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Besançon, France
bLaboratoire d’Automatique et Génie des Procédés CNRS UMR5007, Université de Lyon, Lyon, F-69003, FRANCE; Université de Lyon,
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Abstract

Control contact systems represent controlled (or open) irreversible processes which allow to represent simultaneously

the energy conservation and the irreversible creation of entropy. Such systems systematically arise in models estab-

lished in Chemical Engineering. The differential-geometric of these systems is a contact form in the same manner as

the symplectic 2-form is associated to Hamiltonian models of mechanics. In this paper we study the feedback preserv-

ing the geometric structure of controlled contact systems and renders the closed-loop system again a contact system. It

is shown that only a constant control preserves the canonical contact form, hence a state feedback necessarily changes

the closed-loop contact form. For strict contact systems, arising from the modelling of thermodynamic systems, a

class of state feedback that shapes the closed-loop contact form and contact Hamiltonian function is proposed. The

state feedback is given by the composition of an arbitrary function and the control contact Hamiltonian function. The

similarity with structure preserving feedback of input-output Hamiltonian systems leads to the definition of input-

output contact systems and to the characterization of the feedback equivalence of input-output contact systems. An

irreversible thermodynamic process, namely the heat exchanger, is used to illustrate the results.

Keywords: Nonlinear Control, Input-output Contact systems, Contact geometry, Irreversible Thermodynamics

1. Introduction

Control contact systems [1, 2] have been introduced

for the representation of controlled (or open) irre-

versible processes. They allow to represent simultane-

ously the energy conservation and the irreversible cre-

ation of entropy, the fundamental principles of Irre-

versible Thermodynamics. Such systems are defined

on the Thermodynamic Phase Space which is endowed

with a contact structure (or a contact form) which is

canonically associated with Gibbs’ relation defining the

Thermodynamic Equilibrium properties of physical sys-

tems [3, 4, 5, 6]. Extending the work on reversible

thermodynamical transformations in [7] to irreversible

transformation of open thermodynamical systems leads

to the definition of control contact systems [1, 2] which
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are a strict extension of control Hamiltonian and port-

Hamiltonian systems [8], and to the analysis of some of

their dynamic properties [2, 9].

In this paper we consider the state feedback of con-

trolled contact systems and analyze under which con-

ditions the closed-loop system again is a contact sys-

tem, more precisely when it leaves invariant some con-

tact structure. This problem is precisely in the line with

the similar problem of feedback controls preserving the

symplectic structure of input-output Hamiltonian sys-

tems treated in [10, 11].

The paper is organized as follows. In Section 3 we

give conditions under which a state feedback leads to

a closed-loop system which is a contact system with

respect to some closed-loop contact form in terms of

a matching equation between the feedback and the

closed-loop contact form. In Section 4 we restrict the

problem to control contact systems defined by strict

contact vector fields, that is that leave invariant the con-

tact form itself, and the difference between the open-

loop and the closed-loop contact form is an exact 1-

form. These assumptions allow to define the class of ad-
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missible feedback equations as well as a matching equa-

tion for the added exact 1-form defining the closed-loop

contact form. In Section 5 we shall deduce a natural

output for controlled contact systems and define input-

output contact systems. Then we deduce the conditions

for the feedback equivalence between input-output con-

tact systems. Some final remarks and perspectives of

future work are given in Section 6.

2. On controlled contact systems

In this section we shall briefly recall the definition

and main properties of a class of nonlinear control sys-

tems, called control contact systems, that arise when

modelling control systems in chemical engineering or

any process where the internal energy (or entropy) bal-

ance equation is written. They may be considered as the

analogue of Lagrangian or Hamiltonian control systems

associated with mechanical systems and defined on the

state space of configuration-momentum which is en-

dowed with a natural symplectic structure [12, 11, 13].

Controlled contact systems are defined on the Thermo-

dynamic Phase Space consisting of n+ 1 extensive vari-

ables and n intensive variables and endowed with a con-

tact structure associated with Gibbs’ relation defining

the thermodynamic properties of the system. On the

Thermodynamic Phase Space, one may then define con-

trolled contact systems which are the analogue of con-

trol Hamiltonian systems and have been introduced in

[1] and further developed in [2, 9, 8]. After the introduc-

tory example of a 2-compartment heat exchange system

we shall recall the precise definitions needed in this pa-

per.

