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Abstract—In this paper, a new recursive multibit recoding 
multiplication algorithm is introduced. It provides a general 
space-time partitioning of the multiplication problem that not 
only enables a drastic reduction of the number of partial 
products (n/r), but also eliminates the need of pre-computing 
odd multiples of the multiplicand in higher radix (ß≥8) 
multiplication. Based on a mathematical proof that any higher 
radix ß=2r can be recursively derived from a combination of 
two or a number of lower radices, a series of generalized radix 
ß=2r multipliers are generated by means of primary radices:   
21 , 22, 25, and 28. A variety of higher-radix (23 - 232) two’s 
complement 64x64 bit serial/parallel multipliers are 
implemented on Virtex-6 FPGA and characterized in terms of 
multiply-time, energy consumption per multiply-operation, 
and area occupation for r value varying from 2 to 64. 
Compared to reference algorithm, savings of 8%, 52%, 63% 
are respectively obtained in terms of speed, power, and area. 
In addition, a new low-power and highly-flexible radix 2r 
adapted technique for a multi-precision multiplication is 
presented.  
 

Index Terms— High-Radix Multiplication, Low-Power 
Multiplication, Multibit Recoding Multiplication, Multi-
Precision Multiplication, Partial Product Generator (PPG) 

I. BACKGROUND AND MOTIVATION 
N multiplication-intensive applications, as in digital signal 
processing or process control, multiply-time is a critical 

factor that limits the whole system performance. When these 
types of applications are embedded, energy consumption per 
multiply operation becomes an additional critical issue. 
Furthermore, in high-precision or large-operand-size 
applications such as in cryptography, the need for a scalable 
serial/parallel multiplier is essential as the multiplier size 
grows quadratically O(n2) with operand size n. 
Consequently, high-speed, low-power, and highly-scalable   
architecture are the three major requirements for today’s 
general purpose multiplier [1]. 

The continuous refinement of the mostly-used design 
paradigm based on modified Booth algorithm [2] combined 
to a reduction tree (carry-save-adder array , Dadda[3], 
HPM[4]) has reached saturation. In [5] and [6] only slight 
improvements are achieved. Both proposals reduce the 
partial product number from n/2+1 to n/2 using different 
circuit optimization techniques of the critical path. 

Theoretically, only the signed multibit recoding 
multiplication algorithm [7] is capable of a drastic reduction 
(n/r) of the partial product number, given that r+1 is the 
number of bits of the multiplier that are simultaneously 
treated (1≤r≤n). Unfortunately, this algorithm requires the 
pre-computation of a number of odd multiples of the 
multiplicand (until (2r-1-1).X) that scales linearly with r. The 
large number of odd multiples not only requires a 
considerable amount of multiplexers to perform the 

necessary complex recoding into PPG, but dramatically 
increases the routing density as well. Therefore, a reverse 
effect occurs that offsets speed and power benefits of the 
compression factor (n/r). This is the main reason why the 
multibit recoding algorithm was abandoned. In practice, 
designs do not exceed r=3 (radix 8).   

The current trend [8][9] relies upon advanced arithmetic 
to determine minimal numeric bases that are representatives 
of the digits resulting from larger multibit recoding. The 
objective is to eliminate information redundancy inside r+1 
bit-length slices for a more compact PPG. This is achievable 
as long as no or just very few odd multiples are required.  

In [8], Seidel et al. have introduced a secondary recoding 
of digits issued from an initial multibit recoding for 5≤r≤16. 
The recoding scheme is based on balanced complete residue 
system. Though it significantly reduces the number of 
partial products (n/r for 5≤r≤ 16), it requires some odd 
multiples for r≥8. While in [9], Dimitrov et al. have 
proposed a new recoding scheme based on double base 
number system for 6≤r≤11. The algorithm is limited to 
unsigned multiplication and requires a larger number of odd 
multiples. 

Instead of looking for more effective numeric bases, 
which is a hard mathematical task, our approach consists in 
exploiting already existing odd-multiple free recoding 
algorithms (21 , 22, 25, and 28) to recursively build up 
generalized odd-multiple free radix 2r recoding schemes.  

