈0.51 is rea
hed for zP≈±− 1.6 and zSV≈±− 0.98.A lo
al minimum λ̃max≈0.54 appears for zP≈±0.32 and zSV≈∓− 1.86. λ̃max≈0.70 for zP=0 and zSV=0.energy repartition between the two p- and sv-modes depends then on the inhomogeneous mode basis. Indeed,
lose to the Rayleigh angle, this energy repartition varies very rapidly in less than 0.2̊ of angle variation, theenergy is totally transmitted either to the p-mode at the left hand side or to the sv-mode at the right hand side(see Fig. 8-
).In the 
ase where the z-origins are 
hosen su
h that the symmetry of the problem is preserved, i.e. z
SV,P

=0 and
δh

SV,P
=h, the re�e
tion and transmission 
oe�
ients 
an be analyzed from Figs. 7-b to 7-d for in
reasing valuesof the plate thi
kness. On the one hand, the re�e
tion 
oe�
ient r̃0 tends to the 
lassi
 solution r0, and, on theother hand, the transmission 
oe�
ients g̃0 SV

and g̃0P
tend to zero as far as the asso
iated transmitted waves areinhomogeneous. For large values of the h dimensionless parameter, one 
omponent of the wave displa
ement�eld at the upper interfa
e, given by Eq. (42), tends to in�nity, while the other 
omponent tends to zero.The transmitted inhomogeneous waves (sum of two bive
tors) tend to the 
lassi
al inhomogeneous waves (onebive
tor). The re�e
ted (or transmitted) energy is then equal to unity (or zero).Éri
 Du
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Figure 7: The �rst re�e
tion/refra
tion at the upper interfa
e. (a) Square of the absolute values of the re-�e
tion 
oe�
ient r0 (solid) and of the 
omponents g0 SV (dashed) and g0P (dotted) of the transmission ve
-tor g0 = ( g0 SH=0 , g0 SV , g0P)
T in the exponential basis, 
onsidering the interfa
e positioned at z = 0. The re�e
tion
oe�
ient r̃0 and the transmission ve
tor g̃0 in the alternative basis, with the dimensionless relative position of theinterfa
e with respe
t to the z-origins δhSV = δhP = δh, for (b) | δh | < 0.1 (z-origins near the interfa
e), (c) δh = ±1.5,and (d) | δh | > 50 (z-origins far from the interfa
e).

Éri
 Du
asse & Mar
 Des
hamps Convergen
e of Debye series



20 / 27

(a) (b)

32.94 32.96 32.98 33.00 33.02 33.04 33.06 33.08

0

2

4

6

8

PSfrag repla
ements In
iden
e angle θ [̊ ]±δ

h P,±δh SV

≈32.937̊ θR≈33.0134̊ ւ ≈33.089̊≈33.087̊ ց

≈3.602

89.0 89.2 89.4 89.6 89.8

0.0

0.5

1.0

1.5

2.0

PSfrag repla
ements In
iden
e angle θ [̊ ]±δ
h P,±δh SV
≈89.011̊ ≈89.781̊

(c) (d)

32.94 32.96 32.98 33.00 33.02 33.04 33.06 33.08

0.0

0.2

0.4

0.6

0.8

1.0

PSfrag repla
ements In
iden
e angle θ [̊ ]|g̃
0
P
|2 ,|g̃ 0SV|2

≈32.937̊ θR≈33.0134̊ ւ ≈33.089̊≈33.087◦ ց

89.0 89.2 89.4 89.6 89.8

0.0

0.2

0.4

0.6

0.8

1.0

PSfrag repla
ements In
iden
e angle θ [̊ ]|g̃
0
P
|2 ,|g̃ 0SV|2

≈89.011̊ ≈89.781̊

Figure 8: Perfe
t impedan
e mat
hing o

urs in the two zones (a) (32.937◦. θ . 33.089◦) and
(b) (89.011◦. θ . 89.781◦) for spe
i�ed dimensionless relative positions δhSV (dashed) and δhP (solid). The re�e
tion
oe�
ient r̃0 is zero and the square of the absolute values of the transmission 
oe�
ients g̃0 SV (dashed) and g̃0P (solid)are drawn on (c) and (d).
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21 / 274.3 First inner re�e
tions/refra
tionsTo 
omplete the study let us examine the energy repartition between the upgoing and downgoing waves insidethe plate. To this end, the absolute values of the 
oe�
ients asso
iated with the re�e
ted, transmitted, upgoingand downgoing waves, are plotted on Fig. 9 versus the angles of in
iden
e.On this �gure it is observed �rst that for the Lamb modes S2 , S1 , A1 and S0 , the upgoing and downgoing energiesare both very large. This reveals the existen
e of strong interferen
es in the plate, whi
h is the intrinsi
 natureof guided waves. Su
h interpretation would not be possible by using the 
lassi
al inhomogeneous waves in theplate. However, it is of great importan
e to note that, although this interpretation seems to be very satisfyingfrom a physi
al point of view, it is determined by the 
hoi
e of the orthogonal basis referred to in the abovedis
ussion. A di�erent 
hoi
e would provide di�erent relative energies between all the inner waves. Removingthis ambiguity merits parti
ular attention and additional e�orts remain to be done for a better understandingof this point.Se
ond, let us fo
us our interest on the zone 
lose to the Rayleigh angle whi
h 
orresponds to a perfe
t mat
hedimpedan
e at the �rst interfa
e for δh
SV,P

