Abdelkrim K Oudjida

Nicolas Chaillet

Ahmed Liacha

Mohamed L Berrandjia

Keywords: High-Radix Multiplication, Low-Power Multiplication, Multibit Recoding Multiplication, Multi-Precision Multiplication, Partial Product Generator (PPG)

published or not. The documents may come

A new recursive multibit recoding algorithm for high-speed an low-power multiplier.

I. BACKGROUND AND MOTIVATION

N multiplication-intensive applications, as in digital signal processing or process control, multiply-time is a critical factor that limits the whole system performance. When these types of applications are embedded, energy consumption per multiply operation becomes an additional critical issue. Furthermore, in high-precision or large-operand-size applications such as in cryptography, the need for a scalable serial/parallel multiplier is essential as the multiplier size grows quadratically O(n 2) with operand size n. Consequently, high-speed, low-power, and highly-scalable architecture are the three major requirements for today's general purpose multiplier [START_REF]International Technology Roadmap for Semiconductors (ITRS)[END_REF].

The continuous refinement of the mostly-used design paradigm based on modified Booth algorithm [START_REF] Macsorley | High-Speed Arithmetic in Binary Computers[END_REF] combined to a reduction tree (carry-save-adder array , Dadda [START_REF] Dadda | Some Schemes for Parallel Adders[END_REF], HPM [START_REF] Huang | Two-Dimensional Signal Gating for Low-Power Array Multiplier Design[END_REF]) has reached saturation. In [START_REF] Lamberti | Reducing the Computation Time in (Short Bit-Width) Two's Complement Multiplier[END_REF] and [START_REF] Kuang | Modified Booth Multipliers with a Regular Partial Product Array[END_REF] only slight improvements are achieved. Both proposals reduce the partial product number from n/2+1 to n/2 using different circuit optimization techniques of the critical path.

Theoretically, only the signed multibit recoding multiplication algorithm [START_REF] Sam | A Generalized Multibit Recoding of Two's Complement Binary Numbers and its Proof with Application in Multiplier Implementation[END_REF] is capable of a drastic reduction (n/r) of the partial product number, given that r+1 is the number of bits of the multiplier that are simultaneously treated (1≤r≤n). Unfortunately, this algorithm requires the pre-computation of a number of odd multiples of the multiplicand (until (2 r-1 -1).X) that scales linearly with r. The large number of odd multiples not only requires a considerable amount of multiplexers to perform the necessary complex recoding into PPG, but dramatically increases the routing density as well. Therefore, a reverse effect occurs that offsets speed and power benefits of the compression factor (n/r). This is the main reason why the multibit recoding algorithm was abandoned. In practice, designs do not exceed r=3 (radix 8).

The current trend [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF][9] relies upon advanced arithmetic to determine minimal numeric bases that are representatives of the digits resulting from larger multibit recoding. The objective is to eliminate information redundancy inside r+1 bit-length slices for a more compact PPG. This is achievable as long as no or just very few odd multiples are required.

In [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF], Seidel et al. have introduced a secondary recoding of digits issued from an initial multibit recoding for 5≤r≤16. The recoding scheme is based on balanced complete residue system. Though it significantly reduces the number of partial products (n/r for 5≤r≤ [START_REF] Annaratone | Digital CMOS Circuit Design[END_REF], it requires some odd multiples for r≥8. While in [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF], Dimitrov et al. have proposed a new recoding scheme based on double base number system for 6≤r≤11. The algorithm is limited to unsigned multiplication and requires a larger number of odd multiples.

Instead of looking for more effective numeric bases, which is a hard mathematical task, our approach consists in exploiting already existing odd-multiple free recoding algorithms (2 1 , 2 2 , 2 5 , and 2 8) to recursively build up generalized odd-multiple free radix 2 r recoding schemes.

To achieve such a goal, the multibit recoding multiplication algorithm is revisited [START_REF] Sam | A Generalized Multibit Recoding of Two's Complement Binary Numbers and its Proof with Application in Multiplier Implementation[END_REF]. Its design space is extended by the introduction of a new recursive version that enables a hardware-friendly space-time partitioning of the multiplication problem. Depending on r value ranging from 2 to n, highly-scalable signed multipliers with various levels of parallelism and latencies can be systematically generated with insignificant control-complexity. The new algorithm has also the merit to recursively reduce the number of partial products (n/r) without any limit for the parameter r and any need for the odd multiples of the multiplicand. It also allows the combination of different recoding schemes proposed in the literature into the same architecture for better performances of the multiplier. Several higher radix (ß=2 3 , 2 32) two's complement 64x64 bit serial/parallel multipliers based on combined recoding schemes are implemented on Virtex-6 FPGA and characterized in terms of speed, power, and area occupation for r values ranging from 2 to 64. Compared to a new signed version of Dimitrov et al. algorithm [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] and Seidel et al. algorithm [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF], outstanding results are obtained with the new multibit recoding scheme for r=8 formed by the combination of Seidel algorithm (r=5), MacSorley algorithm (r=2) [START_REF] Macsorley | High-Speed Arithmetic in Binary Computers[END_REF] and Booth algorithm (r=1) [START_REF] Booth | A Signed Binary Multiplication Te:chnique[END_REF]. The respective savings are as [11][12], this new one allows a customized partitioning of the operands in any number of sub-operands and in any sub-operand bit-sizes. The paper is organized as follows. Section I outlines the main requirement specifications for a generalized radix 2 r multiplication. Section II introduces the new recursive multibit recoding multiplication algorithm. Afterwards, some high-radix (ß=2 3 , 2 8) variants of the new algorithm are presented in Section III, while their implementation results are discussed in Section IV. Higher radix (ß=2 8 , 2 32) algorithms are introduced in Section V. Section VI describes the new low-power technique for multi-precision multiplication. Finally, Section VII provides some concluding remarks and suggestions for future work.

