Abdelkrim K Oudjida

Nicolas Chaillet

Mohamed L Berrandjia

Ahmed Liacha

A New High Radix-2r (r ≥ 8) Multibit Recoding Algorithm for Large Operand Size (N ≥

Keywords: High-Radix Multiplication, Low-Power Multiplication, Multibit Recoding Multiplication, Partial Product Generator (PPG), Register-Transfer-Level (RTL) I

come L'archive ouverte pluridisciplinaire

commercial designs do not exceed r=4 (radix-16). A hybrid radix-4/-8 is proposed in [START_REF] Kim | A Low-Energy Hybrid Radix-4/-8 Multiplier for Portable Multimedia Applications[END_REF] for low-power multimedia applications. To increase the speed of the multiplier, most ancient processors employed radix-8, such as: Fchip [START_REF] Benschneider | A Pipelined 50MHz CMOS 64-Bit Floating-Point Arithmetic Processor[END_REF], IBM S/390 [START_REF] Webb | A 400-MHz s/390 Microprocessor[END_REF], Alpha RISC [START_REF] Clouser | A 600-MHz Superscalar Floating-point Processor[END_REF], IA-32 [START_REF] Senthinathan | A 650-MHz, IA-32 Microprocessor with Enhanced Data Streaming for Graphics and Video[END_REF] and AMDK7 [START_REF] Scherer | An Out-of-Order Tree-Way Superscalar Multimedia Floating Point Unit[END_REF]. While radix-16 is used only in the most recent Intel processors: 64 and IA-32 [START_REF]Intel 64 and IA-32 Architectures Software Developers Manual[END_REF], and Itanium-Poulson [START_REF] Rieldlinger | A 32 nm 3.1 Billion Transistor 12-Wide-Issue Itanium Processor for Mission-Critical Servers[END_REF].

In research, the highest radix algorithms are proposed in the works of Seidel et al. [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF] and Dimitrov et al. [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF]. Both works rely upon advanced arithmetic to determine minimal number-bases that are representatives of the digits resulting from larger multibit recoding. The objective is to eliminate information redundancy inside r+1 bit-length slices for a more compact PPG. This is achievable as long as no or just very few odd-multiples are required.

Seidel introduced a secondary recoding of digits issued from an initial multibit recoding for 5≤r≤16. The recoding scheme is based on balanced complete residue system. Though it significantly reduces the number of partial products (N/r for 5≤r≤16), it requires some odd-multiples for r≥8. Dimitrov proposed a new recoding scheme based on double base number system for 6≤r≤11. The algorithm is limited to unsigned multiplication and requires larger number of odd-multiples. Both algorithms [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF] [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] require a PPG that includes a number of adders to accumulate intermediary partial products corresponding to recoded elementary digits.

In fact, odd-multiples are not the only problem for a compact PPG. Recoding large slices (r≥8) in a mono-bloc PPG such as in [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF] [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF], requires the use of an RTL "case statement" with r+1 entries. In this case, 2 r+1 combinations must be processed, which yields to a huge amount of multiplexer resources. Thus, mono-bloc PPG recoding is incompatible with high radix (r≥8) approach whose purpose is to reduce the multiply-time (N/r) of large operand size (N ≥32) multipliers.

The objective of this paper is to overcome these two above-mentioned shortcomings. To achieve such a goal, the multibit recoding multiplication algorithm is revisited [START_REF] Sam | A Generalized Multibit Recoding of Two's Complement Binary Numbers and its Proof with Application in Multiplier Implementation[END_REF]. Its design space is extended by the introduction of a new recursive version that enabled to solve the hard problem of radix-2 r two's complement multiplication for any value of r. The solution consists essentially in dividing the high radix-2 r mono-bloc PPG j (Fig. 1.a) into a number of lower sub-radix-2 s odd-multiple free PPG ji (Fig. 1.b), such as s is a divider of r . As direct benefits of the partitioning of Fig. 1.b:

• there is no need to pre-compute odd-multiples of the multiplicand, which drastically reduces the required amount of hardware resources and routing; • since the size of PPG ji entry is much smaller than the size of PPG j one (s≤r/2), the total multiplexing logic required by RTL "case statements" to recode the entries is greatly reduced;

A New High Radix-2 r (r≥8) Multibit Recoding Algorithm for Large Operand Size (N ≥32) Multipliers

X

• the possibility to simultaneously process larger bit slices (r≥16) radically shortens the critical path in terms of adder levels, especially for very large operand sizes (N≥64). Guided by accurate area heuristics, the final result of an optimization process, gradually undertaken in this paper, delivers for each value of N (N=8..8192) the appropriate radix-2 r (r=8..512) and sub-radix-2 s (s=4..32) that lead to the architecture with the shortest critical path (

3 2 3 3 - / N
) in adder stages. The couple (r,s) serves to partition the architecture so that maximum parallelism is exploited. As for area, our proposed architectures require as many hardware resources as modified Booth algorithm [START_REF] Mcsorley | High-Speed Arithmetic in Binary Computers[END_REF] with a critical path of N/2 [START_REF] Lamberti | Reducing the Computation Time in (Short Bit-Width) Two's Complement Multiplier[END_REF][15] [START_REF] Kuang | Design of Power-Efficient Configurable Booth Multiplier[END_REF] [START_REF] Själander | Multiplication Acceleration Through Twin Precision[END_REF]. For instance, a 64-bit two's complement finely pipelined multiplier requires a latency of seven clock cycles only (critical path composed of a series of 7 adders). FPGA implementation on Virtex-6 circuit of our 64-bit two's complement radix-2 32 multiplier shows important gain ratios over Seidel [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF] and Dimitrov [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] radix-2 8 algorithms. The respective gain ratios are enumerated as follows: 1.62, 1.71, 2.64 and 1.83, 1.71, 3.32 are obtained in terms of multiply-time, energy consumption per multiply-operation, and total gate count, respectively.