=h≈3.602, as identi�ed on Fig. 8-a at θ≈33.087̊ . By 
omparing theenergy repartition between the p- and sv-waves, it is noti
eable that the quasi totality of the in
ident waveenergy is transferred to the sv-wave. On the other hand, less than 2% of the energy is transferred to the upgoingwaves. This means that the quasi totally of the energy is transmitted in the �uid by the �rst re�e
tion/refra
tionat the se
ond interfa
e. For these spe
i�
 
onditions, the plate seems to be transparent, in a sense that all theenergy brought by the in
ident wave in the upper �uid, is totally transmitted in the lower �uid, without anymultiple re�e
tions/refra
tions within the plate.
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Figure 9: Global 
oe�
ients: | r |2 (re�e
tion, solid), | t |2 (transmission, dash-dot), | g̃up |2 (upgoing energy, dotted)and | g̃down |2 (downgoing energy, dashed) for the dimensionless half-thi
kness h≈3.602, in the orthogonal symmetri
basis (zSV=zP=0).
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lusionThe out
ome of this study suggests a method to ensure the 
onvergen
e of the series resulting from the multiplere�e
tions/refra
tions, whi
h give the total �elds re�e
ted and transmitted by an immersed plate. This methodis based on the orthogonalization, in the sense of energy, of the basis of solutions formed initially by the harmoni
homogeneous (or not) plane waves. When these initial 
omponents are inhomogeneous waves, the new basisve
tors are 
omposed by the sum of two harmoni
 inhomogeneous plane waves adequately 
hosen. Working inthis new basis, it has been made 
lear that the series 
onverges in any situation.In addition to the systemati
 
onvergen
e of the Debye series, it also has been shown how the speed of this
onvergen
e 
an either in
rease or de
rease by 
hanging the arbitrary origins of the nonstandard inhomogeneousplane waves.Beyond this obvious improvement of the 
onvergen
e of the series, an interesting phenomenon has been observedfor an aluminum plate immersed in water, for an in
iden
e angle 
lose to the Rayleigh 
onditions and for a �xedfrequen
y asso
iated to Lamb wave generation. In this 
ase, the plate seems to be really transparent, in a sensethat no energy stays in the guide.Future works should be imagined on the basis of the present results. The extension to immersed solid of othergeometries (
ylinder, sphere) is a problem whi
h without any doubt 
an be solved and whi
h will maybe revealother interesting phenomena, as the transparen
y of the solid medium. In the 
ase of multiple s
attering, whenthe thermal e�e
ts are taken into 
onsideration, the 
losest obje
ts, spheri
al or 
ylindri
al most of the time,ex
hange energy among others intera
tions through thermal waves (e.g., [24℄), these waves being inhomogeneous.The 
oupling between two obje
ts 
reated by su
h intera
tions should be revisited in the light of the workdes
ribed in this paper.A
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24 / 27Appendix A Detailed 
al
ulations for an isotropi
 plateA.1 The exponential basisConsider an isotropi
 plate of density ρ0. The slownesses in the z-dire
tion are:
ς1 = ς2 = ςT , ς3 = ςL , ς4 = ς5 = −ςT , ς6 = −ςL , (A.1.a)where

ςL ,T =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

√

1

c2
L ,T

− s2x , cL ,T sx < 1 ,

−i√s2x −
1

c2
L ,T

, cL ,T sx > 1 ,

(A.1.b)
cL and cT denoting respe
tively the longitudinal and transverse velo
ities.By using dimensionless slownesses β=cT sin θ / c , βL=cT ςL , βT =cT ςT , and βF =cT cos θ / c , the polarizationmatrix Ξ is expressed as follows to satisfy Eq. (38):
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βT

0 0
1
√
β∗

T

0 0

0 − β√
βT

βL√
βL

0 − β
√
β∗

T

− βL
√
β∗

L

0
2 β2 − 1√

βT

−2 β βL√
βL

0
2 β2 − 1
√
β∗

T

2 β βL
√
β∗

L

− βT√
βT

0 0
βT
√
β∗

T

0 0

0
2 β βT√
βT

2 β2 − 1√
βL

0 −2 β βT
√
β∗

T

2 β2 − 1
√
β∗

L
























. (A.2)
With the notations:a = ρ βL + ρ0 βF

[(
2 β2−1

)2 − 4 β2 βL βT

]