2.1. The example of the heat exchanger

Consider the system consisting of two compartments

exchanging heat flow through a heat conducting wall

and one of the compartments exchanging heat flow

with the environment and called for simplicity heat ex-

changer. It consists of the two entropy balance equa-

tions for each compartment and is the paradigmatic ex-

ample for irreversible systems, in the same way as the

mass-spring system for mechanical systems.

The thermodynamic perspective to this system con-

sists in considering two simple thermodynamic systems,

indexed by 1 and 2 (for instance two ideal gases), which

may interact only through a heat conducting wall and

compartment 2 exchanging a heat flow with the envi-

ronment. In a first instance the Thermodynamic prop-

erties are described in the Thermodynamic Phase Space

as follows. The thermodynamic phase space is R
5 ∋

(x0, x1, x2, p1, p2)⊤ with the first coordinate x0 corre-

sponding to the total internal energy, the coordinates x1

and x2 corresponding to the entropies of subsystem 1

and 2, the coordinates p1 and p2 corresponding to the

temperatures, the intensive variables conjugated to the

entropies x1 and x2. The thermodynamic properties are

defined by Gibbs’ equation:

dx0 −

n
∑

i=1

pidxi = 0 (1)

and are practically defined by a thermodynamic poten-

tial being the sum of the internal energy function of each

compartment U(x1, x2) = U1(x1) + U2(x2). The gra-

dient of the total internal energy ∂U
∂xi
= Ti(xi) is com-

posed of the temperatures of each compartment with

Ti(xi) = T0 exp
(

xi

ci

)

, where T0 and ci are constants [14].

The state space of the heat exchanger is then defined as

the following submanifold LU of the Thermodynamic

Phase Space where Gibbs’ equation is satisfied

LU :


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















x0 = U (x1, x2)
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[

∂U
∂x1
, ∂U
∂x2

]⊤
= T (x) = [T1 (x1) ,T2 (x2)]⊤























In a second instance, one completes the thermodynamic

properties by irreversible phenomena, in this example

the heat conduction through the internal wall given

by Fourier’s law with heat conduction coefficient λ.

The dynamics of the thermodynamic variables may be

shown to leave the submanifold LU invariant and re-

stricted to the submanifold LU , define the following

control system

d

dt
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−CV 1
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CV 2
−1 [λ(T1 − T2) + u]
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

(2)

where CVi =
∂Ui

∂Ti
are the the calorific capacitances and

the input u(t) is the heat flow delivered by the external

heat source. This control system expresses the total en-

ergy balance in the first coordinate, the entropy balance

equations in the second and third coordinates and the

partial energy balance equations (written in terms of the

temperatures and using the calorimetric relations) for

each compartment in the fourth and fifth coordinates.

Hence the Thermodynamic perspective to this heat

exchanger is to obtain a redundant dynamical represen-

tation where the dynamics of all intensive and extensive

thermodynamic variables are expressed.
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2.2. Contact manifold and contact systems

The Thermodynamic Phase Space is structured by

Gibbs’ equation which endows it with a canonical

differential-geometric called contact structure. In the

sequel we shall recall briefly the main definitions and

properties of contact geometry used in this paper; the

reader is refereed to the following textbooks for a de-

tailed justification [15, app. 4.], [5] and to [2, 8, 9]

for the application to controlled irreversible thermody-

namic systems.

The contact form corresponds to the definition of

Gibbs’ equation (1) and is defined as follows.

Definition 2.1. A contact structure on a 2n + 1-

dimensional differentiable manifold M is defined by a

1-form θ of constant class (2n + 1) satisfying

θ ∧ (dθ)n
, 0, (3)

where ∧ denotes the wedge product, d the exterior

derivative and (·)n the n-th exterior power. The pair

(M, θ) is then called a contact manifold, and θ a con-

tact form.

Note that condition (3) represents a non-degeneracy

condition [15]. According to Darboux’s theorem there

exists a set of canonical coordinates x̃ = (x0, x, p) ∈

R ×Rn ×Rn ofM where the contact form θ is given by

θ = dx0 −

n
∑

i=1

pidxi.

There exists a particular vector field, characteristic of

the contact form, called the Reeb vector field.

Definition 2.2. The Reeb vector field E associated with

the contact form θ is the unique vector field satisfying

iEθ = 1 and iEdθ = 0 (4)

where iE · denotes the contraction of a differential form

by the vector field E. In canonical coordinates the Reeb

vector field is expressed as E = ∂
∂x0

.

Notice that i·· is also known as the interior product or

interior derivative of a differential form by a vector field

[15]. The irreversible thermodynamic phenomena leads

to dynamical systems which are defined by contact vec-

tor fields.