The paper is organized as follows. Section I outlines the main requirement specifications for a generalized radix-2 r multiplication. Section II introduces the new recursive multibit recoding multiplication algorithm, illustrated by two high-radix (2 8 and 2 16) recoding examples in Section III. Section IV introduces some preliminary steps toward an optimal partitioning of the multiplier architecture, while the optimal partitioning is presented in Section V. Section VI compares and discusses the implementation results. Finally, Section VII provides some concluding remarks and suggestions for future work.

II. THE NEW RECURSIVE MULTIBIT RECODING MULTIPLICATION ALGORITHM

The equation (2.1.2) of the original multibit recoding algorithm presented in [START_REF] Sam | A Generalized Multibit Recoding of Two's Complement Binary Numbers and its Proof with Application in Multiplier Implementation[END_REF] does not offer hardware visibility. Let us rewrite it in a simpler hardware-friendly form, as follows: . For simplicity purposes and without loss of generality, we assume that r is a divider of N .

(∑ - = + + - ⋅ ⋅ ⋅ + + + + = 1 0 2 2 1 1 0 1 2 2 2
In equation (1), the two's complement representation of the multiplier Y is split into N/r two's complement slices (j Q), each of r+1 bit length. Each pair of two contiguous slices has one overlapping bit. In literature, equation (1) is referred to by radix-2 r equation, to which corresponds a digit set ()

r D 2 such as () { } 1 1 2 0 2 2 - - - = ∈ r r r j , ... , , ... , D Q .
Thus, the signed multiplication between X and Y becomes:

rj r N j j Q X Y X 2 . . . 1 0 ∑ - = =
(2). Where each partial product can be expressed as follows:

() ()

X m Q X f e rj j 2 1 2 - = , with () { } 1 2 3 1 2 1 - = ∈ - r r O m ..., , , such as () 2 2 2
- = r r O .
() r O 2 represents the required set of odd-multiples of the multiplicand (m.X) for radix-2 r . Hence, the partial-product generation-process consists first in selecting one oddmultiple (m.X) among the whole set of pre-computed oddmultiples, which is then submitted to a hardwired shift of f positions, and finally conditionally complemented (-1) e depending on the bit sign e of Q j term. Table I provides a picture on how the number of odd-multiples grows when the radix becomes higher. While lower m.X can be obtained using just one addition (3X=2X+1X), the calculation of higher ones may require a number of computation steps (11X= 8X+2X+1X).

To bypass the hard problem of odd-multiples, we exploit the fact that the N+1 bit-length two's complement multiplier Y on which equation (1) is applied, is composed of a series (N/r) of r+1 bit-length two's complement slices (j Q digits) on which equation (1) can be recursively applied again.

Based on this observation, let us announce the two following theorems accompanied with their respective proofs inserted in Appendix. (3) ; where

() { } 1 1 2 0 2 2 - - - = ∈ s s
∑∑ - = - = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = (4)
Theorem 2. Any digit ()

r j D Q 2 ∈
can be represented in a combination of digits P ji +T jk such as ()

s ji D P 2 ∈ and
()

t jk D T 2 ∈
with s+t a divider of r , and t < s.

Likewise, when theorem (2) is applied to equation (1), we obtain:

[] () rj r N j t s r i i t s s ji ji T P Y 2 2 2 1 0 1 0 ∑∑ - = - + = + ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ + =
(5). Where

() { } 1 1 2 , ... , 0 , ... , 2 2 - - - = ∈ s s s ji D P with () { } 1 2 3 1 2 1 - = - s s O ..., , , and
() { } 1 1 2 , ... , 0 , ... , 2 2 - - - = ∈ t t t ji D T with () { } 1 2 3 1 2 1 - = - t t O ..., , , such as () ()
Theorem (1) and (2) allow an exponential reduction (1/2 ks and 1/2 k(s+t) , resp.) of the number of odd-multiples in equations (4) and [START_REF] Clouser | A 600-MHz Superscalar Floating-point Processor[END_REF] in comparison to equation (2), but at the expense of a linear increase (ks-1 and k(s+t)-1, resp.) in the number of additions. The advantage by far outweighs the cost, as practically shown in the next section.

The translation of equation (4) into architecture is depicted by Fig. 1.b, where each PPG j (Q j) is built up using r/s identical PPG ji (P ji). This is not the case for equation [START_REF] Clouser | A 600-MHz Superscalar Floating-point Processor[END_REF] which requires two different PPG ji (P ji and T ji) . Theorem (1) and (2) can be merged together to produce PPG j made of a number of different PPG ji (P ji ,T ji ,U ji ,V ji ,...). This is the general case that is thoroughly studied in next sections in order to determine the optimal multiplier. III. TWO HIGH RADIX (2 8 AND 2 16) ILLUSTRATIVE EXAMPLES Theorems (1) and (2) permit to build up any high radix-2 r multiplication algorithm based on lower sub-radices, employing much less odd-multiples.

