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BACKGROUND AND MOTIVATION

The continuous refinement of the mostly-used design paradigm based on modified Booth algorithm [START_REF] Macsorley | High-Speed Arithmetic in Binary Computers[END_REF] combined to a reduction tree (carry-save-adder array , Dadda,…) has reached saturation. In [START_REF] Lamberti | Reducing the Computation Time in (Short Bit-Width) Two's Complement Multiplier[END_REF] only slight improvements are achieved. The proposal reduces the partial product number from N/2+1 to N/2 using different circuit optimization techniques of the critical path.

Theoretically, only the signed multibit recoding multiplication algorithm [START_REF] Sam | A Generalized Multibit Recoding of Two's Complement Binary Numbers and its Proof with Application in Multiplier Implementation[END_REF] is capable of a drastic reduction (N/r) of the partial product number, given that r+1 is the number of bits of the multiplier that are simultaneously treated (1≤r≤N). Unfortunately, this algorithm requires the precomputation of a number of odd multiples of the multiplicand (until (2 r-1 -1).X) that scales linearly with r. The large number of odd multiples not only requires a considerable amount of multiplexers to perform the necessary complex recoding into PPG, but dramatically increases the routing density as well. Therefore, a reverse effect occurs that offsets speed and power benefits of the compression factor (N/r). This is the main reason why the multibit recoding algorithm was abandoned. In practice, designs do not exceed r=3 (radix-8).

The current trend [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF] [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] relies upon advanced arithmetic to determine minimal number bases that are representatives of the digits resulting from larger multibit recoding. The objective is to eliminate information redundancy inside r+1 bit-length slices for a more compact PPG. This is achievable as long as no or just very few odd multiples are required.

In [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF], Seidel et al. have introduced a secondary recoding of digits issued from an initial multibit recoding for 5≤r≤16. The recoding scheme is based on balanced complete residue system. Though it significantly reduces the number of partial products (N/r for 5≤r≤ 16), it requires some odd multiples for r≥8. While in [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF], Dimitrov et al. have proposed a new recoding scheme based on double base number system for 6≤r≤11. The algorithm is limited to unsigned multiplication and requires a larger number of odd multiples.

Instead of looking for more effective number bases, which is a hard mathematical task, our approach consists in exploiting already existing odd-multiple free recoding algorithms (2 1 , 2 2 , 2 5 , and 2 8 ) to recursively build up generalized oddmultiple free radix-2 r recoding schemes.

To achieve such a goal, the multibit recoding multiplication algorithm is revisited [START_REF] Sam | A Generalized Multibit Recoding of Two's Complement Binary Numbers and its Proof with Application in Multiplier Implementation[END_REF]. Its design space is extended by the introduction of a new recursive version that enables a hardware-friendly space-time partitioning of the multiplication problem. Depending on r value ranging from 2 to N, highlyscalable signed multipliers with various levels of parallelism and latencies can be systematically generated with insignificant control-complexity. The new algorithm has also the merit to recursively reduce the number of partial products (N/r) without any limit for the parameter r and any need for the odd multiples of the multiplicand. It also allows the combination of different recoding schemes proposed in the literature into the same architecture for better performances of the multiplier. Several higher radix (2 3 -2 32 ) two's complement 64x64 bit serial/parallel multipliers based on combined recoding schemes are implemented on Virtex-6 FPGA and characterized in terms of speed, power, and area occupation for r value ranging from 2 to 64. Compared to a new signed version of Dimitrov et al. algorithm [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] and Seidel et al. algorithm [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF], outstanding results are obtained with the new multibit recoding scheme for r=8 formed by the combination of Seidel algorithm (r=5), MacSorley algorithm (r=2) [START_REF] Macsorley | High-Speed Arithmetic in Binary Computers[END_REF] and Booth algorithm (r=1) [START_REF] Booth | A Signed Binary Multiplication Te:chnique[END_REF].

The respective savings are as follows: 21%, 53%, 105% and 8%, 52%, 63% are obtained in terms of multiply-time, energy consumption per multiply-operation, and total gate count, respectively.

The paper is organized as follows. Section I outlines the main requirement specifications for a generalized radix-2 r multiplication. Section II introduces the new recursive multibit recoding multiplication algorithm. A number of high-radix (2 3 -2 32 ) variants of the new algorithm accompanied with their implementation results are presented in Section III.

II. THE NEW RECURSIVE MULTIBIT RECODING

MULTIPLICATION ALGORITHM

The equation (2.1.2) of the original multibit recoding algorithm presented in [START_REF] Sam | A Generalized Multibit Recoding of Two's Complement Binary Numbers and its Proof with Application in Multiplier Implementation[END_REF] does not offer hardware visibility. Let us rewrite it in a simpler hardware-friendly form, as follows:
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Where

0 1 = - y and * Ν ∈ r
. For simplicity purposes and without loss of generality, we assume that r is a divider of N .