Proposition 2.1. [16] A (smooth) vector field X on the

contact manifoldM is a contact vector field with respect

to a contact form θ if and only if there exists a smooth

function ρ ∈ C∞(M) such that

LXθ = ρθ, (5)

where LX · denotes the Lie derivative with respect to the

vector field X.

It may be shown that contact vector fields are

uniquely defined by smooth real functions.

Proposition 2.2. [16] The map Ω(X) = iXθ defines an

isomorphism from the vector space of contact vector

fields in the space of smooth real functions on the con-

tact manifold.

The real function K generating a contact vector field

X is obtained by

K = Ω(X) = iXθ (6)

and is called contact Hamiltonian. The contact vector

field generated by the function K is denoted by XK =

Ω−1(K), where Ω−1 is the inverse isomorphism. Finally

the function ρ of (5) is given by

ρ = iEdK (7)

where E is the Reeb vector field. A contact vector field,

in any set of canonical coordinates, is expressed by

XK =




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, (8)

where In denotes the identity matrix of order n.

With this definition of contact vector fields, one may

define control contact systems according to [1, 2] which

represent the dynamics of irreversible Thermodynamic

systems [8] such as the Continuous Stirred Tank Reactor

[17, 18].

Definition 2.3. A controlled contact system affine in the

scalar input u(t) ∈ Lloc
1

(R+) is defined by the two func-

tions K0 ∈ C∞(M), called the internal contact Hamilto-

nian and Kc ∈ C∞(M) called the interaction (or control)

contact Hamiltonian and the state equation

dx̃

dt
= XK0

+ XKc
u, (9)

where XK0
and XKc

are the contact vector fields gener-

ated by K0 and Kc with respect to the contact form θ.

2.3. The example of the heat exchanger (continued)

Consider the control contact system defined by the

internal and control contact Hamiltonians

K0(x, p) = − R(x, p)p⊤JT (x),

Kc(x, p) =
p1

T1

(

1 −
p2

T2

)

,
(10)
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with R(x, p) = λ
(

p1−p2

T1T2

)

and J =
[

0 −1
1 0

]

. It may be

checked that on the Legendre submanifold generated by

U the contact Hamiltonian functions vanish, K0|LU
= 0

and Kc|LU
= 0, and hence the contact vector field

XK0
+ XKc

u leaves the Legendre submanifold LU invari-

ant (i.e. the thermodynamic properties). Using (8) it is

computed that its restriction to LU is equivalent to the

system equations (2).

3. State feedback of controlled contact systems and

invariance of contact forms

The main question of this paper is to character-

ize under which conditions, in closed-loop the system

may again been interpreted as an irreversible Thermo-

dynamic system, in other words conserves a physical

structure. In this section we shall characterize the state

feedback u = α(x̃) such that the closed-loop vector field

X = XK0
+ XKc

α (x̃) (11)

is a contact vector field with respect to some contact

form which may be different from the open-loop one, θ.

3.1. Feedback equivalence with respect to the same

contact form

In a first instance let us analyse under which condi-

tion the closed-loop vector field (11) is a contact vector

field with respect to the contact form θ. Therefore let us

make the following assumption.

Assumption 1. The control contact Hamiltonian Kc ∈

C∞(M) vanishes on a submanifold of measure 0 ofM.

Proposition 3.1. Consider the controlled contact sys-

tem (9) with Assumption 1, and the feedback u = α(x̃)

being a smooth function of the state variables. The

closed-loop vector field X is a contact vector field with

respect to the canonical contact form θ if and only if the

state feedback is constant, i.e., α(x̃) = α0 ∈ R.

Proof. Recall Cartan’s formula: LX · = iXd ·+diX ·. Then

one may compute, using (6) and (7),

LXθ = LXK0
+αXKc

θ

= LXK0
θ + α iXKc

dθ + d (αKc)

= LXK0
θ + αLXKc

θ + Kcdα

= (ρ0 + αρc) θ + Kcdα

where ρ0 = iEdK0, ρc = iEdKc. Hence by (5), the vector

field X = XK0
+ XKc

α is a contact vector field if and

only if there exists a function φ ∈ C∞(M) such that

Kcdα = φθ. Using Assumption 1 we may rewrite the

last expression as

dα =
(

φ

Kc

)

θ,

and using that d2α = 0 one obtains

d
(

φ

Kc

)

∧ θ +
(

φ

Kc

)

dθ = 0.

Taking the wedge product with θ and using that it is a

1-form, hence θ ∧ θ = 0, one gets

(

φ

Kc

)

dθ ∧ θ = 0.

According to Proposition 2.1, dθ ∧ θ is nonzero at any

point, hence
(

φ

Kc

)

= 0 which implies dα = 0 and that α

is a constant function.

3.2. Feedback equivalence with respect to a modified

contact form

Proposition 3.1 shows that using non constant state

feedback of a controlled contact vector field it is not

possible to obtain a contact vector field with respect to

the same contact form. In this section we develop the

feedback conditions under which the closed-loop con-

tact vector field X (9) is again a contact vector field,

with respect to a different contact form associated with

the closed-loop vector field and denoted by θd. There-

fore it has to be checked that the closed-loop vector field

X satisfies condition (5) with respect to θd:

LXθd = LXK0
+αXKc

θd

= LXK0
θd + αLXKc

θd + (iXKc
θd)dα

which leads to the following proposition.

Proposition 3.2. The closed-loop vector field obtained

by the feedback α ∈ C∞(M) in (9) is a contact system

with respect to a contact form θd if and only if there

exist a function ρd ∈ C∞(M) such that the following

matching equation is satisfied

ρdθd = LXK0
θd + αLXKc

θd + (iXKC
θd)dα. (12)

In the following we proceed to simplify the problem

by assuming that the open and closed-loop contact vec-

tor fields are strict contact vector fields.

Assumption 2. The internal and control contact Hamil-

tonian functions K0 and Kc are invariants of the Reeb

vector field E of the contact form θ and the closed-loop

vector field X is a strict contact vector field with respect

to the contact form θd (that is, ρd = ρ0 = ρc = 0).
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Assumption 2 expresses that X, and respectively XK0

and XKc
, leave invariant the contact form itself, θd re-

spectively θ. For contact systems arising from the mod-

elling of physical systems, this is not restrictive since

this is equivalent to assuming that the contact Hamilto-

nians are invariants of the Reeb vector field. In canon-

ical coordinates this means that they do not depend on

the x0 coordinate associated with the Reeb vector field.

For models of physical systems where the x0 coordi-

nate represents the generating potential of the thermo-

dynamic system (the total energy or the total entropy),

this is in general the case [2, 8]. Under Assumption 2,

the matching equation (12) is reduced to a relation on

the feedback α and the closed-loop contact form θd

LXK0
θd + αLXKc

θd + (iXKc
θd)dα = 0. (13)

4. Solutions of the matching equations

4.1. Matching to the contact form θd = θ + dF

In order to facilitate the computation of a solution to

the matching equation we shall make in the sequel the

following assumption.

Assumption 3. The closed-loop contact form θd is de-

fined as

θd = θ + dF, (14)

with F ∈ C∞(M) satisfying iEdF = 0.

Note that the condition iEdF = 0 means that F is

an invariant of the Reeb vector field E and is equiva-

lent in canonical coordinates to assume that the func-

tion F depends only on (x, p) and not on x0. The fol-

lowing proposition proves that the 1-form θd defined in

Assumption 3 is actually a contact form for any choice

of invariant F of the Reeb vector field E.

Proposition 4.1. The 1-form (14) is a contact form.

Proof. Recall that θd is a contact form if it is a Pfaffian

form of class 2n + 1, satisfying [16],

θd ∧ (dθd)n
, 0,

Note that using d2F = 0 one has that

θd ∧ (dθd)n = (θ + dF) ∧ (d(θ + dF))n

= (θ + dF) ∧ (dθ)n.

Proceed by contradiction and assume that θd ∧ (dθd)n =

0. Then, using the fact that iE is a ∧ antiderivation and

the properties (4) of the Reeb vector field:

iE

[

θd ∧ (dθd)n]

= iE

[

(θ + dF) ∧ (dθ)n]

= iE(θ + dF) ∧ (dθ)n + (−1) (θ + dF) ∧ iE ((dθ)n)

= (1 + iEdF) ∧ (dθ)n

and iEdF = 0, implies that (dθ)n = 0 which contradicts

the fact that θ is of class 2n + 1.

Note that it has been assumed that F satisfies iEdF =

0. However, from the proof of Proposition 4.1 it is

clear that it is only required that iEdF , −1. In this

sense the assumption iEdF = 0 is restrictive, however

it may be related to some method of energy shaping

as is commented now. Firstly it may be observed that

this assumption allows to derive some canonical coordi-

nates for the closed-loop contact form θd. In some set

of canonical coordinates (x0, x, p) of θ , the closed-loop

contact form (14) is given by

θd = θ + dF =
(

dx0 −

n
∑

i=1

pidxi

)

+ dF (x, p) ,

= d(x0 + F (x, p)) −

n
∑

i=1

pidxi,

= dx′0 −

n
∑

i=1

pidxi.

A set of canonical coordinates for θd is now given by

(x′
0
, x, p) with x′

0
= x0 + F (x, p). Secondly one may in-

terpret this as the feedback changing the direction of the

Reeb vector field in closed-loop. Recall that the contact

structure appears in the differential-geometric represen-

tation of thermodynamic systems [5, 6, 4], where x0 is

the coordinate of a thermodynamic potential, such as the

energy U or the entropy S . Given some thermodynamic

properties defined for instance by the internal energy,

changing the Reeb vector field amounts to changing the

energy: U′ = U + F. This interpretation is in accor-

dance to the one provided in [5, chap. 6] and [6, chap.

9] for the isothermal interaction of thermodynamic sys-

tem using contact geometry.

Let us now express the matching equation (13) with

θd defined by (14) in terms of a matching equation in

the function F and the feedback α. The Lie derivatives

in (13) may be developed as

LXK0
(θ + dF) = LXK0

θ + LXK0
dF = ρθ + LXK0

dF

with

LXK0
dF = iXK0

d(dF) + d(iXK0
dF) = d

(

XK0
(F)

)

.
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Using Assumption 2 and iXKc
θd = iXKc

(θ + dF) = Kc +

XKc
(F), (13) becomes

d
(

XK0
(F)

)

+αd
(

XKc
(F)

)

+
[

Kc + XKC
(F)

]

dα = 0. (15)

Since X = XK0
+ XKc

α, it follows that

d(X(F)) = d(XK0
(F)) + αd(XKc

(F)) + XKc
(F)dα.

Finally, (15) may be rewritten as the following matching

equation in the feedback α and the function F

d (X(F)) + Kcdα = 0. (16)

Remark 4.1. Notice that if dα = 0 (i.e. α is constant),

then (15) (or (16)) is satisfied if d (X(F)) = 0, or equiv-

alently if X(F) is constant. This in turn is satisfied if

dF ∈ ann
(

Span
{

XK0
, XKc

})

, i.e X(F) = 0. Two special

cases may be identified, namely when dF = 0 i.e. θd = θ

(Proposition 3.1) and when F is an invariant of X.

4.2. Admissible state feedback

In order to solve the matching equation (15) we shall

make the following assumption.

Assumption 4. The differential dKc of the control con-

tact Hamiltonian Kc ∈ C∞(M) vanishes on a submani-

fold of measure 0 ofM.

Observe that by taking the exterior derivative of (16)

we get

dKc ∧ dα = 0.

This leads to consider a candidate feedback function of

the interaction contact Hamiltonian function Kc

α = Φ′ ◦ Kc,

whereΦ′ ∈ C∞(R) is the derivative of a smooth function

Φ : R→ R.

Proposition 4.2. LetM be a contact manifold with con-

tact form θ with associated Reeb vector field E and con-

sider the smooth real functions K0,Kc, F ∈ C∞(M),

such that iE K0 = iE Kc = iE F = 0. Then the closed-

loop vector field X = XK0
+ αXKc

, with α ∈ C∞(M), is

a strict contact vector field with respect to the shaped

contact form θd and the shaped contact Hamiltonian K,

respectively,

θd = θ + dF and K = K0 + Φ ◦ Kc + cF ,

where Φ ∈ C∞(R), if and only if

α = Φ′ ◦ Kc(x, p),

and the matching equation

XK0
(F) + (Φ′ ◦ Kc)[Kc + XKc

(F)] − Φ ◦ Kc = cF (17)

is satisfied. The closed-loop vector field is then denoted

by X = X̂K , where X̂K denotes the contact vector field

generated by K with respect to the contact form θd.

Proof. Note that the control law solves the equation

dKc ∧ d(Φ′ ◦ Kc) = dKc ∧ (Φ′′ ◦ Kc)dKc = 0. Using

the definition of the feedback, (16) becomes

d
[

XK0
(F) + (Φ′ ◦ Kc)XKc

(F)
]

+ Kc(Φ′′ ◦ Kc)dKc = 0,

and by defining Ψ(λ) =
∫ λ

0
χΦ′′(χ)dχ it may be written

as

d
[

XK0
(F) + (Φ′ ◦ Kc)XKc

(F) + Ψ ◦ Kc

]

= 0.

If Ψ(λ) is integrated by parts the following is obtained

d
[

XK0
(F) + (Φ′ ◦ Kc)XKc

(F) + Kc(Φ′ ◦ Kc) − Φ ◦ Kc

]

= 0,

where Φ(λ) =
∫ λ

0
Φ′(χ)dχ. This means that there is a

constant cF ∈ R such that X = XK0
+ αXKc is invariant

with respect to θd if and only if (17) is satisfied. By tak-

ing the exterior derivative of (16) we get dKc ∧ dα = 0

which is a necessary condition for Kcdα to be closed

and, by Assumption 4, dα = µdKc for some function

µ. However observing that (16) implies that KcµdKc is

an exact 1-form and using Assumptions 1 and 4, one

obtains that µ is a function of the interaction contact

Hamiltonian Kc. Finally by integration one obtains that

the feedback α may be written α = Φ′ ◦ Kc. Now, the

closed-loop contact Hamiltonian function is given by

the contraction of the closed-loop contact vector field

and the closed-loop contact form: K = iXθd. Comput-

ing this last expression yields

K = iXK0
(θ + dF) + αiXKc

(θ + dF),

= K0 + iXK0
dF + α(Kc + iXKc

dF),

= K0 + XK0
(F) + α(Kc + XKc

(F)).

Replacing the control law in this expression, and since

F(x, p) and Φ′ ◦Kc verify (17), K = K0 +Φ ◦Kc + cF is

obtained. Finally, since X is a contact vector field with

respect to θd, it may be written as

X = XK0
+ αXKc

= X̂K ,

where X̂K is the contact vector field generated by K with

respect to the contact form θd.
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Remark 4.2. It is also possible to obtain the expres-

sion of the closed-loop contact Hamiltonian by using the

representation in coordinates of the closed-loop contact

form and vector field. Indeed, the closed-loop contact

form is given by

θd = d (x0 + F(x, p)) − p⊤dx

= dx0 −

(

p −
∂F

∂x

)⊤

dx +
∂F

∂p

⊤

dp.

The closed-loop vector field in local coordinates is X =

XK0
+ XKc

α and K is given by the contraction of the 1-

form θd by this vector field. Recalling (8),

K = iXθd = K0 +
(

∂K0

∂x

⊤ ∂F
∂p
−
∂K0

∂p

⊤ ∂F
∂x

)

+ ∂F
∂p

⊤
p
∂K0

∂x0
+

[

Kc +
(

∂Kc

∂x

⊤ ∂F
∂p
−
∂Kc

∂p

⊤ ∂F
∂x

)

+ ∂F
∂p

⊤
p ∂Kc

∂x0

]

α.

Since α = Φ′ ◦ Kc and
∂K0

∂x0
=
∂Kc

∂x0
= 0, and using the

coordinate expression (8) of a contact vector field, we

obtain by identification of the terms

K = K0 +
(

∂K0

∂x

⊤ ∂F
∂p
−
∂K0

∂p

⊤ ∂F
∂x

)

+
[

Kc +
(

∂Kc

∂x

⊤ ∂F
∂p
−
∂Kc

∂p

⊤ ∂F
∂x

)]

(Φ′ ◦ Kc)

= K0 + XK0
(F) + (Φ′ ◦ Kc)[Kc + XKc

(F)].

Finally replacing (17) in this equation we obtain K =

K0 + Φ ◦ Kc + cF .

The previous development shows that the matching

condition (17) is characterized by the state feedback

and the function F, which leads to a characterization of

the closed-loop contact Hamiltonian function and vec-

tor field in terms of the state feedback.

5. Input-ouput contact systems and their feedback

equivalence

5.1. Natural output of controlled contact systems

The result of Proposition 4.2 is similar to the one

obtained when investigating the feedback equivalence

of input-output Hamiltonian systems [10, 11], with the

difference that in this frame the Poisson bracket is the

same in open and closed loop whereas for control con-

tact systems the contact form in open loop is different

than in closed loop. However in both cases the feed-

back is defined as the composition of some function

with the control Hamiltonian, respectively the control

contact Hamiltonian. For input-output Hamiltonian sys-

tems the control Hamiltonian defines a natural output.

In this section we follow this line and define the natu-

ral output of a contact Hamiltonian system in a similar

manner.

Definition 5.1. An (single) input-(single) output contact

system is an affine control contact system, according to

Definition 2.3, augmented with the output relation

y = Kc(x̃).

One may note immediately that this definition of out-

put also coincides with the more general definition sug-

gested in [12] for control Hamiltonian systems nonlin-

ear in the inputs: y = ∂K
∂u

(x̃, u) = Kc(x̃) with the defini-

tion of the contact Hamiltonian K = K0+uKc+cF . One

may also note that this output is quite different from V-

conjugated outputs for conservative contact systems in-

troduced in [2, 19], defined with respect to an arbitrary

smooth function V ∈ C∞(M) and the interaction con-

tact Hamiltonian function Kc. Using Definition 5.1 the

state feedback of Proposition 4.2 may be expressed as

an output feedback

α = Φ′(y), (18)

and the closed-loop contact Hamiltonian as a function

of the natural output

K = K0 + Φ(y) + cF . (19)

5.2. Feedback equivalence of input-output systems

Having defined input-output contact systems, we may

now follow similar questions as for input-output Hamil-

tonian systems [20], and look for the feedback equiva-

lence of these input-output contact systems. This means

that we look for a control

u (t, x̃) = α (x̃) + v (t) (20)

such that the closed-loop system

dx̃

dt
=

(

XK0
+ XKc

α (x̃)
)

+ XKc
v (21)

is again an input-output contact system. From Section

4 we know that the closed-loop drift vector field of (21)

is a contact vector field when Proposition 4.2 is satis-

fied. In order to have an input-output contact system it

remains to check that its input vector field XKc
is also a

strict contact vector field with respect to the closed-loop

contact form θd. This is true if LXKc
θd = 0 which by,

LXKc
θd = LXKc

(θ + dF)

= LXKc
dF

= dXKc
(F) = 0.

As a consequence, the feedback equivalence of input-

output contact systems is summarized in the following

proposition.
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Proposition 5.1. An input-output contact system, ac-

cording to Definition 5.1, on some contact manifoldM

endowed with the contact form θ, with internal contact

Hamiltonian K0 and control Hamiltonian Kc, is feed-

back equivalent using (20) to an input-output contact

system with respect to the contact form θd = θ + dF,

defined in Assumption 3, if and only if there exists

two real numbers c1 and cF as well as a real function

Φ ∈ C∞ (M) such that the following system of linear

PDE’s is satisfied

XKc
(F) = c1, (22)

XK0
(F) + (Φ′ ◦ Kc)[Kc + c1] − Φ ◦ Kc = cF . (23)

5.3. Some remarks on control synthesis

From the expressions of the closed-loop contact

Hamiltonian (19) and the output feedback (18) it is clear

that the function Φ is a control design parameter. A

choice ofΦ shapes the closed-loop contact Hamiltonian

(19) in a very similar manner as the feedback of input-

output Hamiltonian systems [10] or the Casimir method

for port-Hamiltonian systems [21].

However there is an additional condition that there

should exist a real function F ∈ C∞ (M) satisfying

the matching condition (17), which may equivalently be

written

〈

XK0
+ (Φ′ ◦ Kc)XKc

, dF
〉

+ (Φ′ ◦ Kc)Kc − Φ ◦ Kc = 0,

where 〈 , 〉 denotes the pairing between vector fields and

1-forms onM. It appears then clearly that the matching

equation defines a linear first-order PDE in the function

F defining the modified contact form θd in (14). In the

canonical coordinates of θ this PDE may be written as

[

∂F
∂x
∂F
∂p

]⊤ 











−
∂K0

∂p
− (Φ′ ◦ Kc) ∂Kc

∂p
∂K0

∂x
+ (Φ′ ◦ Kc) ∂Kc

∂x













+ (Φ′ ◦Kc)Kc−Φ◦Kc = 0.

This linear PDE may then be solved by using classical

methods such as the method of characteristics [22, 23,

24]. If one looks for the feedback equivalence to an

input-output contact system, according to Proposition

5.1, this function F should moreover satisfy the linear

first-order PDE (22) which however does not depend on

the feedback (that is on the function Φ).

5.4. The example of the heat exchanger (continued)

Consider the example of the heat exchanger presented

in Section 2.1. We shall briefly illustrate Proposition 5.1

by giving a particular solution to the matching equations

(22) and (23), corresponding to some choice of feed-

back. We consider the control contact system defined

by the internal and control contact Hamiltonians (10)

K0(x, p) = − R(x, p)p⊤JsT (x),

Kc(x, p) =
p1

T1

(

1 −
p2

T2

)

.

It appears that for the solution of the matching equation

it eases the computations, and the interpretations of the

results, to use another lift of the entropy balance equa-

tions (2) and modify the internal contact Hamiltonian

K0 by adding the following auxiliary contact Hamilto-

nian

Ka = λT1

(

p1

T1
−

p2

T2

)2
+
λ2

e

2

p2
1

T1

(

1 −
p2

T2

)2
,

and model the heat exchanger with the contact vector

field XK0+Ka
+ XKc

u. The function Ka has been cho-

sen such that it vanishes on LU and that XKa
|LU
= 0.

As a consequence the restrictions of both contact vector

fields XK0+Ka
+XKc

u and XK0
+XKc

u to the Legendre sub-

manifold LU are equal and both define admissible lifts

of the entropy balance equations of the heat exchanger

(see Section 2.1). Let us choose Φ (χ) = − 1
2
χ2, from

which the following control law is obtained

u (t, x̃) = Φ′(Kc) (x̃) + v (t) = −λe
p1

T1

(

1 −
p2

T2

)

+ v (t) .

A solution of (23) is then given by the function F =
(

p1

T1
+

p2

T2

)

which moreover is an invariant of XKc
, i.e.,

XKc
F = 0 and satisfies (22). According to Proposition

5.1, the closed-loop contact system is an input-output

contact system with contact form

θd = dx′0 − p⊤dx = d
(

x0 +
p1

T1
+

p2

T2

)

− p⊤dx,

and closed-loop contact Hamiltonian

K = K0 + Ka −
1
2
K2

c + vKc.

Remark 5.1. The stability of the closed-loop system is

not discussed in this paper. However it is possible to de-

fine a restriction of the control law to some desired Leg-

endre submanifold LUd
, where Ud is a desired gener-

ating function, such that the closed-loop contact vector

field is stable restricted to LUd
. This has been presented

in [25]. For this particular example, an invariant Leg-

endre submanifold with p1 = p2 =
∂Ud

∂x1
=
∂Ud

∂x2
= T ∗ > 0,

where T ∗ is a desired temperature, stabilizes the closed-

loop contact vector field restricted to LUd
at T ∗.

6. Conclusions

In this paper the feedback equivalence of input-output

contact systems have been analysed extending prelimi-

nary results of [26].
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In Section 3 we have shown that the only state feed-

back preserving the contact structure of a control con-

tact system is the constant one. This result is different

than for the control of Hamiltonian systems [10, 11],

despite the formal similarity between the two classes of

systems. This leads to look for a state feedback which

results in a closed-loop system which leaves a different

contact form invariant. This is a problem quite similar

to the IDA-PBC method for port-Hamiltonian systems,

where the closed-loop system is port-Hamiltonian with

respect to different structure matrices (or Leibniz brack-

ets) [27]. We have then established a matching condi-

tion between the closed-loop contact form and the state

feedback.

In Section 4 we restrict the problem to control con-

tact systems defined by strict contact vector fields, that

is that leave invariant the contact form itself, and where

the difference between the open-loop and the closed-

loop contact form is an exact 1-form. This allows to

show that the admissible feedbacks are the composi-

tion of an arbitrary function with the control contact

Hamiltonian, a result completely similar to input-output

Hamiltonian systems [10, 11]. However there is an ad-

ditional condition to be satisfied which consist in a lin-

ear first-order PDE in the function whose differential is

the added exact 1-form defining the closed-loop contact

form, and which guaranties the existence of a closed-

loop contact form.

In Section 5, based on the definition of the admissible

feedback, the natural output of a control contact system

is defined as the control contact Hamiltonian. From this

follows the definition of input-output contact systems,

completely analogous to input-output Hamiltonian sys-

tems. It is shown that the conditions for feedback equiv-

alence of input-output contact systems consist in adding

to the previous matching PDE, the condition that the

function whose differential is the added exact 1-form, is

an invariant of the control contact vector field.

A logical extension of this work is to consider multi-

input and output contact systems, but more interesting is

the problem of finding stabilizing structure-preserving

feedback controls. Preliminary work [25] has consid-

ered a subclass of control contact systems, called con-

servative contact systems, which leave invariant some

Legendre submanifold in closed-loop. In this case the

closed-loop system may be interpreted as a thermody-

namic system and the control law may be expressed as

a state-feedback of the base manifold of extensive vari-

ables of the system. Finally it should be observed that

contact systems have been contextualized in this paper

as irreversible thermodynamic systems expressed in the

Thermodynamic Phase Space. However contact sys-

tems also appear to represent time-dependent Hamil-

tonian systems [16, Chap. V] and in this context, the

present work could eventually also be used for the sta-

bilization of time-dependent port-Hamiltonian systems

[28].
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