The objective hereafter is to generate high radix-2 r multiplication without odd-multiples for a maximum reduction of multiplexer complexity inside PPG j . To achieve such a goal, a number of odd-multiple free low-radix algorithms are used, such as Booth algorithm (radix-2 1) [START_REF] Booth | A Signed Binary Multiplication Technique[END_REF], modified Booth algorithm (radix-2 2) [13], Seidel et al. algorithms (radix-2 5 and radix-2 8) [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF] [START_REF] Seidel | Binary Multiplication Radix-32 and Radix-256[END_REF]. Booth and modified Booth recoding (McSorley algorithm [START_REF] Mcsorley | High-Speed Arithmetic in Binary Computers[END_REF]) can be derived from equation (3) for (r,s)=(1,1) and (r,s)=(2,2), respectively. They are respectively summarized as follows:

() ∑ ∑ - = - = - = - = 1 0 1 0 1 2 2 N j j j j N j j j Q y y Y (7) With () { } 1 0 1 2 1 , , D - = and
() {} 1 2 1 = O () () () ∑ ∑ - = - = + - = - + = 1 2 0 2 2 1 2 0 1 2 2 1 2 2 2 2 / N j j j j / N j j j j Q y y y Y (8) With () } { 2 , 1 , 0 , 1 , 2 2 2 - - = D and () { } 1 2 2 = O Seidel radix-2 5 recoding [11][19] is described as follows: [] () j / N j j j P Q . Y 5 1 5 0 2 7 ∑ - = + = (9) with { } ; , , , , Q j 2 1 0 1 2 - - ∈ { } 4 2 1 0 1 2 4 , , , , , , P j - - - ∈ and () {} 1 2 5 = O .
And Seidel radix-2 8 recoding is given by the following equation:

[] () j / N j j j j T P . Q . Y 8 1 8 0 2 2 11 11 ∑ - = + + = (10) with { } 2 1 0 1 2 , , , , Q j - - ∈ ; { } 16 , 8 , 4 , 2 , 1 , 0 , 1 , 2 , 4 , 8 , 16 , - - - - - ∈ j j T P and () { } 1 2 8 = O
. Note that while equations (9) and (10) are odd-multiple free since all included digits are power of 2, they require a post-accumulation to deal with odd numbers (7, 11 and 121). Thus, a number of extra-adders are needed.

Optimized higher radices are obtained as follows.

A. Our new radix-2 8 recoding Based on theorem (2), each 8+1 bit slice is split into 5+1, 2+1, and 1+1 overlapping slices using Seidel radix-2 5 , McSorley radix-2 2 , and Booth radix-2 1 algorithms, respectively. The new recoding is given by the following equation: 16 recoding Likewise, using theorem (2), each 16+1 bit slice is split into 8+1, 5+1, 2+1, and 1+1 overlapping slices using Seidel radix-2 8 and radix-2 5 , McSorley radix-2 2 , and Booth radix-2 1 algorithms, respectively. The new recoding is described by the following equation:

() () [] () ∑ - = + + + = 1 8 0 8 5 2 2 2 2 7 / N j j j j j j . . S R P Q . Y (11) With { } 2 1 0 1 2 , , , , Q j - - ∈ ; { } 4 2 1 0 1 2 4 , , , , , , P j - - - ∈ ; { } 2 1 0 1 2 , , , , R j - - ∈ ; { } 1 0 1 , , S j - ∈ and () { } 1 2 8 = O B. Our new radix-2
() () [∑ - = + + + + + = 1 16 0 8 2 2 7 11 11 N j j j j j j . S R . T P . Q . Y ()] j j j V U 16 13 2 2 2 2 . . + (12) with { } 2 1 0 1 2 , , , , Q j - - ∈ ; { } 16 8 4 2 1 0 1 2 4 8 16 , , , , , , , , , , T , P j j - - - - - ∈ ; { } 2 1 0 1 2 , , , , R j - - ∈ ; { } 4 2 1 0 1 2 4 , , , , , , S j - - - ∈ ; { } 2 1 0 1 2 , , , , U j - - ∈ ; { } 1 0 1 , , V j - =
and () { } 1 2 16 = O

In our preceding work [START_REF] Oudjida | A New Recursive Multibit Recoding Algorithm for High-Speed and Low-Power Multiplier[END_REF], we pursued this combination process farther and generated a series of higher radix (2 24 , 2 32 , …) recoding schemes with () {}

1 2 = r O
. However, what still remains unknown is to determine, for a given N value, the proper radix (2 r) that leads to the optimal architecture. The translation of equations (11) and (12) into architectures is depicted in Fig. 2.a and 2.b, respectively.

All Dimitrov algorithms developed in [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] are unsigned. For an equitable comparison, we had to develop a new two's complement radix-2 8 recoding (mult_7b2d in [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF]) with () { }

7 5 3 1 2 7 , , , = O
. The new recoding is:

() () () () i j n j j h e j k P Q Y 8 7 8 1 8 0 2 1 2 1 2 + - = - - + = ∑ / . . (13) With { } { } { } 1 , 0 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 , ; 7 , 5 , 3 , 1 , ∈ ∈ ∈ e and h k P Q j j
For the comparative study, our proposed algorithms (eq. 11 and 12) as well as Seidel and Dimitrov algorithms (eq. 10 and 13, resp.) are first analytically characterized and then physically implemented.

C. Analytical characterization of area and speed

Prior implementation, we need to develop a generalized theoretical model which predicts area and speed features of each recoding algorithm with respect to N and r values.