, b = ρ βL − ρ0 βF

[(
2 β2−1

)2 − 4 β2 βL βT

]

,
 = 4 ρ0 βF β
(
2 β2−1

)
, d = ρ βL + ρ0 βF

[(
2 β2−1

)2
+ 4 β2 βL βT

]

,
(A.3)and the dimensionless half-thi
kness of the plate h = ω h / cT = H / cT , we obtain the following re�e
tionmatri
es:

Rtop=






e− iβT h 0 0

0 e− iβT h 0

0 0 e− iβL h











√
β∗

T√
βT

0 0

0 −
√
β∗

T√
βT

ad √

βL

√

β∗
T


d
0 −

√

β∗
L

√

βT


d √
β∗

L√
βL

bd
















e− iβT h 0 0

0 e− iβT h 0

0 0 e− iβL h , (A.4)and
Rbot=






e− iβT h 0 0

0 e− i βT h 0

0 0 e− iβL h











√
βT

√
β∗

T

0 0

0 −
√
βT

√
β∗

T

ad −βL

√
βT

√
β∗

L


d
0 βT

√
βL

√
β∗

T


d √
βL

√
β∗

L

bd
















e− iβT h 0 0

0 e− iβT h 0

0 0 e− iβL h . (A.5)
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25 / 27Note that the 
omplex slownesses β su
h that the denominator d is zero are asso
iated to the leaky Rayleighwave and to the S
holte wave ([25℄ and e.g., [26℄).The (1, 1)�
oe�
ient in the last two matri
es 
orresponds to the sh wave whi
h intera
ts neither with the pand sv waves in the plate nor with the a
ousti
 wave in the surrounding �uid. The 
orresponding eigenvaluesare ± exp(−2 i βT h). The 
onvergen
e study made in this paper fo
uses on the p, sv and a
ousti
 waves whi
hare intera
ting, i.e. on the two-by-two bottom-right blo
ks of the last two matri
es.A.2 Des
ription of nonstandard progressive waves in isotropi
 elasti
 materialsIn isotropi
 materials, the slowness in the z-dire
tion is either real or imaginary, depending on whether the angleof in
iden
e is greater or less than the �rst 
riti
al angle [or whether the slowness in the xy-plane is greater orless than the 
ut-o� value, Eq. (A.1)℄.If the slowness in the z-dire
tion is imaginary, we obtain dimensionless attenuation 
oe�
ients
γ

L ,T
=cT

√

s2x−1/c2
L ,T

(sx=sinθ/c) and the nonstandard progressive inhomogeneous waves are 
hara
terized bythe following normalized polarization ve
tors ṽ and Poynting ve
tors P̃ , from Eqs. (41), (42) and (A.2), withthe z-origins z
SH

, z
SV

and z
P
, whi
h 
an be di�erent for ea
h type of wave:SH waves

ṽ1( z ) =√ 2

ρ0 cT γT





0
cosh(γT δzSH

)− i sinh(γT δzSH
)

0



 , (A.6.a)where z is the dimensionless position ω z / cT and δz
SH

the relative dimensionless position ω (z − z
SH
) / cT withrespe
t to the origin z

SH
,
ṽ4( z ) = −i√ 2

ρ0 cT γT





0
cosh(γT δzSH

) + i sinh(γT δzSH
)

0



 , (A.6.b)and
P̃1,4(z) =  cT sx

γT

cosh(2 γT δzSH
)

0
±1




 . (A.7)

SV waves
ṽ2( z ) =√ 2

ρ0 cT γT







γT [cosh(γT δzSV
) + i sinh(γT δzSV

)]
0

−cT sx [cosh(γT δzSV
)− i sinh(γT δzSV

)]






, (A.8.a)

ṽ5( z ) = i√ 2

ρ0 cT γT







γT [cosh(γT δzSV
)− i sinh(γT δzSV

)]
0

cT sx [cosh(γT δzSV
) + i sinh(γT δzSV

)]






, (A.8.b)and

P̃2,5(z) =  cT sx
γT

cosh(2 γT δzSV
)
(
1 + 4 γ2

T

)

0
±1




 . (A.9)
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26 / 27P waves
ṽ3( z ) =√ 2

ρ0 cT γL







cT sx [cosh(γL δzP
)− i sinh(γL δzP

)]
0

γL [cosh(γL δzP
) + i sinh(γL δzP

)]






, (A.10.a)

ṽ6( z ) = i√ 2

ρ0 cT γL







−cT sx [cosh(γL δzP
) + i sinh(γL δzP

)]
0

γL [cosh(γL δzP
)− i sinh(γL δzP

)]