In equation ( 1), the two's complement representation of the multiplier Y is split into N/r two's complement slices ( j Q ), each of r+1 bit length. Each pair of two contiguous slices has one overlapping bit. In literature, equation ( 1) is referred to by radix-2 r equation, to which corresponds a digit set ( )

r D 2 such as ( ) { } 1 1 2 0 2 2 - - - = ∈ r r r j , ... , , ... , D Q
. Thus, the multiplication between X and Y becomes:

rj r N j j Q X Y X 2 . . . 1 0 ∑ - = =
(2). Where each partial product can be expressed as follows:

( ) ( )

X m Q X e s rj j . . 2 . 1 2 . . - = , with ( ) { } 1 2 ..., , 3 , 1 2 1 - = ∈ - r r m O m such as ( ) 2 2 2 - = r r m O .
( ) r m O 2 represents the required set of odd-multiples of the multiplicand (m.X) for radix-2 r . Hence, the partial-product generation-process consists first in selecting one odd-multiple (m.X) among the whole set of pre-computed odd-multiples, which is then submitted to a hardwired shift of e positions, and finally conditionally complemented (-1) s depending on the bit sign s of Q j term.. While lower m.X can be obtained using just one addition (3X=2X+1X), the calculation of higher ones may require a number of computation steps (11X= 8X+2X+1X).

To bypass the hard problem of odd-multiples, we exploit the fact that the two's complement multiplier Y on which equation ( 1) is applied, is composed of a series of two's complement digits ( j Q ) on which equation (1) can be recursively applied again. Based on this observation, let us announce the two following theorems.

Theorem 1. Any digit ( )

r j D Q 2 ∈
can be represented in a combination of digits ( )

s i D P 2 ∈
, such as s is a divider of r.

When theorem (1) is applied to equation (1), it gives: 

P . X Y . X 2 2 1 0 1 0 ∑ ∑ - = - = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = (4) 
Theorem 2. Any digit ( )

r j D Q 2 ∈
can be represented in a combination of digits P i +T i such as ( )

s i D P 2 ∈ and
( )

t i D T 2 ∈
with s+t a divider of r , and t < s.

Likewise, when theorem ( 2) is applied to equation (1), we obtain:

[ ] ( ) rj r N j t s r i i t s s ji ji T P Y 2 2 2 1 1 0 ∑ ∑ - - + = + ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ + = (5). 
Where

( ) { } 1 1 2 , ... , 0 , ... , 2 2 - - - = ∈ s s s ji D P with ( ) { } 1 2 3 1 2 1 - = - s s m ..., , , O and 
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Theorem ( 1) and ( 2) allow an exponential reduction (1/2 ks and 1/2 k(s+t) , resp.) of the number of odd-multiples in equations ( 4) and ( 6) in comparison to equation ( 2), but at the expense of a linear augmentation (ks-1 and k(s+t)-1, resp.) in the number of additions. The advantage by far outweighs the cost, as practically shown in the next section.

The translation of equation ( 4) into architecture is depicted by Fig. 1, where each PPG j (Q j ) is built up using identical PPG ji (P ji ). This is not the case for equation ( 6) which requires two different PPG ji (P ji and T ji ) . Theorem ( 1) and ( 2) can be merged together to produce PPG j made of a number of different PPG ji (P ji ,T ji , U ji , V ji ,...). This is the general case that is thoroughly studied in the next section in order to determine the optimal multiplier. 
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Slice size of the multiplier (r bits) Figure 3. Max. energy consumption per mult. operation versus r. 2) permit to build up any high radix-2 r multiplication algorithm based on lower sub-radices, employing much less odd-multiples. The objective is to generate high radix-2 r multiplication without odd-multiples for a maximum reduction of multiplexer complexity inside PPG j . To achieve such a goal, a number of odd-multiple free lowradix algorithms are used, such as Booth algorithm [START_REF] Booth | A Signed Binary Multiplication Te:chnique[END_REF] (radix-2 1 ), McSorley algorithm [START_REF] Macsorley | High-Speed Arithmetic in Binary Computers[END_REF] (radix-2 2 ), Seidel et al. algorithms [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF] (radix-2 5 and radix-2 8 ). The combination of these four algorithms enabled the generation of a series of higher radix recoding schemes (2 3 -2 32 ) with minimum hardware resources (Table I). The generation process was manually guided by an heuristic (Table II) that evaluates the logic complexity (Mux) inside each PPG j (Fig. 1).

The multipliers were mapped to Virtex-6 FPGA and characterized in terms of multiply-time, energy consumption per multiply-operation, and area occupation for r value varying from 2 to 64. The obtained results (Fig. 2, 3, and4) showed an outstanding superiority of our algorithms over their recent counterparts [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF] [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF]. When comparing our algorithms to each other, ß2 2 algorithm is the most area and energy efficient algorithm for any value of r (Table II). For r ranging from 8 to 64, ß''2 8 is the fastest algorithm, but it is outperformed by ß2 32 for r values greater than 64. ß2 2 algorithm served to design a 16-bit set-point PID. The implementation results outperformed the published ones at all levels [START_REF] Oudjida | High-Speed and Low-Power PID Structures for Embedded Applications[END_REF]. 
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 1 Figure. 1. Generalized N×N bit radix-2 r parallel multiplier based on sub-radix 2 s . Space partitioning according to r and s values.
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