1) Area

Three basic components are necessary for the implementation of RTL multipliers:

• multiplexers (Mux1) to recode the digit terms (Q j ,P j ,…) included in the recoding expression; • shifters (Mux2) for partial product generation;

• and adders for partial product summation. Whereas the exact number of adders can be known in advance, we need to develop heuristics for the two others. The total multiplexer complexity (Mux1) of a radix-2 r multiplier depends on:

• the number (N/r) of PPG j ;

• the number (i) of lower sub-radices (2 1 , 2 2 , 2 5 , and 2 8) used to build up the higher radix-2 r . To each subradix-2 s used (PPG ji) corresponds an RTL "case statement" that recodes the digit terms (Q ji ,P ji ,T ji ,…) present in the equation; • the number of entries (e s +1) in each "case statement" corresponding to each sub-radix-2 s ; • the number (d s) of digit terms (Q ji ,P ji ,T ji ,…) that figures in each "case statement" ; • and on the number of necessary odd-multiples (|O s |) used to calculate the digit terms.

Hence, we can announce that:

() ∑ + = i s s s e O d r N Mux | | . . . 1 2 1
For Dimitrov algorithm (eq. 13), this gives: r=8, i=1, e s =8, d s =2, and |O s |=4. Thus, Mux1 = 512 N.

The synthesis of the RTL "shift statement" infers multiplexers whose complexity depends on the number (p sj) of different shift positions for all odd-multiples involved in the calculation of each digit term (j). Thus, we can write:

() ∑∑ = ij sj sj O p r N Mux | | . . 2
. For Dimitrov algorithm (eq. 13), this gives: r = 8, i=1, j=2, p s1 =p s2 =8, and |O s1 | = |O s2 | = 4. Thus, Mux2=8N. Hence, the total multiplexer complexity becomes: Mux T = Mux1+Mux2=520N.

A N-bit radix-2 r multiplier generates N/r PP. Thus, The total number of adders comprises:

• () 1 / - r N
adders to sum the N/r PP; • plus the necessary adders inside each PPG j to accumulate the intermediate PP issuing from PPG ji ; • plus a number of adders included inside each PPG ji depending on the recoding scheme used. For example, in Seidel algorithm (eq. 10), the term

ji ji ji T P Q + + 11 11 2
is calculated as follows:

() () ji ji ji ji ji ji ji T P P P Q Q Q + - + + + - 2 3 3 7 2 2 2 2
, which requires 6 adders for post-accumulation operation [11][19]. Hence, the total number of necessary adders is:

Add T = () ()()
Y -1 , 7 U 0 V 0 R 0 S 0 + PPG 0 Q 0 P 0 T 0 U 1 + V 1 R 1 S 1 + PPG 1 Q 1 P 1 T 1 + U 2 + V 2 R 2 S 2 + PPG 2 Q 2 P 2 T 2 + U 3 + V 3 R 3 S 3 + PPG 3 Q 3 P 3
P 127 -0 R 0 S 0 Q 0 P 0 PPG 0 R 1 S 1 Q 1 P 1 PPG 1 R 2 S 2 Q 2 P 2 PPG 2 R 3 S 3 Q 3 P 3 PPG 3 R 4 S 4 Q 4 P 4
Add T 1 8 5 - N 1 8 6 - N 1 2 - N 1 8 7 - N 1 4
-N N is the operand size and 2 r is the radix used. Del T is the total delay in terms of adder levels in the critical path of a linear reduction tree. d s is the delay due to multiplexer logic inside PPG ji . d s depends on Mux factor (d 1 <d 2 <d 5 <d 8 <d' 8). Mux T =(N/r)Mux, where Mux is an estimation of the multiplexer logic required by PPG j . Add T is the total number of adders required in the whole multiplier.

TABLE III IMPLEMENTATION RESULTS OF A TWO'S COMPLEMENT 64-BIT PARALLEL

MULTIPLIER ON XILINX XC6VSX475T-2FF1156 CIRCUIT Our recoding algorithms Results Eq. [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF] Eq. (12)

McSorley [START_REF] Mcsorley | High-Speed Arithmetic in Binary Computers[END_REF] Eq. (8)

Seidel [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF] [19] Eq. (10) Dimitrov [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] Eq. (13)

Area

2) Delay

The total delay (Del T) along the critical path is the summation of PPG j delay and reduction tree delay. Based on the total number of adders (Add T), the critical path of the multiplier in terms of logic levels is:

Del T = N/r-1+Del+d s ,
where Del is the delay due to adder stages inside PPG j and d s is the delay due to multiplexer logic inside PPG ji . This latter depends on Mux factor of used PPG ji (2 1 , 2 2 , 2 5 , or 2 8). Therefore, d 1 < d 2 < d 5 < d 8 . Note that d s is fixed and Del depends on r and s values. For instance, according to equation [START_REF] Rieldlinger | A 32 nm 3.1 Billion Transistor 12-Wide-Issue Itanium Processor for Mission-Critical Servers[END_REF], Seidel algorithm exhibits a critical path of: II provides the area occupation and delay for each recoding algorithm.

Del T = N/8-1+6+d 8 =N/8+5+d 8 . Table

D. Physical implementation

All recoding schemes mentioned in Table II underwent several verification steps. First all equations were validated with a random C-program. Then, they were implemented at RTL level in Verilog-2001 (IEEE 1364) as technology-independent reusable IP-cores [START_REF]International Technology Roadmap for Semiconductors (ITRS)[END_REF], using exactly the same optimized coding style for an equitable comparison. They are compile-time reconfigurable according to N and r. Reader is referred to [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF], [START_REF] Seidel | Binary Multiplication Radix-32 and Radix-256[END_REF], and [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] for recoding tables used in equations (9), [START_REF] Rieldlinger | A 32 nm 3.1 Billion Transistor 12-Wide-Issue Itanium Processor for Mission-Critical Servers[END_REF], and (13), respectively.