. (A.10.b)and

P̃3,6(z) =  cT sx
γL

cosh(2 γL δzP
)
(
1 + 4 γ2

L

)

0
±1




 . (A.11)

A.3 Re�e
tion and transmission 
oe�
ients at the �rst interfa
e for nonstandardprogressive wavesOnly the 
ase θ > θT is treated here and in the next se
tion (both the P-waves and the SV-waves are inhomo-geneous), with the relative dimensionless positions δh
P
= ω (h− z

P
) / cT and δh

SV
= ω (h− z

SV
) / cT and thefollowing positive 
oe�
ients:l = (2 β2 − 1

)2
; m = 4 β2 γL γT ; n =

ρ γL

ρ0 βF

,X = exp(−2 γL δhP
) and Y = exp(−2 γT δhSV

) . (A.12)Re�e
tion 
oe�
ient r̃0
r̃0(X,Y) =

(l−m)(XY− 1) + n (X−Y) + i [(l +m)(X+Y)− n (XY + 1)]

(l−m)(XY− 1)− n (X−Y) + i [(l +m)(X+Y) + n (XY + 1)]
. (A.13)Transmission 
oe�
ient g̃0P

g̃0P
(X,Y) =

2
√l nX (1 +Y) + i [2√l nX (1−Y)

]

(l−m)(XY− 1)− n (X−Y) + i [(l+m)(X+Y) + n (XY+ 1)]
. (A.14)Transmission 
oe�
ient g̃0 SV

g̃0 SV
(X,Y) =

−2
√mnY (X+ 1) + i [−2

√mnY (X− 1)
]

(l−m)(XY− 1)− n (X−Y) + i [(l+m)(X+Y) + n (XY+ 1)]
. (A.15)SymmetriesX−1 = exp(+2 γL δhP

) and Y−1 = exp(+2 γT δhSV
) 
orrespond to a symmetry with respe
t to z = h and:

r̃0(X−1,Y−1) = r̃0(X,Y)∗ ; g̃0P
(X−1,Y−1) = −g̃0P

(X,Y)∗ and g̃0 SV
(X−1,Y−1) = −g̃0 SV

(X,Y)∗ (A.16)
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27 / 27Perfe
t impedan
e mat
hing (r̃0 = 0)There is uniqueness, up to sign, of the dimensionless positions δh
P
and δh

SV
su
h that the �rst re�e
tion is zero[Eq. (A.13)℄:

δh
P

= ± 1

2 γL

log

{

2 l n+
√

[(l+m)2 − n2] [n2 − (l−m)2]n2 − (m2 − l2) }

δh
SV

= ± 1

2 γT

log

{

2mn+
√

[(l +m)2 − n2] [n2 − (l−m)2]n2 − (l2 −m2)

} (A.17)with the 
ondition of existen
e: l +m > n and −n2 < l2 −m2 < n2.Note that l2 − m2 = (2 β2 − 1)
4 − (4 β2 γL γT )

2 is the Rayleigh polynomial and that the solution of l = m
orresponds to the Rayleigh wave (in va
uum).A.4 Re�e
tion and transmission 
oe�
ients for nonstandard progressive wavesThe relative dimensionless positions are δh
P
= ω (h− z

P
) / cT , δhSV

= ω (h− z
SV
) / cT for the upper interfa
eand δh

P
= ω (−h− z

P
) / cT , δhSV

= ω (−h− z
SV
) / cT for the lower interfa
e.Re�e
tion 
oe�
ient r̃top,bot

SVSV

r̃top,bot

SV SV
(X,Y) =

(l−m)(XY+ 1) + n (Y +X)± i [(l+m)(Y−X) + n (XY− 1)]

(l−m)(XY− 1) + n (Y−X)± i [(l +m)(Y+X) + n (XY + 1)]
. (A.18)Re�e
tion 
oe�
ients r̃top,bot

P SV
, r̃top,bot

SVP

r̃top,bot

P SV
(X,Y) = −r̃top,bot

SVP
(X,Y) =

±4
√lmXY

(l−m)(XY− 1) + n (Y−X)± i [(l+m)(Y+X) + n (XY+ 1)]
.(A.19)Re�e
tion 
oe�
ient r̃top,bot

PP

r̃top,bot

PP
(X,Y) =

(l−m)(XY+ 1)− n (Y +X)± i [(l +m)(−Y+X) + n (XY− 1)]

(l−m)(XY− 1) + n (Y −X)± i [(l +m)(Y+X) + n (XY + 1)]
. (A.20)Transmission 
oe�
ients: t̃top

SV
= i g̃0 SV

; t̃bot
SV

= g̃∗0 SV
; t̃top

P
= −i g̃0 P

; t̃bot
P

= g̃∗0P
.
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