II. THE NEW RECURSIVE MULTIBIT RECODING

MULTIPLICATION ALGORITHM

The equation (2.1.2) of the original multibit recoding algorithm presented in [START_REF] Sam | A Generalized Multibit Recoding of Two's Complement Binary Numbers and its Proof with Application in Multiplier Implementation[END_REF] (see Appendix) does not offer hardware visibility. Let us rewrite it in a simpler hardwarefriendly form, as follows: . For simplicity purposes and without loss of generality, we assume that r is a divider of n.

(∑ - = + + - ⋅ ⋅ ⋅ + + + + = 1 0 2 2 1 1 0 1 2 2 2
In this general case, the multiplier Y is split into n/r slices, each of r+1 bit length. Each pair of two contiguous slices has one overlapping bit. In literature, equation (1) is referred to by radix ß=2 r , to which corresponds a digit set D(2 r) such as

{ } 1 1 2 0 2 2 - - - = ∈ r r r j , ... , , ... ,) (D Q .
Thus, the signed multiplication between X and Y becomes:

rj r n j j . Q . X Y . X 2 1 0 ∑ - = =
Where each partial product can be expressed as follows:

() ()

X m Q X e s rj j . . 2 . 1 2 . . - = , with
() { } 1 2 3 1 2 1 - = ∈ - r r m ..., , , O m
. O m (2 r) represents the required set of odd multiples of the multiplicand (m.X) for radix 2 r . Hence, the partial product generation process consists first in selecting one odd multiple (m.X) among the whole set of pre-computed odd multiples, which is then submitted to a hardwired shift of e positions, and finally conditionally complemented (-1) s depending on the bit sign s of Q j term. Table I provides a picture on how the number of odd multiples grows when the radix becomes higher. While lower m.X can be obtained using just one addition (3X=2X+1X), the calculation of higher ones may require a number of computation steps (11X= 8X+2X+1X).

To bypass the hard problem of odd multiples, let us announce the two following theorems accompanied with their respective proofs:

Theorem 1. Any digit) (D Q r j 2 ∈ can be represented in a combination of digits) (s ji D P 2 ∈
, such as s is a divider of r.

Proof. Equation (1) is recursively applied on Q j term of equation [START_REF]International Technology Roadmap for Semiconductors (ITRS)[END_REF]. Thus, equation (1) becomes:

([∑ - = + + - ⋅ ⋅ ⋅ + + + + = 1 0 2 2 1 1 0 1 2 .
) + - + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - - - + - - - + - 2
) rj s r s r rj s r rj s y y 2 2 2 2 1 1 1 2 2 ⎥ ⎥ ⎦ ⎤ - + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - - + - - + - (. . .
∑ ∑ - = - = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = Where () { } 1 1 2 0 2 2 - - - = ∈ s s s ji , ... , , ... , D Q with () { } 1 2 3 1 2 1 - = ∈ - s s m ..., , , O m and rj r n j s r i si ji P X Y X 2 2 . . 1 0 1 0 ∑ ∑ - = - = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = Theorem 2. Any digit) 2 (r j D Q ∈ can be
) (t jk D T 2 ∈
with s+t a divider of r , and t < s.

Proof. Equation (1) can also be rewritten as follows: n/2 1X 2 3 n/3 1X, 3X 2 4 n/4 1X, 3X, 5X, 7X 2 5 n/5 1X, 3X, 5X, 7X, 9X, 11X, 13X, 15X

([∑ ∑ - = - + = + + + + + + + - ⎢ ⎢ ⎢ ⎣ ⎡ ⋅ ⋅ ⋅ + + + = 1 0 1 0 1 1 0 1
In radix 2 r , the multiplier Y is divided into n/r slices, each of r+1 bit length. Each pair of two contiguous slices has one overlapping bit.

(

) (4) 3
[]

∑ ∑ - - + = + ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ + =
As a result of theorems (1) and (2), much less odd multiples are needed in partial products of equations (4) and (6) than in equation (2), but at the expense of a number of additions. The advantage by far outweighs the cost, as practically shown in the next section. The translation of equation (4) into architecture is depicted by Fig. 1, where each PPG j is built up using identical PPG ji . This is not the case for equation (6) which requires two different PPG ji . Theorem (1) and (2) can be merged to produce PPG j made of a number of different PPG ji .

III. SOME VARIANTS OF THE NEW RECURSIVE MULTIBIT RECODING MULTIPLICATION ALGORITHM

Theorems (1) and (2) permit to build up any higher radix multiplication algorithm based on lower radices. But the objective is to generate higher radix multiplication without odd multiples. To achieve such a goal, a number of oddmultiple free low-radix algorithms are used, such as Booth algorithm [START_REF] Booth | A Signed Binary Multiplication Te:chnique[END_REF] (radix 2 1), modified Booth algorithm [START_REF] Macsorley | High-Speed Arithmetic in Binary Computers[END_REF] (radix 2 2), Seidel et al. algorithms [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF][13] (radix 2 5 and radix 2 8).