All RTL codes went through a severe cycle-accurate functional verification procedure using Modelsim SE-6.3f logic simulator. They were first challenged against a set of special and severe test cases, and then submitted to a random test for a very large number of vectors. After a successful functional verification, physical tests were performed. They were integrated into an FPGA evaluation board for an ultimate validation. Afterwards, all equations were synthesized and mapped to the same Virtex-6 FPGA circuit (xc6vsx475t-2ff1156) using Xilinx ISE 13.2 release version [START_REF] Manmasson | FPGA in Industrial Control Applications[END_REF]. We used for comparison a two's complement 64×64 bit parallel multiplier. The implementation results are grouped in Table III.

Although Dimitrov recoding exhibits the shortest critical path in adder stages (N/8), the impact of multiplexer logic (d' 8) on the total performance is important (Table III). Besides, it is the most area consumer despite the fact that it employs the lowest number of adders (N/4-1). Adversely, Seidel algorithm is the most adder consumer (7N/8-1). To determine which factor, Mux T or Add T , exerts more influence on area occupation, let us compare their respective ratios for Seidel and Dimitrov algorithms: Mux T (Eq.13)/Mux T (Eq.10)=2.7 and Add T (Eq.10)/Add T (Eq.13)=3.5.

Significant conclusion: the area occupation is dominated by Mux T factor, and becomes larger as Mux T number becomes higher (Table II andIII). This correlation is advantageously used to minimize area occupation as will be shown in the next section.

McSorley algorithm (eq. 8) is the least area consumer and the slowest recoding scheme for any value of N. The best area/speed compromise for N=64 is given by our recoding scheme based on equation [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF]. However, this latter will be outperformed by equation [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] for larger values of N (N>64) since a higher radix (2 16) is employed.

While energy consumption is function of the switched capacitance, Table III shows a direct correlation between area occupation and energy consumption. Making Mux T indicator lower, will result in a less energy-consumer recoding algorithm.

Finally, based on theory and implementation results, we conclude that the best tradeoff related to our recoding schemes depends on N and r values. For larger N values (N>64), larger radices are necessary to reduce the critical path. But for larger radices (r>16) we need to duplicate some of the elementary PPG ji (2 1 ,2 2 ,2 5 ,2 8) to build up the radix-2 r PPG j . Therefore, at this level a relevant question arises: given N, what is the value of r and its corresponding elementary PPG ji configuration (optimal partitioning of PPG j) that leads to the shortest critical path (Del Tmin) with minimum hardware resources (Mux Tmin)? The answer to this question is given in the next sections.

IV. PRELIMINARY STUDY TO AN OPTIMAL PARTITIONNING

We extend the recoding-space of our equations (11) and [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] to the general case as follows: each r+1 bit slice is recoded using a, b, c, d instances of radix 2 8 , 2 5 , 2 2 , 2 1 algorithms, respectively, such that 8a+5b+2c+d=r. To this recoding scheme corresponds the following equation:

∑∑ ∑ ∑ - = - = - = - = + + + ⎢ ⎢ ⎣ ⎡ + + + = 1 0 1 0 1 0 1 0 5 8 2 8 5 8 2 . 2 . 2 . r N j a i b i c i b a i j i a i j i i j i C B A Y rj d i c b a i j i D 2 .
i j i - - - - - ∈ ; j i j i j i S R B + = . 7 with { } 2 1 0 1 2 , , , , - - ∈ j i R and { } 4 2 1 0 1 2 4 , , , , , , - - - ∈ j i S ; j i j i j i j i y y y C 1 2 2 1 2 2 + - - + = with } { 2 1 0 1 2 , , , , C j i - - ∈ ; finally j i j i j i y y D - = -1 with { } 1 0 1 , , D j i - ∈ .
The translation of equation (14) into architecture is depicted in Fig. 1.b (top view only), where each PPG j is built 11) and (12) correspond (0,1,1,1) and (1,1,1,1), respectively. Note that because of the general nature of equation (14), the d s term of Del T is equal to max(d 8 ,d 5 ,d 2 ,d 1) of used PPG ji .

Given N and r, to determine the optimal partitioning of the whole multiplier (global optimum since PPG j are identical), we need to find first the quadruplet (a,b,c,d) that satisfies the condition 8a+5b+2c+d=r and leads to the PPG j with minimum hardware ressources (Mux min) and the shortest critical path (Del min). As it is not sure that such a solution exists, we are using composite metrics A i T j of area (A) and delay (T) for i and j varying from 0 to 5 [START_REF] Alioto | Metrics and Design Consideration on the Energy-Delay Tradoff of Digital Circuits[END_REF]. A total of 11 metrics (A, A 5 T, A 4 T, A 3 T, A 2 T, AT, AT 2 , AT 3 , AT 4 , AT 5 , T) are used. The A metric alone delivers the best area solution (Mux min), while T metric provides the best delay solution (Del min). In between(A i T j), more-or-less balanced solutions are obtained. The implementation of this solution requires the (Mux, Del) couple (Table IV) corresponding to each basic recoding algorithm (2 8 ,2 5 ,2 2 ,2 1). Because of an explosive number of possible combinations (N>>), the solution space is exhaustively explored using a deterministic C-program for r varying from 8 to 1024. The obtained results are reported in Table V.