To achieve such a goal, the multibit recoding 
multiplication algorithm is revisited [7]. Its design space is 
extended by the introduction of a new recursive version that 
enables a hardware-friendly space-time partitioning of the 
multiplication problem. Depending on r value ranging from 
2 to n, highly-scalable signed multipliers with various levels 
of parallelism and latencies can be systematically generated 
with insignificant control-complexity. The new algorithm 
has also the merit to recursively reduce the number of 
partial products (n/r) without any limit for the parameter r 
and any need for the odd multiples of the multiplicand. It 
also allows the combination of different recoding schemes 
proposed in the literature into the same architecture for 
better performances of the multiplier. Several higher radix     
(ß=23, 232)  two’s complement 64x64 bit serial/parallel 
multipliers based on combined recoding schemes are 
implemented on Virtex-6 FPGA and characterized in terms 
of speed, power, and area occupation for r values ranging 
from 2 to 64. Compared to a new signed version of 
Dimitrov  et al. algorithm [9] and Seidel et al. algorithm [8], 
outstanding results are obtained with the new multibit 
recoding scheme for r=8 formed by the combination of 
Seidel algorithm (r=5), MacSorley algorithm (r=2) [2] and 
Booth algorithm (r=1) [10]. The respective savings are as 
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follows: 21%, 53%, 105% and 8%, 52%, 63% are obtained 
in terms of multiply-time, energy consumption per multiply-
operation, and total gate count, respectively. In addition, a 
new low-power and high-throughput radix 2r adapted 
technique for multi-precision multiplication is introduced. 
Contrary to existing techniques [11][12], this new one 
allows a customized partitioning of the operands in any 
number of sub-operands and in any sub-operand bit-sizes. 

The paper is organized as follows. Section I outlines the 
main requirement specifications for a generalized radix 2r 
multiplication. Section II introduces the new recursive 
multibit recoding multiplication algorithm. Afterwards, 
some high-radix (ß=23, 28) variants of the new algorithm are 
presented in Section III, while their implementation results 
are discussed in Section IV. Higher radix (ß=28, 232) 
algorithms are introduced in Section V.  Section VI 
describes the new low-power technique for multi-precision 
multiplication. Finally, Section VII provides some 
concluding remarks and suggestions for future work. 

II. THE NEW RECURSIVE MULTIBIT RECODING   
MULTIPLICATION ALGORITHM  

The equation (2.1.2) of the original multibit recoding 
algorithm presented in [7] (see Appendix) does not offer 
hardware visibility. Let us rewrite it in a simpler hardware- 
friendly form, as follows: 

(∑
−

=
++− ⋅⋅⋅++++=

1

0
2

2
1

10
1 222

r
n

j
rjrjrjrj yyyyY                  

                ) ∑
−

=
−+

−
−+

− =−+
1

0
1

1
2

2 2222
r
n

j

rj
j

rj
rrj

r
rrj

r Qyy       (1) 

  Where 01 =−y  and *Ν∈r . For simplicity purposes and 
without loss of generality, we assume that r is a divider of n.  

In this general case, the multiplier Y is split into n/r slices, 
each of r+1 bit length. Each pair of two contiguous slices 
has one overlapping bit. In literature, equation (1) is referred 
to by radix ß=2r, to which corresponds a digit set D(2r) such 
as { }11 2022 −−−=∈ rrr

j ,...,,...,)(DQ . 

Thus, the signed multiplication between X and Y 
becomes:  
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Where each partial product can be expressed as follows: 
( ) ( )XmQX esrj

j ..2.12.. −= , with  

( ) { }12312 1 −=∈ −rr
m ...,,,Om . Om(2r) represents the 

required set of odd multiples of the multiplicand (m.X) for 
radix 2r . Hence, the partial product generation process 
consists first in selecting one odd multiple (m.X) among the 
whole set of pre-computed odd multiples, which is then 

submitted to a hardwired shift of e positions, and finally 
conditionally complemented (-1)s depending on the bit sign 
s of Qj term. Table I provides a picture on how the number 
of odd multiples grows when the radix becomes higher. 
While lower m.X can be obtained using just one addition 
(3X=2X+1X), the calculation of higher ones may require a 
number of computation steps (11X= 8X+2X+1X). 

To bypass the hard problem of odd multiples, let us 
announce the two following theorems accompanied with 
their respective proofs: 
Theorem 1. Any digit )(DQ r

j 2∈  can be represented in a 

combination of digits )( s
ji DP 2∈ , such as s is a divider of r. 

Proof.  Equation (1) is recursively applied on Qj term of 
equation (1). Thus, equation (1) becomes: 
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    Where ( ) { }11 2022 −−−=∈ sss
ji ,...,,...,DQ  with 

( ) { }12312 1 −=∈ −ss
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Theorem 2. Any digit )2( r
j DQ ∈ can be represented in a 

combination of digits Pji+Tjk such as )( s
ji DP 2∈ and 

)( t
jk DT 2∈  with  s+t  a divider of r  ,  and t < s. 