Booth and modified Booth recoding are respectively derived form equation (3) for (r,s)=(1,1) and (r,s)=(2,2). They are respectively summarized as follows:

() ∑ ∑ - = - = - = - = 1 0 1 0 1 2 2 n j j j j n j j j Q y y Y (7) With () { } 1 0 1 2 , , D - = and
() { } 1 2 = m O () ∑ ∑ - = - = + - = - + = 1) 2 / (0 2 2 1) 2 / (0 1 2 2 1 2 2 2 2 n j j j j n j j j j Q y y y Y (8) With () } { 2 , 1 , 0 , 1 , 2 2 2 - - = D and () { } 1 2 2 = m O
Higher radices are obtained as follows.

A. Radix 2 3 recoding Radix 2 3 recoding based on equation (1) gives: 3 recoding based on equation (5) delivers:

() ∑ ∑ - = - = + + - = - + + = 1) 3 / (0 3 3 1) 3 / (0 2 3 2 1 3 3 1 3 2 2 2 2 n j j j j n j j j j j Q y y y y Y With () { } 4 ..., , 0 ,..., 4 2 3 - = D and () { } 3 , 1 2 3 = m O While radix 2
) ([()] j j j n j j j j y y y y y Y 3 2 2 3 1 3 1) 3 / (0 1 3 1 3 0 1 3 2 2 2 2 + + - = + - - + - + = ∑ [] () j n j j j T P 3 1 3 / 0 2 2 2 ∑ - = + = (9)
In fact, equation (9) is a combination of Booth

(() { } 1 2 1 = m O
) and modified Booth algorithms

(() { } 1 2 2 = m O
). Hence, for equation (9),

() { } 1 2 3 = m O .
Furthermore, equation (9) is recursively used to generate any radix 2 r recoding with

() { } 1 2 = r m O
based on radix 2 3 , as follows:

) ([∑ ∑ - - = + + + + - ⎢ ⎢ ⎢ ⎣ ⎡ + - + = 1 1 3 0 3 1 3 1 3 3 0 3 1 3 2 2 r n j r i i j i j i j y y y Y ()]] rj i i j i j y y 2 2 2 3 2 3 2 3 3 1 3 + + + + - + [] j r n j r i i ji ji T P 3 1 1 3 0 3 2 2 2 2 ∑ ∑ - - = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ + = (ß2 3)
This equation is referred to by ß2 3 for later comparison with other general radix algorithms based on lower radices. Its corresponding architecture is illustrated by Fig. 2.

B. Radix 2 4 recoding

For r=4, equation (1) needs an () { Three odd multiples are eliminated at the expense of one addition. The general radix (2 r) recoding with

() { } 1 2 = r m O based on radix 2 2 is: rj r n j r i i ji Q Y 2 2 1 0 1 2 0 2 ∑ ∑ - = - = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = (ß2 2)

C. Radix 2 5 recoding

For r=5, eq. (1) needs an ()

{ } 15 , 13 , 11 , 9 , 7 , 5 , 3 , 1 2 5 = m O .
In this case we do recourse to Seidel et al. algorithm [8][13]: 10) is integrated into equation (3), which gives the following general recursive form with () { }

[] () j n j j j P Q Y 5 1 5 / 0 2 . 7 ∑ - = + = (10
) With { } { } 4 2 1 0 1 2 4 2 1 0 1 2 , , , , , , P ; , , , , Q j j - - - ∈ - - ∈ and () { } 1 2 5 = m O Equation (
Y -1 , r-1 r+1 Y r-1 , 2r-1 r+1 Y n-r-1 , n-1 r+1 r r n ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ -1 bits PP 0 PP (n/r)-1 (5) (6)
As application, radix 2 10 = 1024 with () { }

() () [] () rj / n j j j j j . P Q . P Q . Y 2 2 7 7 1 10 0 5 1 1 0 0 ∑ - = + + + = D. Radix 2 8 recoding
Seidel et al. [START_REF] Seidel | Binary Multiplication Radix-32 and Radix-256[END_REF] recoding for radix 2 8 with () { }

1 2 8 = m O is: [] () j n j j j j T P Q Y 8 1 8 / 0 2 2 . 11 . 11 ∑ - = + + = (11) With { } and , , , , Q j 2 1 0 1 2 - - ∈ { } 16 8 4 2 1 0 1 2 4 8 16 , , , , , , , , , , T , P j j - - - - - ∈
Equation (11) is incorporated into equation (3) to obtain the general recursive form with () { }

() () () i n j j h e j k P Q Y 8 1 8 / 0 2 . 2 1 . 2 ∑ - = - + = (12) With { } { } { } 1 , 0 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 , ; 7 , 5 , 3 , 1 , ∈ ∈ ∈ e and h k P Q j j
Likewise, equation (12) is integrated into equation (3). The general recursive form with

() { } 7 5 3 1 2 , , , O r m = becomes: () () j r r n j i r i ji h e ji k P Q Y 2 . 2 . 2 1 . 2 1 0 8 1 8 0 ∑ ∑ - = - = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ - + = (ß'2 8)
IV. DISCUSSION OF THE IMPLEMENTATION RESULTS

In the preceding section, we introduced five generalized multibit space-time partitioning schemes, which are: ß2 2 , ß2 3 , ß2 5 , ß2 8 , and ß'2 8 . They all require () { }

1 2 = r m O except ß'2 8 that needs () { } 7 5 3 1 2 , , , O r m = .
In this paper, only the serial/parallel form is explored (Fig. 3), targeting applications where the serialization of multiplication is mandatory. This is the case for instance in embedded digital PID (Peripheral Integral Derivative) controller where five multiplication cores are required [START_REF] Oudjida | High-Speed and Low-Power PID Structures for Embedded Applications[END_REF], or for high-precision or very large operand size applications (cryptography) where a fully-parallel n×n bit implementation is excluded.