As conclusion, optimal area solutions (Mux=Mux min) are exclusively based on radix-2 2 algorithm (0,0,c,0), but they are excessively slow (Del>>Del min). While optimal speed solutions (Del=Del min) are entirely composed of radix-2 8 algorithm (a,0,0,0), but they are exaggeratedly large (Mux>>Mux min). Finally, balanced area/speed solutions are mainly based on radix-2 5 algorithm with at most one or two instances of radices 2 1 and 2 2 algorithms (0,b,c,d). However, even the "balanced" solution is not really balanced enough since the mean values of Del and Mux are 1.4×Del min and 5.2×Mux min , respectively. The reason is due to the large disparity between Mux values of the basic radices (Table IV). To correct this disequilibrium, we replace respectively the two Seidel radix-2 8 and 2 5 expressions (j i A and j i B) included in equation (14) by their mathematically equivalent counterparts as follows:

∑ = = 3 0 2 2 k ji k k j i C A and ji ji ji j i C C D B 1 3 0 0 2 2 + + =
. These new expressions are radix-2 8 and 2 5 , respectively. They produce respectively the same intermediary partial products at PPG ji output as their Seidel counterparts. In fact j VII. All solutions are optimal since Del=Del min and Mux=Mux min . They are all based on radix-2 8 algorithm (a,0,0,0). In case r is not a multiple of 8, optimal solutions are also obtained, composed mainly of radix-2 8 algorithm with at most one instance of radix-2 1 , 2 2 or 2 5 algorithms, depending on the remainder of r by 8 division. A -T: all the metric span A, A 5 T, A 4 T, A 3 T, A 2 T, AT, AT 2 , AT 3 , AT 4 , AT 5 , T. To A and T metrics correspond respectively the minimal values Mux min and Del min that serve as reference for the optimization process.

TABLE VI DELAY AND MULTIPLEXER

COMPLEXITY OF THE NEW BASIC RADICES: STEP #2 Algorithm Del Mux 2 1 0 5 2 2 0 10 2 5 2 25 2 8 3 40 The new results are so interesting that we are encouraged to pursue further the optimization process using higher basic sub-radices (s>8) to reduce the total delay (Del T) of the multiplier. Let us this time replace j i A and j i B as follows:

∑ = = 7 0 2 2 k ji k k j i C A and ∑ = = 3 0 2 2 k ji k k j i C B
.We eliminate radix-2 5 since it can be derived from radix-2 1 and 2 2 . The new Del and Mux values of basic radices are grouped in Table VIII. The C-program shows up even more interesting results since starting from r≥64 (Table IX), lower delays are obtained with the same multiplexer complexities as the ones reported in Table VII. Based on the obtained results, we pushed farther the optimization process using even higher basic sub-radices (s=16..32).

All optimal solutions come either on the form (a,0,0,0) or (0,b,0,0). At this level we can draw a significant conclusion: since optimal solution is always in the form (a,0,0,0) or (0,b,0,0) with a=2k and b=2k', there exists an integer s=2k'' such as either (s,0,0,0) or (0,s,0,0) is the optimal solution.

Consequently, equation (14) is rewritten accordingly, as follows:

rj r N j s r i si s k k ji k . C Y 2 2 2 1 0 1 0 1 2 0 2 ∑∑∑ - = - = - = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = (15)

A. Area occupation

For operand size N=64, equation (15) is a composite radix-2 32 algorithm (Table X), where each PPG j processes simultaneously 32+1 inputs that are split on four sub-radix-2 8 PPG ji made of four instances (ji k C) of McSorley algorithm (Fig. 4). Seidel and Dimitrov algorithms are rather radix-2 8 algorithms, based on mono-bloc PPG j .

In fact, although radix-2 8 PPG ji of equation (15) and radix-2 8 PPG j of Seidel and Dimitrov are based on different recoding schemes, they are mathematically equivalent since they produce the same partial product PP ji /PP j . Based on theory (Table II) and implementation results (Table III), Dimitrov recoding is the most space consuming due to the use of odd-multiples of the multiplicand. On the other hand, Seidel recoding does not require odd-multiples, but since 9 inputs are treated simultaneously in a mono-bloc PPG j , a large amount of multiplexer resources is needed to recode the 2 9 =512 input combinations. Finally, radix-2 8 PPG ji of equation (15) is the least area consumer because it does not employ odd-multiples and requires a small amount of multiplexers as the total number of input combinations in each radix-2 8 PPG ji is equal to 8+8+8+8=32. Note that the three recoding schemes are incorporating a number of adders in their PPG ji /PPG j which is 3, 6, and 1 for equation [START_REF] Kuang | Modified Booth Multipliers with a Regular Partial Product Array[END_REF], Seidel and Dimitrov algorithms, respectively.

Significant conclusion: the area occupation is dominated by the Mux factor, and becomes larger as Mux number becomes higher.

B. Delay

Using higher radices (r>>) will certainly shortens the critical path. However, for high r values, mono-bloc PPG j recoding induces an important delay (d s) due to the high density of multiplexer logic that significantly degrades the whole performance of the multiplier. This is clearly illustrated by Dimitrov radix-2 8 recoding whose critical-path totalizes 8 adder levels but exhibits a lower multiply rate (43.17 MMPS) compared to Seidel recoding that have a critical-path composed of 13 adder levels but shows a more interesting rate (48.62 MMPS) due to lower multiplexer complexity (Table II andIII). As for equation [START_REF] Kuang | Modified Booth Multipliers with a Regular Partial Product Array[END_REF], since a composite PPG j is used, d s is equal to d 2 (ji k C delay) which is the smallest delay (d 2 < d 5 < d 8). Besides, the critical path goes through the smallest number (7) of adder stages, exploiting maximum parallelism that can be provided by the triple-recursive equation [START_REF] Kuang | Modified Booth Multipliers with a Regular Partial Product Array[END_REF]. Thus, it is not surprising that equation [START_REF] Kuang | Modified Booth Multipliers with a Regular Partial Product Array[END_REF] achieves the best performance (78.98 MHz), even when compared to Xilinx Coregen multiplier based on DSP-slices (75.86 MHz). A double-recursive (s=2) version of equation (15) served to design a scalable 16-bit setpoint Finite-Word-Length PID controller, employing five multiplication cores. The implementation results outperformed the published ones at all levels [START_REF] Oudjida | High-Speed and Low-Power PID Structures for Embedded Applications[END_REF].