Proof.  Equation (1) can also be rewritten as follows: 
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TABLE I 
MAIN FEATURES OF THE MULTIBIT RECODING MULTIPLICATION ALGORITH 
Radix Nbr. of Partial Products Odd Multiples (m.X) 

21 n 1X 
22 n/2 1X 
23 n/3 1X, 3X 
24 n/4 1X, 3X, 5X, 7X 
25 n/5 1X, 3X, 5X, 7X, 9X, 11X, 13X, 15X 

In radix  2r, the multiplier Y is divided into n/r slices, each of r+1 bit 
length. Each pair of two contiguous slices has one overlapping bit.  

(3)  

(4)  
(2)  
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As a result of theorems (1) and (2), much less odd 
multiples are needed in partial products of equations (4) and 
(6) than in equation (2), but at the expense of a number of 
additions. The advantage by far outweighs the cost, as 
practically shown in the next section. The translation of 
equation (4) into architecture is depicted by Fig. 1, where 
each PPGj is built up using identical PPGji. This is not the 
case for equation (6) which requires two different PPGji. 
Theorem (1) and (2) can be merged to produce PPGj made 
of a number of different PPGji. 

   

III. SOME VARIANTS OF THE NEW RECURSIVE MULTIBIT 
RECODING   MULTIPLICATION ALGORITHM  

Theorems (1) and (2) permit to build up any higher radix 
multiplication algorithm based on lower radices. But the 
objective is to generate higher radix multiplication without 
odd multiples. To achieve such a goal, a number of odd-
multiple free low-radix algorithms are used, such as Booth 
algorithm [10] (radix 21), modified Booth algorithm [2] 
(radix 22), Seidel et al. algorithms [8][13] (radix  25 and 
radix 28). 

Booth and modified Booth recoding are respectively 
derived form equation (3) for (r,s)=(1,1) and (r,s)=(2,2). 
They are respectively summarized as follows: 
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With ( ) { }1012 ,,D −=    and   ( ) { }12 =mO  
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    With ( ) }{ 2,1,0,1,222 −−=D   and   ( ) { }122 =mO  

Higher radices are obtained as follows. 

A. Radix 23 recoding 
Radix 23 recoding based on equation (1) gives: 
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With ( ) { }4...,,0,...,423 −=D  and ( ) { }3,123 =mO  
While radix 23 recoding based on equation (5) delivers: 
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In fact, equation (9) is a combination of Booth 
( ( ) { }121 =mO ) and modified Booth algorithms 

( ( ) { }122 =mO ). Hence, for equation (9), ( ) { }123 =mO . 
Furthermore, equation (9) is recursively used to generate 

any radix 2r recoding with ( ) { }12 =r
mO  based on radix 23, 

as follows: 
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This equation is referred to by ß23 for later comparison 
with other general radix algorithms based on lower radices. 
Its corresponding architecture is illustrated by Fig. 2.  

B. Radix 24 recoding 
For r=4, equation (1) needs an ( ) { }7,5,3,124 =mO , while 

equation (3) with (r,s)=(4,2) requires an ( ) { }124 =mO . 
Three odd multiples are eliminated at the expense of one 
addition. The general radix (2r) recoding with ( ) { }12 =r

mO  

based on radix 22 is:  rj
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C. Radix 25 recoding 
For r=5, eq. (1) needs an ( ) { }15,13,11,9,7,5,3,125 =mO . 

In this case we do recourse to Seidel et al. algorithm [8][13]: 
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With { } { }421012421012 ,,,,,,P;,,,,Q jj −−−∈−−∈  

and ( ) { }125 =mO  
 Equation (10) is integrated into equation (3), which gives 
the following general recursive form with ( ) { }12 =r

mO : 
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   Fig. 1.  Generalized n×n bit radix 2r parallel multiplier based on 
   sub-radix 2s. Space partitioning according to r and s values 
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As application, radix 210= 1024 with ( ) { }1210 =mO  and 
just five additional adders is obtained with:  
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D. Radix 28 recoding 
Seidel et al. [13] recoding for radix 28 with ( ) { }128 =mO  

is: [ ]
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With { } and,,,,Q j 21012 −−∈  

{ }1684210124816 ,,,,,,,,,,T,P jj −−−−−∈  

Equation (11) is incorporated into equation (3) to obtain 
the general recursive form with ( ) { }12 =r

mO . It gives: 
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For performance comparison, we developed a new signed  
radix 28 recoding with ( ) { }7,5,3,128 =mO  based on 
unsigned radix 27 recoding with ( ) { }7,5,3,127 =mO  
proposed by Dimitrov et al. in [9]. The new recoding is: 
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Likewise, equation (12) is integrated into equation (3). The 
general recursive form with ( ) { }75312 ,,,O r
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IV. DISCUSSION OF THE IMPLEMENTATION RESULTS 
In the preceding section, we introduced five generalized 

multibit space-time partitioning schemes, which are:        
ß22, ß23, ß25, ß28, and ß'28. They all require ( ) { }12 =r

mO  
except ß'28 that needs ( ) { }75312 ,,,O r

m = . 
In this paper, only the serial/parallel form is explored 

(Fig. 3), targeting applications where the serialization of 
multiplication is mandatory. This is the case for instance in 
embedded digital PID (Peripheral Integral Derivative) 

controller where five multiplication cores are 
required [14], or for high-precision or very large 
operand size applications (cryptography) where a 
fully-parallel n×n bit implementation is excluded.  

In signed serial/parallel multiplication, r-bit 
slices of the multiplier are processed each clock 
cycle, which induces a theoretical multiply time of 
n/r for a double precision product (2n bits). The 
special cases where r=n and r=rmin correspond to 
fully-parallel and fully-sequential multiplier, 
respectively. In between (r=2rmin , n/2), partially-
parallel multipliers are obtained. In fact, the lower 
limit of r depends on the recoding scheme used  
(ex: for ß25, rmin=5). Reader is referred to [8], [13], 
and [9] for recoding tables used respectively in ß25, 
ß28, and ß'28. 

Before comparison, all recoding schemes 
proposed in this paper underwent several steps of 
verification. First all equations were validated with a 
random C-program. Then, they were implemented at RTL 
level in Verilog-2001 (IEEE 1364) as technology-
independent reusable IP-cores [1], using exactly the same 
optimized coding style for an equitable comparison. They 
are compile-time reconfigurable according to n and r. All 
RTL codes went through a severe cycle-accurate functional 
verification procedure using Modelsim SE-6.3f logic 
simulator. They were first challenged against a set of special 
and severe test cases (visual simulation), and then submitted 
to a random test for a very large number of vectors. After a 
successful functional verification, physical tests were 
performed. They were integrated into an FPGA evaluation 
board for an ultimate validation. 

Afterwards, all equations were synthesized and mapped 
to the same Virtex-6 FPGA circuit (XC6VSX475t-
2FF1156) using Xilinx ISE 13.2 release version [15]. Two’s 
complement 64x64 bit radix 2r serial/parallel multipliers 
with r varying from rmin to 64 were characterized in terms of 
area occupation (number of occupied Virtex-6 slices), 
maximum multiply time, and maximum energy consumption 
per multiply operation. The results are depicted in Fig. 4, 5 
and 6, respectively. 

  
A. Area Occupation 
Three basic components are necessary for the 

implementation of the proposed multipliers: a) multiplexers 
to decode the digit terms Qji , Pji , … ; b) shifters for partial 
product generation; c) and adders for partial product 
summation. Whereas the exact number of adders can be 
known in advance, we need to develop heuristics for the two 
others. Multiplexer complexity depends on: a) the lower 
radix 2s used to build up the higher radix 2r; b) the number 
(i) of “case” statements used to decode the digit terms; c) 
the number of entries (ei) in each “case” statement; d) the 
number (di) of digit terms; e) and on the number of odd 
multiples (|Omi|) used to calculate the digit terms. Hence, we 

Fig. 3.  Generalized radix 2r serial/parallel multiplier based on  
sub-radix 2s . Space-time partitioning according to r and s values  
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Fig. 2.  Two’s complement 12×12 bit parallel multiplier based on equation (ß23). 
Space partitioning according to: r=3 (a) and r=6 (b) 
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can announce that: ( )∑=
i

mii
e Od

s
rMux i || ..2.1 .              

For ß'28, this gives: s=8, i=1, e1 =9, d1 =2, and |Om1|=4. Thus, 
Mux1 = 512 r. 

The synthesis of the “shift” statement infers multiplexers 
whose complexity depends on the number of different shift 
operations (bi) for all odd-multiples involved in the 
calculation of each digit term (i). Thus, we can write: 
  ( )∑=

i
mii Ob

s
rMux || ..2 . For ß'28, this gives: s = 8,  i = 2, 

b1 = b2 = 8, and |Om1| = |Om2| = 4. Thus, Mux2 = 8r.     
Hence, the total multiplexer complexity becomes:                        
Mux = Mux1+Mux2.  

The total number of adders comprises ( ) 1/ −sr  adders to 
sum up the sr / partial products, plus one adder to 
accumulate the rn /  intermediate summations (Fig. 3), plus 
the necessary adders included in the sr / PPGs. This latter 
depends on the recoding scheme used. For example, in ß28 
the term jijiji TPQ ++11112  is calculated as follows: 

( ) ( ) jijijijijijiji TPPPQQQ +−+++− 2337 2222 , which 

requires 6 adders. Hence, the total number of adders 
required by ß28 is: Add = ( ) ( ) rrr )8/7(8/68/ =+ . Table II 
provides the area occupation for each recoding algorithm. 
To determine which factor, Mux or Add, exerts more 
influence on the area occupation, let us compare their 
respective ratios for ß28 and ß'28: 

( ) ( ) 7.22/2' 88 =ββ MuxMux and ( ) ( ) 5.32'/2 88 =ββ AddAdd  
Significant conclusion: the area occupation is dominated 

by the Mux factor, and becomes larger (Fig. 4) as Mux 
number becomes higher (Table II). This correlation is 
advantageously used to minimize the area occupation and 
power consumption as will be shown in the next section.  

B. Energy consumption 
While energy consumption is function of the switched 

capacitance, Fig. 4 and 5 show a direct correlation between 
area occupation and energy consumption. Making Mux 
indicator lower, will result in a less energy-consumer 
recoding algorithm.  

C. Delay 
The delay (T) along the critical path is the summation of 

PPG delay and reduction tree delay. While the former is 
constant, the latter depends on the topology used: either 
linear or logarithmic. The number of levels for each case is 
given in Table II and the performance of each algorithm is 
depicted in Fig. 6. The total multiply time is equal to (n/r)T. 
Note that all results presented in this paper are based on 
linear implementation of the reduction tree. 

Based on theory and implementation results, it is set clear 
that ß22 algorithm is the best in terms of area and energy 
consumption. As for speed, ß22 is the fastest until r=16. 

Beyond this value, it is surpassed by ß28.  ß22 
algorithm served to design a scalable 16-bit set-
point PID controller employing five multiplication 
cores. The implementation results outperformed 
the published ones at all levels [14]. 

V. HIGHER RADIX MULTIBIT RECODING          
MULTIPLICATION ALGORITHMS 

Further performance requires higher r values    
(r ≥ 8) necessarily. Guided by Mux and Add 
indicators, the objective is to generate a recoding 
scheme that outperforms ß22 in area and power, 
and ß28 in speed. 

TABLE II 
THEORETICAL ESTIMATION OF AREA OCCUPATION AND DELAY 
Area Occupation Delay (levels) 

Linear Logarithmic Recoding  
Algorithm Mux Add PPG 

delay 
PPG 

Adders 
Reduction 

Tree 
PPG 

Adders
Reduction 

Tree 
ß22 r5  2/r  d2 0 2/r  0 ( ) 12/log 2 +r
ß23 r5  ( )r/ 32  d2 1 3/r  1 ( ) 13/log 2 +r
ß25 r27  ( )r/ 53  d5 2 5/r  2 ( ) 15/log 2 +r
ß28 r194  ( )r/ 87  d8 6 8/r  3 ( ) 18/log 2 +r
ß'28 r520  4/r  d'8 1 8/r  1 ( ) 18/log 2 +r

 di is the critical delay through PPG. It depends on Mux factor (d2 < d5 < d8 < d'8) 
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A. Radix 28 recoding 
Based on theorem (2), ß23 and ß25 are merged to build up 

a new (ß''28) radix 28 recoding algorithm (Table III and    
Fig. 7). ß''28 exhibits (Table IV)  Mux and Add values of 19r 
and r/4, respectively. It outperforms ß28 at all aspects (Fig. 
8, 9, 10). Result summary with regard to Dimitrov and 
Seidel algorithms is given in Table V.  

B. Radix 213 recoding 
As ß28 and ß25 show good results for speed and power 

respectively, they have been merged (ß213) for a better 
compromise. However, the Mux saving (130r) is not 
important enough compared to Mux value (192r) of ß28. 
This explains the closeness of the results between ß213 and  
ß28. 

 
C. Radix 216 recoding 
To achieve a significant Mux saving, ß28 is combined 

with ß22 based on theorem (1) and (2) simultaneously. ß216 

exhibits a Mux value of 100r, which is almost the half 

required by ß28. Better results are obtained in 
terms of area and energy. The fact that ß216 is 
little bit slower than ß28 is due to the higher 
PPG adder number required (10). For r greater 
than 64, ß216 will surpasses ß28 since the total 
number of adder levels will be lower. Higher 
radices provide more speed.  

D. Radix 224 recoding 
To push lower the energy consumption 

while increasing the speed, lower Mux values 
with higher radices are required. This can be 
achieved using the mixture of: ß28 ,  ß25 , ß23 , 
and ß22 . In this case, for ß224    Mux = 74r, 
which yields to more interesting results. 

E. Radix 232 recoding 
Even more attractive results (Mux=60r) are 

obtained with ß232 composed of ß28 ,  ß25 , ß23 , 
and ß22  (Fig. 11). At this level, some useful 
conclusions can be drawn depending on the 
topology of the reduction tree used, either 
linear or logarithmic (Table VI). In the case of 
a linear tree, ß22 is the most area and energy 
efficient algorithm for any value of r. For r 
ranging from 8 to 64, ß''28 is the fastest 
algorithm, but it will be outperformed by ß232 

for r values greater than 64. In the case of logarithmic 
reduction tree, ß22 is by far the best at all aspects since it 
always requires the lowest number of adder levels 
( ( ) 12/log 22 ++ rd ) whatever r value (Table VI). 
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Fig. 7.  Two’s complement 32×32 bit multiplier based on equation (ß''28). 
Space partitioning according to: r=8 (a) and r=16 (b) 
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TABLE III 
SUMMARY OF OUR NEW RADIX-2r MULTIBIT RECODING ALGORITHMS  



 

  Fig. 11.  Two’s complement 128x128 bit multiplier based on equation (ß232). Space partitioning according to : r=32 (a) and r=64 (b)
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   : partial product bit;     : product bit;    : sign bit;    : sum of sign 
bits;    : negative one inserted into carry-in of the adder; #i : step i 
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Fig. 12.  Low-power sign-extension technique for the particular 
case (n, r)=(8, 2) 
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Based on higher radix recoding algorithms proposed so 
far (ß28, ß216, ß224, and ß232) as well as on Mux and Add 
indicators, the generation process of advanced higher radix 
algorithms (ß264, ß2128, ß2256,…) with { }1=mO can be 
recursively pursued farther for very large-operand-size 
applications (n >>). The number of adder levels required by 
a ß2x algorithm will be: ( ) 1/log2 ++ xra , where a is a 
constant depending on the level number of PPG adders.  
Thus, ß2x will outperform ß22 for aex 4≥ . 

VI. NEW RADIX 2r MULTI-PRECISION MULTIPLICATION 
TECHNIQUE 

Prior to develop a highly-scalable multi-precision 
multiplier, the need for a flexible and low-power sign-
extension technique is mandatory. 

A. New radix 2r sign extension technique 
Though many low-power sign extension techniques exist 

in the literature, they are not adapted to reconfigurability. 
The reason for this shortcoming is that the correction bits 
must be calculated for each value of operand-size n 
[11][16]. Besides, to the authors’ knowledge, no sign-
extension solution exists for radix based multiplication (r). 
In what follows, we propose a generic low-power solution 
that circumvents these two obstacles. It is illustrated by  Fig. 
12 for n=8 and r=2, but can be systematically extended to 
any n and r values.  Intuitively, we are not simultaneously 
performing the sum of the partial products, but each partial 
product of current step j is added to the sum of the 
preceding ones (from 0 to j-1). The rationale for the number 
of sign-bits to the left can be done locally, step by step, row 
by row. In other words, we have to take advantage of the 
fact that the partial sum already contains the sum of the sign 
bits of previous partial products. We must simply ensure 
that the sum output of the sign bit of current step j is added 
to the two most-significant bits of the next step (j+1). To 
generalize to radix ß2r multiplication, the sign-bit (nth 
position bit) of each partial product is extended with r bits 
to the left (r-1 for a maximum shift, plus one bit for the 

sign), and the sum output of the sign bit of step j is 
added to the r most-significant bits of the next step 
(j+1). 

B. New Radix 2r Multi-precision multiplication 
technique 
In traditional n×n bit multi-precision multipliers, 

there is possibility to perform either a single n×n 
double precision, or a single n/2×n/2 simple 
precision, or a twin parallel  n/2×n/2 simple 
precision multiplication. This is made possible by 
partitioning the two operands X and Y into 
respectively most and less significant sub-operands 
XH   YH , and XL   YL. A number of solutions exist and 

are summarized in [11][12]. Unfortunately, they are either 
restricted to unsigned multiplication, or they do not take 
power consumption into consideration, or they are not 
flexible enough. We propose hereafter a new technique that 
not only overcomes all above-mentioned shortcomings, but 
also allows a customized partitioning of the operands into 
any number of slices as well as in any slice sizes. Besides, 
this new technique is well adapted to radix based 
multiplication. Its features are compared to the technique 
presented in [11].    

Let us take equation (1) and apply it to X and Y for r=n/2, 

we obtain: 
LH
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         LLHLLHHH YXYXYXYX .... +++=    (13) 
Note that Q1 and Q0 are (n/2)+1 bit size, but x-1 can be 

omitted from Q0 since it is stuck at zero. Thus, we obtain 
four independent signed multipliers: XH.YH , XH.YL , XL.YH , 
XL.YL which are respectively (n/2)+1×(n/2), (n/2)+1×n/2, 
n/2×(n/2), n/2×n/2 bit size. Fig. 13 illustrates the 
implementation of equation (13) for a signed 16x16 bit 
multiplier based on recoding algorithm ß22 with r=2.  
Equation (13) eliminates the cumbersome term (EV×2n/2) in 
equation (6) of [11] as well as the necessary logic for its 
generation. More importantly, in Fig. 13, four 8x8 bit 
multiplications can be performed simultaneously, whereas 
in [11] only two are allowed because of the shared terms 

TABLE IV 
THEORETICAL ESTIMATION OF AREA OCCUPATION AND DELAY 

Area Occupation Delay (levels) 
Linear Logarithmic Recoding  

Algorithm Mux Add PPG 
delay 

PPG 
Adders 

Reduction 
Tree 

PPG 
Adders

Reduction 
Tree 

ß''28 r19  4/r  d5 4 8/r  3 ( ) 18/log 2 +r  

ß213 r130  ( )r/ 138  d8 9 13/r  4 ( ) 113/log 2 +r  

ß216 r100  ( )r/ 1611  d8 10 16/r  4 ( ) 116/log 2 +r  

ß224 r74  ( )r24/15  d8 15 24/r  4 ( ) 124/log 2 +r  

ß232 r60  ( )r32/21  d8 20 32/r  5 ( ) 132/log 2 +r  

di is the critical delay through PPG. It depends on Mux factor (d5 < d8) 

TABLE VI 
DELAY IN ADDER LEVELS FOR  r = 64 

Recoding  Algorithm Reduction 
Tree ß22 ß23 ß25 ß28 ß'28 ß''28 ß213 ß216 ß224 ß232

Linear 32 23 15 14 9 12 14 14 18 22 
Logarithmic 6* 7 7 7 5* 7 8 7 7 7 

Total delay = PPG delay (di) + Reduction Tree Delay.  
*: Note that d2<<d'8 

TABLE V 
RESULT COMPARISON  FOR  r = 64 

Recoding Algorithm Implem-
entation 
results 

Seidel [8] 
ß28 

Dimitrov [9] 
ß'28 

Ours 
ß''28 

Savings / ß28 

% 
Savings / ß'28 

% 
Area1 5251 6599 3219 63 105 

Energy2 2.49 2.48 1.63 53 52 
Speed3 48.62 43.17 52.4 8 21 

1: Area occupation in number of Virtex-6 slices 
2: Energy consumption per multiplication operation (pJ) 
3: Million multiplications per second (MMPS)  



 

(EV×2n/2) and CV required for the sign extension. Without 
counting the necessary EV generation logic and the use of 
inverters for the negation of the sign bits, the partitioning 
proposed in [11] consumes a total bit count of 205 for a 
16x16 bit multiplier, while ours requires 198 bits.  

Note that equation (5) can be advantageously used to 
partition XH and XL with different bit lengths. For instance, 

with r=n, s=3n/4 and t=n/4, we obtain:  4
3

2
n

TPX +=  

2
3

4
3

4
3

2'2'2''.
nnn

TTPTTPPPYX +++=  
         HHLHHLLL YXYXYXYX .... +++=         (14) 
Four independent signed multipliers are generated: XH.YH, 

XH.YL , XL.YH , XL.YL, which are respectively (n/4)+1×(n/4), 
(n/4)+1×(3n/4), (3n/4)+1×(n/4), and (3n/4)×(3n/4) bit size. 
The translation of equation (14) into architecture is depicted 
by Fig. 14. Both partitioning schemes (Fig. 13 and Fig 14)  
needs the same amount of  bits (198). 

More efficiently, equation (13) can be combined with 
ß''28 algorithm for the recoding of YH and YL sub-
multiplicands to produce a faster partitioning (Fig. 15) for 
operand sizes larger than 16 bits according to the 
implementation results shown in Fig. 10.    

More importantly, equation (1) can be used to partition 
the X and Y operands into any desired number of slices 
depending on r value. Choosing for instance r=n/4 results 
into the following partitioning: 
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nnn
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           00
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4

3

30 222 PQPQPQPQ
nnn

++++  
         LLHHLHHHHLHHHHHH YXYXYXYX .... +++=  
            LLHLLHHLHLHLHHHL YXYXYXYX .... ++++  
            LLLHLHLHHLLHHHLH YXYXYXYX .... ++++  
            LLLLLHLLHLLLHHLL YXYXYXYX .... ++++     (15) 
Equation (15) generates sixteen independent signed 

multipliers. All are (n/4)+1×(n/4) bit size, except XLL.YHH, 
XLL.YHL , XLL.YLH , XLL.YLL which are (n/4)×(n/4) bit size. The 
implementation details of equation (15) for n=16 based on 
ß22 with r=2 are described in Fig. 16.  Equation (15) 
requires a total bit count of 254 which induces an overhead 
of 28% compared to equation (13).   

Finally, equation (1) and (5) can be combined with any 
proposed recoding algorithm (ß2r) to produce any desired 
multi-precision multiplication scheme. 

VII. CONCLUSION AND FUTUR WORK 
We developed a recursive version of the multibit 

recoding multiplication algorithm which enabled to solve 
two hard problems: radix 2r signed multiplication and radix 
2r multi-precision signed multiplication. The former is odd-
multiple free solution with advanced capabilities for 
multiplication-intensive applications that must dissipate 
minimal power while operating at high speed. In addition, 
the solution is highly-scalable allowing a hardware-friendly 

partitioning that can be tailored to the desired performance 
and power budget.   

We deliberately opted for FPGA implementation to 
rapidly explore a large number of variants of the recursive 
algorithm. Only ten recoding algorithms have been selected 
and reported in this paper. We first gave priority to a 
serial/parallel implementation as it is the most appropriate to 
designing embedded finite-word-length controllers, which is 
our ultimate objective. A fully-parallel implementation will 
be given the same attention for further investigation and 
optimization.   

Guided by Mux and Add indicators, even higher odd-
multiple free recoding algorithms (ß264, ß2128, ß2256,…) can 
be generated to efficiently cope with large-operand-size 
applications, such as in cryptography. However, for large r 
values, the use of advanced optimization heuristics becomes 
mandatory in order to determine the primary radix (21, 22, 
25, and 28) configuration that leads to the optimal 
implementation of the desired radix. This issue is being 
explored at present time and we plan to report our results in 
a forthcoming paper.   

As for the multi-precision solution, this latter would not 
have been possible without the development of a flexible 
sign-extension technique. Based on the new recursive 
algorithm, we proposed a generic partitioning scheme that 
can be adapted to any size combination of the operands in 
order to reduce the power consumption while increasing the 
computational throughput. This new solution will be deeply 
explored for further optimizations using the proposed    
radix 2r algorithms.  

APPENDIX 
A. Multibit Recoding Algorithm 

Let X be an n-bit two's complement format binary integer. 
The value of X can then be found from:3 
                    qxxX

n

q
q

n
n 2.2.

2

0

1
1 ∑

−

=

−
− +−=                     (2.1.1) 

Note that this is a uniform representation for both positive 
and negative numbers. X is positive if xn-l = 0 and is 
negative if  xn-l =1. An SD representation of X in radix 2k (k 
≥ 1) will have n/k signed digits4 Dn/k-l, Dn/k-2,…,D 1, Do. In 
this new radix (2k) the value of x can be rewritten as 
                                ki

kn

i
iDX 2.

1/

0
∑

−

=

=                           (2.1.2) 

where digits Di are found from bits xi of X according to 
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And                               x-1 = 0                                      (2.1.4) 
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      Fig. 14.  Low-power multi-precision multiplier for the particular case (n,r) =(16, 2) with 12 and 4 bit sub-operand sizes  
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Fig. 15.  Low-power multi-precision multiplier for the particular case (n,r) =(16,8) with 8-bit sub-operand size  
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Fig. 13.  Low-power multi-precision multiplier for the particular case (n,r) =(16,2) with 8-bit sub-operand size  
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Fig. 16.  Low-power multi-precision multiplier for the particular case (n,r) =(16,2) with 4-bit sub-operand size 
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