In signed serial/parallel multiplication, r-bit slices of the multiplier are processed each clock cycle, which induces a theoretical multiply time of n/r for a double precision product (2n bits). The special cases where r=n and r=r min correspond to fully-parallel and fully-sequential multiplier, respectively. In between (r=2r min , n/2), partiallyparallel multipliers are obtained. In fact, the lower limit of r depends on the recoding scheme used (ex: for ß2 5 , r min =5). Reader is referred to [START_REF] Seidel | Secondary Radix Recodings for Higher Radix Multipliers[END_REF], [START_REF] Seidel | Binary Multiplication Radix-32 and Radix-256[END_REF], and [START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF] for recoding tables used respectively in ß2 5 , ß2 8 , and ß'2 8 .

Before comparison, all recoding schemes proposed in this paper underwent several steps of verification. First all equations were validated with a random C-program. Then, they were implemented at RTL level in Verilog-2001 (IEEE 1364) as technologyindependent reusable IP-cores [START_REF]International Technology Roadmap for Semiconductors (ITRS)[END_REF], using exactly the same optimized coding style for an equitable comparison. They are compile-time reconfigurable according to n and r. All RTL codes went through a severe cycle-accurate functional verification procedure using Modelsim SE-6.3f logic simulator. They were first challenged against a set of special and severe test cases (visual simulation), and then submitted to a random test for a very large number of vectors. After a successful functional verification, physical tests were performed. They were integrated into an FPGA evaluation board for an ultimate validation.

Afterwards, all equations were synthesized and mapped to the same Virtex-6 FPGA circuit (XC6VSX475t-2FF1156) using Xilinx ISE 13.2 release version [START_REF] Manmasson | FPGA in Industrial Control Applications[END_REF]. Two's complement 64x64 bit radix 2 r serial/parallel multipliers with r varying from r min to 64 were characterized in terms of area occupation (number of occupied Virtex-6 slices), maximum multiply time, and maximum energy consumption per multiply operation. The results are depicted in Fig. 4, 5 and 6, respectively.

A. Area Occupation

Three basic components are necessary for the implementation of the proposed multipliers: a) multiplexers to decode the digit terms Q ji , P ji , … ; b) shifters for partial product generation; c) and adders for partial product summation. Whereas the exact number of adders can be known in advance, we need to develop heuristics for the two others. Multiplexer complexity depends on: a) the lower radix 2 s used to build up the higher radix 2 r ; b) the number (i) of "case" statements used to decode the digit terms; c) the number of entries (e i) in each "case" statement; d) the number (d i) of digit terms ; e) and on the number of odd multiples (|O mi |) used to calculate the digit terms. Hence, we ()

∑ = i mi i e O d s r Mux i | | . . 2 . 1 .
For ß'2 8 , this gives: s=8, i=1, e 1 =9, d 1 =2, and |O m1 |=4. Thus, Mux1 = 512 r.

The synthesis of the "shift" statement infers multiplexers whose complexity depends on the number of different shift operations (b i) for all odd-multiples involved in the calculation of each digit term (i). Thus, we can write:

() ∑ = i mi i O b s r Mux | | . . 2
. For ß'2 8 , this gives: Hence, the total multiplexer complexity becomes:

s = 8, i = 2,
Mux = Mux1+Mux2.
The total number of adders comprises () 1 /s r adders to sum up the s r / partial products, plus one adder to accumulate the r n / intermediate summations (Fig. 3), plus the necessary adders included in the s r / PPGs. This latter depends on the recoding scheme used. For example, in ß2 8 the term

ji ji ji T P Q + + 11 11 2
is calculated as follows:

() () ji ji ji ji ji ji ji T P P P Q Q Q + - + + + - 2 3 3 7 2 2 2 2
, which requires 6 adders. Hence, the total number of adders required by ß2 8 is: Add = () ()

r

= β β

Add Add Significant conclusion: the area occupation is dominated by the Mux factor, and becomes larger (Fig. 4) as Mux number becomes higher (Table II). This correlation is advantageously used to minimize the area occupation and power consumption as will be shown in the next section.

B. Energy consumption

While energy consumption is function of the switched capacitance, Fig. 4 and5 show a direct correlation between area occupation and energy consumption. Making Mux indicator lower, will result in a less energy-consumer recoding algorithm.

C. Delay

The delay (T) along the critical path is the summation of PPG delay and reduction tree delay. While the former is constant, the latter depends on the topology used: either linear or logarithmic. The number of levels for each case is given in Table II and the performance of each algorithm is depicted in Fig. 6. The total multiply time is equal to (n/r)T. Note that all results presented in this paper are based on linear implementation of the reduction tree.

Based on theory and implementation results, it is set clear that ß2 2 algorithm is the best in terms of area and energy consumption. As for speed, ß2 2 is the fastest until r=16.

Beyond this value, it is surpassed by ß2 8 . ß2 2 algorithm served to design a scalable 16-bit setpoint PID controller employing five multiplication cores. The implementation results outperformed the published ones at all levels [START_REF] Oudjida | High-Speed and Low-Power PID Structures for Embedded Applications[END_REF].

V. HIGHER RADIX MULTIBIT RECODING MULTIPLICATION ALGORITHMS

Further performance requires higher r values (r ≥ 8) necessarily. Guided by Mux and Add indicators, the objective is to generate a recoding scheme that outperforms ß2 2 in area and power, and ß2 8 in speed. A. Radix 2 8 recoding Based on theorem (2), ß2 3 and ß2 5 are merged to build up a new (ß''2 8) radix 2 8 recoding algorithm (Table III and Fig. 7). ß''2 8 exhibits (Table IV) Mux and Add values of 19r and r/4, respectively. It outperforms ß2 8 at all aspects (Fig. 8, 9, 10). Result summary with regard to Dimitrov and Seidel algorithms is given in Table V.

B. Radix 2 13 recoding As ß2 8 and ß2 5 show good results for speed and power respectively, they have been merged (ß2 13) for a better compromise. However, the Mux saving (130r) is not important enough compared to Mux value (192r) of ß2 8 . This explains the closeness of the results between ß2 13 and ß2 8 .

C. Radix 2 16 recoding

To achieve a significant Mux saving, ß2 8 is combined with ß2 2 based on theorem (1) and (2) simultaneously. ß2 16 exhibits a Mux value of 100r, which is almost the half required by ß2 8 . Better results are obtained in terms of area and energy. The fact that ß2 16 is little bit slower than ß2 8 is due to the higher PPG adder number required [START_REF] Booth | A Signed Binary Multiplication Te:chnique[END_REF]. For r greater than 64, ß2 16 will surpasses ß2 8 since the total number of adder levels will be lower. Higher radices provide more speed.

D. Radix 2 24 recoding

To push lower the energy consumption while increasing the speed, lower Mux values with higher radices are required. This can be achieved using the mixture of: ß2 8 , ß2 5 , ß2 3 , and ß2 2 . In this case, for ß2 24 Mux = 74r, which yields to more interesting results.

E. Radix 2 32 recoding

Even more attractive results (Mux=60r) are obtained with ß2 32 composed of ß2 8 , ß2 5 , ß2 3 , and ß2 2 (Fig. 11). At this level, some useful conclusions can be drawn depending on the topology of the reduction tree used, either linear or logarithmic (Table VI). In the case of a linear tree, ß2 2 is the most area and energy efficient algorithm for any value of r. For r ranging from 8 to 64, ß''2 8 is the fastest algorithm, but it will be outperformed by ß2 32 for r values greater than 64. In the case of logarithmic reduction tree, ß2 2 is by far the best at all aspects since it always requires the lowest number of adder levels (

() 1 2 / log 2 2 + + r d
) whatever r value (Table VI). 8 bits

X 32 R 0 + S 0 Y -1 , 4 Q 0 P 0 + Y 4 , 6 Y 6 , 7 PPG 0 R 1 + S 1 Y 7 ,
∑ - = = 1 0 2 r N j j r j . Q Y ; BR: r 2 ; OM: { } 1 2 3 1 1 - - r ..., , ,
; DV:

{ } 1 1 2 0 2 - - - ∈ r r j , ... , , ... , Q ; 2 2 β j r r N j r i i ji . Q Y 2 2 1 0 1 2 0 2 ∑ ∑ - = - = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = ; BR: 2 2 ; OM: { } 1 ; DV: } { 2 1 0 1 2 , , , , Q ji - - ∈ ; 3 2 β () j r r N j r i i ji ji . . P Q Y 2 2 2 1 1 3 0 3 2 ∑ ∑ - - = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ + = ; BR: 1 2 , 2 2 ; OM: { } 1 ; DV: { } 2 1 0 1 2 , , , , Q ji - - ∈ , { } 1 0 1 , , P ji - ∈ 5 2 β () j r r N j i r i ji ji . P Q . Y 2 2 7 1 0 5 1 5 0 ∑ ∑ - = - = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ + = ; BR:

∑ ∑ ∑

- = - = = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + + = BR: 2 2 , 8 2 ; OM: { } 1 ; DV: { } 2 1 0 1 2 , , , , Q ji - - ∈ , { } 16 8 4 2 1 0 1 2 4 8 16 , , , , , , , , , , T , P ji ji - - - - - ∈ , { } 2 1 0 1 2 , , , , M kji - - ∈ 24 2 β () () () j r r N j r i i ji ji ji ji k k kji ji ji ji . . . V U . S R . . . M T P . Q . Y 2 2 2 2 2 7 2 2 11 11 1 0 1 24 0 24 21 2 16 8 3 0 2 2 ∑ ∑ ∑ - = - = = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + + + + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + + = 2 β () () () () j r r N j r i i k k kji kji k kji kji k k kji ji ji ji . . . V U . S R . . . M T P . Q . Y 2 2 2 2 2 7 2 2 11 11 1 0 1 32 0 32 1 0 8 21 2 8 16 8 3 0 2 2 ∑ ∑ ∑ ∑ - = - = = + + = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + + + + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + + = BR: 1 2 , 2
2 , 5 2 , 8 2 ; OM: { }

+ = + = + 0 0 0 0 0 0 0 0 0 = # 0 # 1 #2 #3
Fig. 12. Low-power sign-extension technique for the particular case (n, r)=(8, 2)

+ = r=2
Based on higher radix recoding algorithms proposed so far (ß2 8 , ß2 16 , ß2 24 , and ß2 32) as well as on Mux and Add indicators, the generation process of advanced higher radix algorithms (ß2 64 , ß2 128 , ß2 256 ,…) with

{ } 1 = m O
can be recursively pursued farther for very large-operand-size applications (n >>). The number of adder levels required by a ß2 x algorithm will be:

()

1 / log 2 + + x r a
, where a is a constant depending on the level number of PPG adders. Thus, ß2 x will outperform ß2 2 for a e x 4 ≥ .

VI. NEW RADIX 2 r MULTI-PRECISION MULTIPLICATION

TECHNIQUE

Prior to develop a highly-scalable multi-precision multiplier, the need for a flexible and low-power signextension technique is mandatory.

A. New radix 2 r sign extension technique

Though many low-power sign extension techniques exist in the literature, they are not adapted to reconfigurability. The reason for this shortcoming is that the correction bits must be calculated for each value of operand-size n [START_REF] Kuang | Design of Power-Efficient Configurable Booth Multiplier[END_REF] [START_REF] Annaratone | Digital CMOS Circuit Design[END_REF]. Besides, to the authors' knowledge, no signextension solution exists for radix based multiplication (r). In what follows, we propose a generic low-power solution that circumvents these two obstacles. It is illustrated by Fig. 12 for n=8 and r=2, but can be systematically extended to any n and r values. Intuitively, we are not simultaneously performing the sum of the partial products, but each partial product of current step j is added to the sum of the preceding ones (from 0 to j-1). The rationale for the number of sign-bits to the left can be done locally, step by step, row by row. In other words, we have to take advantage of the fact that the partial sum already contains the sum of the sign bits of previous partial products. We must simply ensure that the sum output of the sign bit of current step j is added to the two most-significant bits of the next step (j+1). To generalize to radix ß2 r multiplication, the sign-bit (n th position bit) of each partial product is extended with r bits to the left (r-1 for a maximum shift, plus one bit for the sign), and the sum output of the sign bit of step j is added to the r most-significant bits of the next step (j+1).

B. New Radix 2 r Multi-precision multiplication technique

In traditional n×n bit multi-precision multipliers, there is possibility to perform either a single n×n double precision, or a single n/2×n/2 simple precision, or a twin parallel n/2×n/2 simple precision multiplication. This is made possible by partitioning the two operands X and Y into respectively most and less significant sub-operands X H Y H , and X L Y L . A number of solutions exist and are summarized in [START_REF] Kuang | Design of Power-Efficient Configurable Booth Multiplier[END_REF] [START_REF] Själander | Multiplication Acceleration Through Twin Precision[END_REF]. Unfortunately, they are either restricted to unsigned multiplication, or they do not take power consumption into consideration, or they are not flexible enough. We propose hereafter a new technique that not only overcomes all above-mentioned shortcomings, but also allows a customized partitioning of the operands into any number of slices as well as in any slice sizes. Besides, this new technique is well adapted to radix based multiplication. Its features are compared to the technique presented in [START_REF] Kuang | Design of Power-Efficient Configurable Booth Multiplier[END_REF].

Let us take equation [START_REF]International Technology Roadmap for Semiconductors (ITRS)[END_REF] and apply it to X and Y for r=n/2, we obtain:

L H n j j n j X X Q Q Q X + = + = = ∑ = 0 2 1 1 0 2 2 2
. Hence,

0 0 2 1 0 2 0 1 1 1 2 2 2 . P Q P Q P Q P Q Y X n n n + + + = L L H L L H H H Y X Y X Y X Y X + + + =
(13) Note that Q 1 and Q 0 are (n/2)+1 bit size, but x -1 can be omitted from Q 0 since it is stuck at zero. Thus, we obtain four independent signed multipliers: X H .Y H , X H .Y L , X L .Y H , X L .Y L which are respectively (n/2)+1×(n/2), (n/2)+1×n/2, n/2×(n/2), n/2×n/2 bit size. Fig. 13 illustrates the implementation of equation (13) for a signed 16x16 bit multiplier based on recoding algorithm ß2 2 with r=2. Equation (13) eliminates the cumbersome term (EV×2 n/2) in equation (6) of [START_REF] Kuang | Design of Power-Efficient Configurable Booth Multiplier[END_REF] as well as the necessary logic for its generation. More importantly, in Fig. 13, four 8x8 bit multiplications can be performed simultaneously, whereas in [START_REF] Kuang | Design of Power-Efficient Configurable Booth Multiplier[END_REF] only two are allowed because of the shared terms (EV×2 n/2) and CV required for the sign extension. Without counting the necessary EV generation logic and the use of inverters for the negation of the sign bits, the partitioning proposed in [START_REF] Kuang | Design of Power-Efficient Configurable Booth Multiplier[END_REF] consumes a total bit count of 205 for a 16x16 bit multiplier, while ours requires 198 bits.

Note that equation (5) can be advantageously used to partition X H and X L with different bit lengths. For instance, with r=n, s=3n/4 and t=n/4, we obtain:

Y X + + + = H H L H H L L L Y X Y X Y X Y X + + + = (14)
Four independent signed multipliers are generated: X H .Y H , X H .Y L , X L .Y H , X L .Y L , which are respectively (n/4)+1×(n/4), (n/4)+1×(3n/4), (3n/4)+1×(n/4), and (3n/4)×(3n/4) bit size. The translation of equation (14) into architecture is depicted by Fig. 14. Both partitioning schemes (Fig. 13 and Fig 14) needs the same amount of bits (198).

More efficiently, equation (13) can be combined with ß''2 8 algorithm for the recoding of Y H and Y L submultiplicands to produce a faster partitioning (Fig. 15) for operand sizes larger than 16 bits according to the implementation results shown in Fig. 10.

More importantly, equation (1) can be used to partition the X and Y operands into any desired number of slices depending on r value. Choosing for instance r=n/4 results into the following partitioning:

0 4 1 2 2 4 3 3 3 0 4 2 2 2 2 Q Q Q Q Q X n n n j j n j + + + = = ∑ = . Hence, 4 3 0 3 1 3 4 5 2 3 2 3 3 3 2 2 2 2 . n n n n P Q P Q P Q P Q Y X + + + = 2 0 2 4 3 1 2 2 2 4 5 3 2 2 2 2 2 n n n n P Q P Q P Q P Q + + + + 4 0 1 2 1 1 4 3 2 1 3 1 2 2 2 2 n n n n P Q P Q P Q P Q + + + + 0 0 4 1 0 2 2 0 4 3 3 0 2 2 2 P Q P Q P Q P Q n n n + + + + LL HH LH HH HL HH HH HH Y X Y X Y X Y X + + + = LL HL LH HL HL HL HH HL Y X Y X Y X Y X + + + + LL LH LH LH HL LH HH LH Y X Y X Y X Y X + + + + LL LL LH LL HL LL HH LL Y X Y X Y X Y X + + + + (15)
Equation (15) generates sixteen independent signed multipliers. All are (n/4)+1×(n/4) bit size, except X LL .Y HH , X LL .Y HL , X LL .Y LH , X LL .Y LL which are (n/4)×(n/4) bit size. The implementation details of equation (15) for n=16 based on ß2 2 with r=2 are described in Fig. 16. Equation (15) requires a total bit count of 254 which induces an overhead of 28% compared to equation [START_REF] Seidel | Binary Multiplication Radix-32 and Radix-256[END_REF].

Finally, equation (1) and (5) can be combined with any proposed recoding algorithm (ß2 r) to produce any desired multi-precision multiplication scheme.

VII. CONCLUSION AND FUTUR WORK

We developed a recursive version of the multibit recoding multiplication algorithm which enabled to solve two hard problems: radix 2 r signed multiplication and radix 2 r multi-precision signed multiplication. The former is oddmultiple free solution with advanced capabilities for multiplication-intensive applications that must dissipate minimal power while operating at high speed. In addition, the solution is highly-scalable allowing a hardware-friendly partitioning that can be tailored to the desired performance and power budget.

We deliberately opted for FPGA implementation to rapidly explore a large number of variants of the recursive algorithm. Only ten recoding algorithms have been selected and reported in this paper. We first gave priority to a serial/parallel implementation as it is the most appropriate to designing embedded finite-word-length controllers, which is our ultimate objective. A fully-parallel implementation will be given the same attention for further investigation and optimization.

Guided by Mux and Add indicators, even higher oddmultiple free recoding algorithms (ß2 64 , ß2 128 , ß2 256 ,…) can be generated to efficiently cope with large-operand-size applications, such as in cryptography. However, for large r values, the use of advanced optimization heuristics becomes mandatory in order to determine the primary radix (2 1 , 2 2 , 2 5 , and 2 8) configuration that leads to the optimal implementation of the desired radix. This issue is being explored at present time and we plan to report our results in a forthcoming paper.

As for the multi-precision solution, this latter would not have been possible without the development of a flexible sign-extension technique. Based on the new recursive algorithm, we proposed a generic partitioning scheme that can be adapted to any size combination of the operands in order to reduce the power consumption while increasing the computational throughput. This new solution will be deeply explored for further optimizations using the proposed radix 2 r algorithms. APPENDIX

A. Multibit Recoding Algorithm

Let X be an n-bit two's complement format binary integer. The value of X can then be found from: 3 q x x X n q q n n 2 . 2 . where digits D i are found from bits x i of X according to

Fig. 1 . 1 PPG

 11 Fig. 1. Generalized n×n bit radix 2 r parallel multiplier based on sub-radix 2 s . Space partitioning according to r and s values

 five additional adders is obtained with:

 et al. in[START_REF] Dimitrov | Area Efficient Multipliers Based on Multiple-Radix Representations[END_REF]. The new recoding is:

Fig. 3 . 1 Fig. 2 .

 312 Fig. 3. Generalized radix 2 r serial/parallel multiplier based on sub-radix 2 s . Space-time partitioning according to r and s values

b 1 =

 1 b 2 = 8, and |O m1 | = |O m2 | = 4. Thus, Mux2 = 8r.

Fig. 4 .Fig. 6 .

 46 Fig. 4. Area occupation versus r

Fig. 10 .Fig. 8 .Fig. 7 .

 1087 Fig. 10. Max. multiply operations versus r

Fig. 11 .

 11 Fig. 11. Two's complement 128x128 bit multiplier based on equation (ß2 32). Space partitioning according to : r=32 (a) and r=64 (b)

1)

 1 Note that this is a uniform representation for both positive and negative numbers. X is positive if x n-l = 0 and is negative if x n-l =1. An SD representation of X in radix 2 k (k ≥ 1) will have n/k signed digits 4 D n/k-l , D n/k-2 ,…,D 1, Do. In this new radix (2 k) the value of x can be rewritten as

 supported by "Centre de Développement des Technologies Avancées, CDTA," Algiers, Algeria, under project contract number: 21/CRSOC/DMN/CDTA/2011. The project progresses under a close cooperation with "Franche Comté Electronique Mécanique Thermique et Optique -Sciences et Technologies, FEMTO-ST " Besançon, France.The authors wish to thank D. Bouchaffra and B. Djezzar for their careful review of this manuscript.

Fig. 14 .

 14 Fig. 14. Low-power multi-precision multiplier for the particular case (n,r) =(16, 2) with 12 and 4 bit sub-operand sizes

Fig. 16 .

 16 Fig.[START_REF] Annaratone | Digital CMOS Circuit Design[END_REF]. Low-power multi-precision multiplier for the particular case (n,r) =(16,2) with 4-bit sub-operand size

A

 New Recursive Multibit Recoding Algorithm for High-Speed and Low-Power Multiplier A.K. Oudjida 1 , N. Chaillet 2 , A. Liacha 1 , and M.L. Berrandjia 1

	follows: 21%, 53%, 105% and 8%, 52%, 63% are obtained
	in terms of multiply-time, energy consumption per multiply-
	operation, and total gate count, respectively. In addition, a
	new low-power and high-throughput radix 2 r adapted
	technique for multi-precision multiplication is introduced.
	(1) Centre de Développement des Technologies Avancées, Algiers, Algeria Contrary to existing techniques
	(2) Institut FEMTO-ST, Besançon, France
	I

 12 Q 1 P 1

										X 32
	Recoding Algorithm						PP 0	Y 6 , 7 Y -1 , 4 Y 4 , 6	+ PPG 00 Q 00 P 00 S 00 R 00 + Recoding Equation and Main Features PPG 0
				PPG 1			Y 7 , 12	Q 01 P 01	PPG 01	+	PP 0
	Y 12 , 14 Y 14 , 15				+	PP 1	Y 12 , 14 Y 14 , 15	R 01 S 01	+	+
	Y 15 , 20 Q 2 P 2	PPG 2			Y 15 , 20	Q 10 P 10	PPG 10	PPG 1
	Y 20 , 22 Y 22 , 23	R 2 S 2	+	+	PP 2	16 bits	Y 22 , 23 Y 20 , 22	S 10 R 10	+	+
											+	PP 1
	Y 23 , 28 Q 3 P 3	PPG 3			Y 23 , 28	Q 11 P 11	16 bits
	Y 28 , 30 Y 30 , 31	R 3 S 3	+	+	PP 3		Y 28 , 30 Y 30 , 31	R 11 S 11	+	+	(b)

r 2 β

TABLE V

 V

			RESULT COMPARISON FOR r = 64	
	Implem-		Recoding Algorithm	
	entation	Seidel [8]	Dimitrov [9]	Ours	Savings / ß2 8	Savings / ß'2 8
	results	ß2 8	ß'2 8	ß''2 8	%	%
	Area 1	5251	6599	3219	63	105
	Energy 2	2.49	2.48	1.63	53	52
	Speed 3	48.62	43.17	52.4	8	21
	1: Area occupation in number of Virtex-6 slices	
	2: Energy consumption per multiplication operation (pJ)	
	3: Million multiplications per second (MMPS)	

 Fig.[START_REF] Manmasson | FPGA in Industrial Control Applications[END_REF]. Low-power multi-precision multiplier for the particular case (n,r) =(16,8) with 8-bit sub-operand size Fig.13. Low-power multi-precision multiplier for the particular case (n,r) =(16,2) with 8-bit sub-operand size

		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	1	0
																				X L .Y L										
																																8x8 bits
						31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5
	X 0 , 7 Y -1 , 4	Q 0 P 0	PPG 0			X L .Y L 8x8 bits																					
	Y 4 , 6 Y 6 , 7	R 0 S 0	+	+																										
														+																	
	X 0 , 7 Y 7 , 12 Q 1 P 1	PPG 1				X L .Y H 8x8 bits																				
	Y 12 , 14	R 1			+																										
	Y 14 , 15	S 1	+																												
														+																	
	X 7 , 15 Y -1 , 4	Q 2 P 2	PPG 2				X H .Y L 9x8 bits																				
	Y 6 , 7 Y 4 , 6	S 2 R 2	+	+								=																	
						+																									
	X 7 , 15 Y 7 , 12 Q 3 P 3	PPG 3				X H .Y H 9x8 bits																			
	Y 12 , 14	R 3			+																										
	Y 14 , 15 S 3	+																												

{ }