Significant conclusion: using composite recoding in conjunction with an optimal partitioning (r and s values) provides the shortest critical path.

Equation [START_REF] Kuang | Modified Booth Multipliers with a Regular Partial Product Array[END_REF] shows high aptitude for pipelining. Two finely and coarsely grained systolic architectures for 64-bit multiplier are depicted in Fig. 5.a and Fig. 5.b, respectively. Fig. 5.a architecture is more suitable for high throughput applications, with 7 clock-cycle latency.

VII. CONCLUSION AND FUTUR WORK

Upon the basis of the new multibit recoding multiplication algorithm, we developed optimal parallel multipliers with shortest critical paths and minimum hardware resources for any value of operand size N. We demonstrated by theory and FPGA implementation the superiority of our high-radix algorithms over their existing counterparts. Because exploiting the maximum parallelism inherent in multiply operation, our look-up-table based multiplier (eq. 15) is even speed-competitive with Xilinx's hardwired multiplier employing DSP-Slices (18×18 bit fullcustom multipliers).

More importantly, we demonstrated also that the current trend relying upon minimal number-bases for the development of high radix-2 r recoding (r≥8) with monobloc PPG requires an excessive amount of multiplexer resources, which offsets speed and power benefits of the compressor factor N/r. On the other hand, we proved that composite PPG based on the new recursive multibit recoding algorithm is the best realistic alternative.

The topology of our proposed recoding schemes shows high capabilities for pipelining which can be finely or coarsely grained to satisfy both high throughput and low latency applications. A radix-2 32 64-bit parallel multiplier was finely pipelined, resulting in a systolic architecture with seven clock-cycle latency.

While the theoretical concept was validated using FPGA as a preliminary step, an ASIC implementation based on a standard-cell library is necessary for an ultimate validation of the whole optimization work. This issue will be explored in the near future, and we intend to report our results in a forthcoming paper.)

+ - + - + - - + - 0

A 1 I(1)Fig. 1 .

 111 Fig. 1. Generalized N×N bit radix-2 r parallel multiplier. (a) Critical path in conventional [2][4][5][6][7][8] and recent [3][9][10] [11][12] radix-2 r multipliers. O(X) is the necessary set of odd-multiples corresponding to radix-2 r recoding. PPG j of [11][12] includes a number of adders to accumulate intermediary partial product. (b) Critical path in our proposed radix-2 r multipliers. Main features are: no odd-multiples, much more compact PPG j , much shorter critical path. (b) 2 r is the main radix and 2 s is the sub-radix PP: Partial Product

Fig. 2 .

 2 Fig. 2. Two's complement 64×64 bit multiplier. (a) Radix-2 8 multiplier. Space partitioning according to equation (11) (b) Radix-216 multiplier. Space partitioning according to equation[START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF]

 a fixed number of adders Del T is the delay in adder levels of the total critical path. Del is the delay in adder levels inside PPG j and d s is the delay due to multiplexer logic inside PPG ji

Fig. 3 .

 3 Critical path (Del+d i) inside a generalized PPG j r +1 bits up using a mixture of four different PPG ji depending on the quadruplet (a,b,c,d) as illustrated by Fig.3. For instance, to equations (

iA

 is formed by a succession of four instances of McSorley algorithm, while j i B is composed of one instance of Booth algorithm followed by two instances of McSorley algorithm. Del and Mux values of the new basic radices are grouped in Table VI. Results delivered by the deterministic C-program are reported in Table

Fig. 4 .

 4 Fig.[START_REF] Benschneider | A Pipelined 50MHz CMOS 64-Bit Floating-Point Arithmetic Processor[END_REF]. Optimal partitioning of a two's complement 64×64 bit radix-2 32 parallel multiplier based on equation (15) with (r,s)=(32,8).

CFig. 5 .

 5 Fig. 5. Space/Time partitioning of a two's complement 64×64 bit radix-2 32 parallel multiplier based on equation (15). (a) High-throughput finely-grained systolic architecture; (b) Low-latency coarsely-grained systolic architecture.

 In fact the Q j term is no more than a two's complement representation of r+1 bit string which can be split in its turn into r/s two's complement overlapping slices (P ji), each of s+1 bit length. Thus Y becomes:

 is depicted in Fig.1to illustrate the use of theorem 1 in the partitioning of a 16-bit Y operand.Proof of theorem 2:Likewise, Y can also be rewritten as follows:

 is depicted in Fig.2to illustrate the use of theorem 2 in the partitioning of a 16bit Y operand.

y - 1 1 YFigure 1 . 1 YFigure 2 .

 11112 Figure 1. Partitioning of a 16-bit Y operand with r=8 and s=4 Y 16+1 bits Q j 8+1 bits

TABLE II

 II

									MAIN FEATURE COMPARISON						
	Features	Our recoding algorithms Eq. (11) Eq. (12)	McSorley [13] Eq. (8)	Seidel [11] [19] Eq. (10)	Dimitrov [12] Eq. (13)
	Radix		2 8					2 16				2 2				2 8				2 8
	Del T	8 N	+	3	+	d	5	16 N	+	8	+	d	8	2 N	-	1	+	d	2	8 N	+	5	+	d	8	N 8	+	d	' 8
	Mux T		19	N				106	N				5	N				194	N			520	N

 Synthesis tool was forced to map RTL code to distributed slices of FPGA and avoid mapping to builtin 18x18 bit hardwired multipliers (DSP slices).

	1	3219	4659	2103	5251	6599
	Energy 2	1.63	2.11	1.46	2.49	2.48
	Speed 3	52.4	49.34	30.04	48.62	43.17

1: Area occupation in number of Virtex-6 slices. 2: Energy consumption per multiplication operation (pJ). 3: Million multiplications per second (MMPS).

TABLE V

 V

	OPTIMAL PPG j SOLUTION (a,b,c,d) LEADING TO THE OPTIMAL RADIX-2 r MULTIPLIER ACCORDING TO COMPOSITE METRICS A i T j
	r size (bits)	Criteria	Instance Number a b c d	Del Mux Del min Mux min

 value corresponds to the number of bits that are treated simultaneously inside each PPG ji , while r value indicates the number of bits that are processed simultaneously inside each PPG j . d s is not included in Del T since d 2 <d 8 <d' 8 .

	and	C	ji k	y	ji k	y	ji k	y	ji k
										Del T	Del T	Del T
									8	4	8	2	3	6	1
									16 4	8	3	7	7	2
									32 8	16	5	15	9	4
									64 8	32	7	31	13	8
									128 8	32	9	63	21	16
									256 16 64	13	127	37	32
									512 16 128 17	255	69	64
									1024 16 128 21	511	133	128
									2048 32 256 28	1023	261	256
									4096 32 512 35	2047	517	512
									8192 32 512 45	4095	1029	1024
									s

ACKNOWLEDGMENT

This work is supported by "Centre de Développement des Technologies Avancées, CDTA," Algiers, Algeria, under project contract number: 21/CRSOC/DMN/CDTA/2011. The project progresses under a close cooperation with "Franche Comté Electronique Mécanique Thermique et Optique-Sciences et Technologies, FEMTO-ST " Besançon, France.

The authors wish to thank T. Hilaire and B. Djezzar for their careful review of this manuscript.

Based on heuristic developed in Section III, multiplexer complexity of equation [START_REF] Kuang | Modified Booth Multipliers with a Regular Partial Product Array[END_REF] for the whole multiplier is always equal to Mux T =10×N/2=5N for any value of r and s. As for the multiplier delay (Del T), we need to determine the couple (r,s) that leads to the shortest critical path in terms of adder levels. This is what is achieved in the next section.

V. THE OPTIMAL PARTITIONNING

The total delay (Del T) of the whole multiplier related to equation (15) is: Del T = N/r-1+Del+d 2 where Del is the PPG j delay equal to (r/s-1)+(s/2-1), and d 2 is the multiplexer delay corresponding to the recoding logic of radix-2 2 . Thus, Del T = N/r+r/s+s/2-3+d 2 .

The optimal delay with regard to r is obtained for (r,s) couples satisfying () . Likewise, the optimal delay with regard to s is obtained for s value satisfying ()

. Hence, the optimal delay becomes:

Finally, we conclude that the optimal N-bit multiplier, in comparison to equation (8) [START_REF] Mcsorley | High-Speed Arithmetic in Binary Computers[END_REF], relies on the new triple recursive equation (15) with (r,s)=(3

). Table X provides the s and r values that lead to the optimal partitioning with respect to the operand size N. The values s and r correspond to the number of multiplier bits that are treated simultaneously inside each PPG ji and each PPG j , respectively. For N=64, the optimal partitioning is obtained with (r,s)=(32,8) as illustrated by Fig. 4. Whereas equations (15) and (8) require the same amount of hardware resources (Mux T , Add T)=(320,31), they exhibit different critical paths: 7 and 31 in terms of adder levels, respectively.

VI. DISCUSSION OF THE IMPLEMENTATION RESULTS

We proved via FPGA implementation (Table III) how much accurate are the area heuristics developed in Section III (Table II). Based on this, we have undertaken a gradual theoretical optimization process that yielded to equation [START_REF] Kuang | Modified Booth Multipliers with a Regular Partial Product Array[END_REF]. This latter is implemented on FPGA with N=64, and the results in terms of multiply-time, energy consumption per multiply-operation, and total gate count, are as follows: 78.98 MMPS, 1.45pJ and 1987 slices, respectively. Compared to implementation results of Seidel and Dimitrov algorithms (Table III), gain ratios of 1.62, 1.71, 2.64 and 1.83, 1.71, 3.32 are obtained, respectively. A 64-bit multiplier generated by Xilinx Coregen exhibits 75.86 MMPS and consumes twelve 18×18 bit DSP-slice multipliers.

The real reasons behind these important results are cleared up as follows. 8 3 40 2 16 7 80

TABLE X THE OPTIMAL PARTITIONING VERSUS OPERAND SIZE N Our recoding Equation (15)

McSorley [START_REF] Mcsorley | High-Speed Arithmetic in Binary Computers[END_REF] Equation (8)

Seidel [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF][19] Equation (10)

Dimitrov [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] Equation (13

APPENDIX

Proof of theorem 1: Initially, the multiplier Y is an N bit string. But to comply with the requirement of the multibit recoding algorithm [START_REF] Sam | A Generalized Multibit Recoding of Two's Complement Binary Numbers and its Proof with Application in Multiplier Implementation[END_REF], we need to add a zero bit (y -1) to the less significant side of Y.

Thus, the total size becomes N+1.

Y is a two's complement number. It is written as follows:

In the multibit recoding algorithm, the multiplier Y is split into N/r two's complement slices (j Q), each of r+1 bit length. Two contiguous slices (Q j with Q j-1 , and Q j with Q j+1) have one overlapping bit in common. Thus Y becomes: