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Revealed preference and indifferent selection

Eric Danan

THEMA – Université de Cergy-Pontoise, 33 boulevard du Port, 95011

Cergy-Pontoise cedex, France

Abstract

It is shown that preferences can be constructed from observed choice behavior in
a way that is robust to indifferent selection (i.e., the agent is indifferent between
two alternatives but, nevertheless, is only observed selecting one of them). More
precisely, a suggestion by Savage (1954) to reveal indifferent selection by consid-
ering small monetary perturbations of alternatives is formalized and generalized
to a purely topological framework: preferences over an arbitrary topological space
can be uniquely derived from observed behavior under the assumptions that they
are continuous and nonsatiated and that a strictly preferred alternative is always
chosen, and indifferent selection is then characterized by discontinuity in choice
behavior. Two particular cases are then analyzed: monotonic preferences over a
partially ordered set, and preferences representable by a continuous pseudo-utility

function.

Key words: Revealed preference, indifference, continuity, nonsatiation,
monotonicity, pseudo-utility, JEL classification: D11

1 Introduction

How does an agent choose between two indifferent alternatives a and a′? On
the one hand, indifference means that she views this choice as (ex ante) im-
material for her well-being, so she might as well select a, or a′, or randomize
between them, or delegate her choice. On the other hand, for an outside ob-
server who only has data about the agent’s choice behavior, say the agent
chooses a over a′, it is of importance to know whether the agent actually
strictly prefers a to a′ or she is indifferent between a and a′. In the latter case,
we say that the agent makes an indifferent selection.
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To illustrate the importance of indifferent selection, consider a social planner
who has to select between two social alternatives a and a′. The alternatives
involve two agents and the social planner has data about their respective
choice behavior, from which he seeks to infer their respective preferences. The
first agent strictly prefers a to a′ and, accordingly, chooses a over a′; the
second agent is indifferent between a and a′ but nevertheless selects a′ over
a. Then a Pareto-dominates a′, but if the social planner assumes that his
observations about the agent’s behavior fully reflect their preferences, he will
think that the second agent strictly prefers a′ to a and, hence, that a and
a′ are Pareto-noncomparable. Thus, neglecting indifferent selection can block
Pareto-improvements (e.g., if a′ is the status quo).

How, then, can one disentangle between strict preference and indifference
based on behavioral data? The usual revealed preference approach merely rules
out indifferent selection by assuming that if the agent is indifferent between
a and a′, then she will be observed randomizing between a and a′. However,
this assumption is hard to justify: why could not an indifferent agent decide
to select a, say, instead of resorting to a randomization device, or to random-
ize subjectively rather that observably? In his pioneering work on decision
making under uncertainty, Savage (1954, p17) noted the problem of indiffer-
ent selection and informally suggested a more satisfactory solution: he argued
that indifference could be revealed by considering small monetary perturba-
tions of alternatives. Namely, if the agent is indifferent between a and a′, then
adjoining any (however small) monetary bonus to a should make it chosen
over a′ and, similarly, adjoining any bonus to a′ should make it chosen over
a. On the other hand, if she strictly prefers a to a′, then adjoining a small
enough bonus to a′ should not make it chosen over a.

This paper formalizes Savage (1954)’s argument in a general topological frame-
work. More precisely, it is shown that under the assumptions that preferences
over an arbitrary topological space are continuous and nonsatiated and that
a strictly preferred alternative is always chosen, preferences can be uniquely
derived from observed behavior, and indifferent selection is characterized by
discontinuity in behavior. To make the model fully behavioral, necessary and
sufficient conditions on behavior are then provided under which there indeed
exists a preference relation satisfying these assumptions.

Two applications of this general model are provided. First, if the set of al-
ternatives is naturally endowed with a partial order representing some notion
of objective betterness (Cubitt and Sugden, 2001), e.g., more money is better,
then the nonsatiation condition is naturally strengthened to monotonicity with
respect to this partial order. In this particular setup, Savage (1954)’s informal
argument is explicitly recovered. Second (and going back to the general topo-
logical setup), in the case where the derived preferences can be represented by
a continuous utility function, this function turns out to be a pseudo-utility rep-

2



resentation (Moulin, 1988; Subiza and Peris, 1998) of observed behavior. Thus,
choice behavior can yield a continuous pseudo-utility function even though it
might not be continuous nor even representable by any utility function in the
usual sense. This gives rise to generalizations of classical representation results
for continuous preferences over a topological space (Eilenberg, 1941; Debreu,
1954; Rader, 1963).

The paper is organized as follows. Section 2 introduces the setup. Section 3
presents an example illustrating all subsequent results. Section 4 contains the
general results for preferences over an arbitrary topological space. Section 5
analyzes the particular case of monotonic preferences over a partially ordered
set. Section 6 analyzes the particular case of preferences representable by a
pseudo-utility function.

2 Setup

Let R and Q denote the set of real and rational numbers, respectively. Con-
sider an agent facing an arbitrary set A of choice alternatives. The agent’s
preferences over A are modeled by means of a binary relation < on A (i.e.,
< ⊆ A ×A ), with a < a′ indicating that she weakly prefers a to a′. As usual,
we say that < is:

• reflexive if, for all a ∈ A , a < a,
• complete if, for all a, a′ ∈ A , [a < a′ or a′ < a],
• antisymmetric if, for all a, a′ ∈ A , [a < a′ and a′ < a] ⇒ a = a′,
• transitive if, for all a, a′, a′′ ∈ A , [a < a′ and a′ < a′′] ⇒ a < a′′.

From < are derived the binary relations ≻ and ∼ on A defined by, for all
a, a′ ∈ A ,

a ≻ a′ ⇔ [a < a′ and not a′
< a] (strict preference),

a ∼ a′ ⇔ [a < a′ and a′
< a] (indifference).

We distinguish between preferences modeling the agent’s choice behavior and
preferences modeling her tastes. Formally, the agent is endowed with two dis-
tinct preference relations on A :

• a behavioral preference relation, denoted by <B, with a <B a′ indicating
that she would select a if she had to choose between a and a′,

• a cognitive preference relation, denoted by <C , with a <C a′ indicating that
she likes a at least as much as a′.
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We assume that the agent’s choice behavior does not contradict her tastes in
the sense of choosing a strictly less liked alternative:

Definition 1 A binary relation <B on a set A is compatible with a binary
relation <C on A if, for all a, a′ ∈ A , a ≻C a′ ⇒ a ≻B a′.

Although situations in which a ≻C a′ and a′ ≻B a can be conceived (e.g., ad-
diction), compatibility of behavior with tastes seems natural in most economic
settings. Note that no constraint is imposed on choice behavior in situations
of cognitive indifference, which allows for indifferent selection, i.e., a ∼C a′

and [a ≻B a′ or a′ ≻B a]. This is unlike many economic models that implicitly
assume <B = <C (Mandler, 2005) and, hence, ∼B = ∼C , thereby ruling out
indifferent selection (e.g., when determining equilibrium and analyzing welfare
by means of a single preference relation per agent). Whereas the conceptual
distinction between these two preference concepts is well-understood in the lit-
erature (Mas-Colell, Whinston, and Green, 1995, p5), behavioral preferences
falling in the revealed preference tradition (Samuelson, 1938) and cognitive
preferences in the ordinalist tradition (Pareto, 1906), their formal distinction
is a key feature of the present analysis.

Note that assuming <B = <C first requires that one allows for behavioral
indifference between distinct alternatives (otherwise cognitive indifference is
ruled out). Thus, the revealed preference literature often finds it convenient
to interpret behavioral preference as indicating that an alternative is “choos-
able” rather than actually chosen, and to operationalize this interpretation
by enabling the agent to resort to some observable randomization (or delega-
tion) device rather than selecting one single alternative by herself. However,
even if randomization is allowed and identified with behavioral indifference,
it is hard to justify why the agent could not decide to select a single alterna-
tive by herself rather than randomizing when she is cognitively indifferent (in
fact, cognitive indifference precisely means that she views such a selection as
harmless), or to randomize subjectively rather than observably. The starting
point of the present analysis is the formal separation between the two prefer-
ence concepts and the degree of freedom between them that is allowed by the
compatibility assumption. Although it becomes possible, in this framework,
to rule out a ∼B a′ per se (unless a = a′), in line with a fully behavioral
interpretation of preference, this turns out to be technically unnecessary and,
consequently, <B is not assumed to be antisymmetric.

Both <B and <C are assumed to be complete. Completeness of behavioral
preferences means that choice between any two alternatives in A is conceiv-
able and is generally considered an innocuous assumption. Completeness of
cognitive preferences, although also a standard assumption, is often judged
restrictive: it means that the agent is able to come up with a judgment about
which of any two alternatives in A she likes better. The role of this assump-
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tion here is to single out indifferent selection as the only possible source of
discrepancy between behavioral and cognitive preferences:

Lemma 1 Let <B and <C be two complete binary relations on a set A such
that <B is compatible with <C. Then <C = <B ∪ ∼C.

Proof. By compatibility, one has ≻C ⊆ <B and, hence, <C = ≻C ∪ ∼C ⊆
<B ∪ ∼C . Conversely, completeness of <C and compatibility together imply
<B ⊆ <C and, hence, <B ∪ ∼C ⊆ <C ∪ ∼C = <C . 2

As appears from Lemma 1, under our completeness and compatibility assump-
tions, cognitive and behavioral preferences only differ for alternatives a and
a′ such that a ∼C a′ and [a ≻B a′ or a′ ≻B a] (for a similar analysis allowing
for incomplete preferences, see Danan, 2003). Finally, it should be noted that
neither cognitive nor behavioral preferences are assumed to be transitive.

The present analysis assumes that <B is observable but not <C , and addresses
the question whether <C can be recovered from <B. This is in line with a re-
vealed preference approach: the agent’s tastes, which are unobservable mental
states, are revealed by her observable choice behavior (if choice behavior is
modeled, more generally, by a choice function, then the existence of a com-
plete behavioral preference relation is characterized by Sen (1971)’s Axioms α

and γ). In the present setup, the problem boils down to that of behaviorally
identifying indifferent selection.

3 An example

As an illustration, suppose alternatives are commodity bundles made of two
goods, and the agent is observed choosing lexicographically by, first, maximiz-
ing the total quantity of goods and, second, maximizing the quantity of good
1. Formally, A = R2 and, for all (x1, x2), (x

′

1
, x′

2
) ∈ R2,

(x1, x2) <B (x′

1
, x′

2
) ⇔ [x1 + x2 > x′

1
+ x′

2
or [x1 + x2 = x′

1
+ x′

2
and x1 ≥ x′

1
]].

Note that <B is antisymmetric and, therefore, can receive a fully behavioral
interpretation. What can we say about the agent’s cognitive preferences? First,
it is possible that her tastes fully coincide with her observed behavior and
that she never makes an indifferent selection, i.e., <C = <B. But it might
also be the case that her tastes do not select between any alternatives and
that her behavioral preferences fully result from indifferent selection, i.e., <C

= A × A . Between these two extremes, it is conceivable, e.g., that only the
total quantity of goods matters according to her tastes whereas maximizing
the quantity of good 1 is only used to achieve indifferent selection, i.e., for all
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(x1, x2), (x
′

1
, x′

2
) ∈ R2,

(x1, x2) <C (x′

1
, x′

2
) ⇔ x1 + x2 ≥ x′

1
+ x′

2
.

Thus, additional assumptions must be imposed in order to pin down the
agent’s cognitive preferences.

Now, note that, among the three possible cognitive preference relations de-
fined above, the first is discontinuous and the second is locally satiated (i.e.,
it has a local maximum). As it turns out, the last is the unique continuous
and locally nonsatiated cognitive preference relation with which <B is com-
patible. Furthermore, the difference between <B (which is locally nonsatiated
and discontinuous) and this third cognitive preference relation resides in the
continuity of the latter: indifferent selection is characterized by discontinuity
of the behavioral preference relation. As shown in Section 4, this argument
can be generalized to preferences over an arbitrary topological space A .

In this example, nonsatiation of <C (the third one) takes a particular form: not
only is any bundle strictly less preferred than some other bundle in each of its
neighborhoods, but there are some specific directions along which these other
bundles are found. Namely, (x′

1
, x′

2
) ≻C (x1, x2) whenever (x′

1
, x′

2
) > (x1, x2),

i.e., <C is monotonic with respect to the vector order ≥ on R2. If we assume
that one of the goods is money, then we explicitly recover Savage (1954)’s
informal argument that indifferent selection can be revealed by adjoining small
monetary bonuses to alternatives: it is characterized by a strict behavioral
preference that is reversed by adjoining an arbitrarily small bonus to the
unchosen alternative. Section 5 generalizes this argument to preferences over
any partially ordered set A satisfying some unboundedness and denseness
properties.

Finally, note that <C can be represented by the continuous utility func-
tion u : A → R defined by, for all (x1, x2) ∈ R2, u(x1, x2) = x1 + x2,
and that u is unique up to a strictly increasing and continuous transforma-
tion. This function, then, also represents <B, but in a weaker sense (namely,
(x1, x2) ≻B (x′

1
, x′

2
) whenever u(x1, x2) > (x′

1
, x′

2
), but information on indiffer-

ent selection is lost). Note that this continuous utility function can be derived
even though <B is neither continuous nor even representable by any utility
function in the usual sense. Section 6 proceeds in this fashion to generalize
classical representation results for continuous preferences over a topological
space A satisfying some countability and connectedness properties.
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4 Main results

Now turning to the general case, we assume A is a topological space (Munkres,
2000) and denote by cl(.) and int(.) the closure and interior operators on
A , respectively. Given an alternative a ∈ A and a binary relation B on A

(B = <,≻,∼), we denote by U(B, a) and L(B, a) the upper and lower contour
sets of a with respect to B, respectively, i.e.:

U(B, a) = {a′ ∈ A : a′ B a},

L(B, a) = {a′ ∈ A : a B a′}.

We say that a binary relation < on A is:

• upper semi-continuous if, for all a ∈ A , U(<, a) is closed,
• weakly upper nonsatiated if, for all a ∈ A , a ∈ cl(U(≻, a)),
• strongly upper nonsatiated if, for all a, a′ ∈ A , a < a′ ⇒ a ∈ cl(U(≻, a′)).

Upper semi-continuity is defined as usual (if < is complete, then it is equivalent
to require that L(≻, a) be open). Weak upper nonsatiation also corresponds to
the standard notion of local nonsatiation of preferences: no alternative in A

is a local maximum for <. If < is transitive, then this local property has the
following global implication: if a < a′, then any neighborhood of a contains an
alternative a′′ such that a′′ ≻ a and, hence, a′′ ≻ a′, so a ∈ cl(U(≻, a′)). This
latter property is independently stated as strong upper nonsatiation because
transitivity is not assumed here (it indeed implies weak upper nonsatiation
provided that < is reflexive). Note that if < is strongly upper nonsatiated,
then it has “thin indifference curves” in the sense that, for all a ∈ A , U(∼, a)
is nowhere dense in A .

Upper semi-continuity and strong upper nonsatiation turn out to be sufficient
for pinning down the agent’s cognitive preference relation:

Theorem 1 Let <B and <C be two complete binary relations on a topological
space A such that <B is compatible with <C. If <C is upper semi-continuous
and strongly upper nonsatiated, then, for all a, a′ ∈ A ,

a <C a′ ⇔ a ∈ cl(U(<B, a′)). (1)

Proof. Let a, a′ ∈ A . If a <C a′, then a ∈ cl(U(≻C , a′)) because <C is strongly
upper nonsatiated and, hence, a ∈ cl(U(≻B, a′)) because <B is compatible
with <C , so a ∈ cl(U(<B, a′)). Conversely, if a ∈ cl(U(<B, a′)), then a ∈
cl(U(<C , a′)) because <C is complete and <B is compatible with <C and,
hence, a ∈ U(<C , a′) because <C is upper semi-continuous, i.e., a <C a′. 2
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To understand how indifferent selection is behaviorally identified, consider two
alternatives a and a′ such that a ≻B a′ and say that (a, a′) is an upper semi-
discontinuity point for <B if a′ ∈ cl(U(<B, a)). It then follows from Equation 1
that the agent makes an indifferent selection between a and a′ (i.e., a ∼C a′) if
and only if (a, a′) is an upper semi-discontinuity point for <B. More precisely,
if (a, a′) is an upper semi-discontinuity point for <B, then one must have
a ∼C a′ by upper semi-continuity of <C (this rules out, e.g., <C = <B in
Section 3’s example). Conversely, if (a, a′) is not an upper semi-discontinuity
point for <B, then one cannot have a ∼C a′ by strong upper nonsatiation of
<C (this rules out, e.g., <C = A × A in Section 3’s example).

Now, in order to obtain a fully behavioral result, we need to characterize those
behavioral preference relations <B for which the cognitive preference relation
<C defined by Equation 1 is indeed upper semi-continuous and strongly upper
nonsatiated. Because <C only differs from <B by the fact that it has more
indifferences (see Lemma 1), satiation of <B would imply satiation of <C ,
so it is necessary that <B be strongly upper nonsatiated. On the other hand,
upper semi-continuity of <B is not necessary, as shown by Section 3’s example.
However, strong upper nonsatiation of <B alone is not sufficient. For example,
let A = R, define the function f : R → R by, for all x ∈ R, f(x) = x if x ∈ Q

and f(x) = −x otherwise, and assume that the agent’s behavioral preference
relation <B is given by, for all x, x′ ∈ R, x <B x′ ⇔ f(x) ≥ f(x′). Then
<B is strongly upper nonsatiated but Equation 1 implies that x ∼C 0 for all
x ∈ R, so <C is not strongly upper nonsatiated. The problem is that <B is too
discontinuous. More precisely, (x, 0) is an upper semi-discontinuity point for
all x ∈ Q and Q is dense in R. On the contrary, for any alternative a′ ∈ A , we
need (a, a′) to be an upper semi-discontinuity point for only a nowhere dense
set of alternatives a for U(∼C , a′) to be nowhere dense.

To capture this latter property, say that a binary relation < on a topological
space A is upper archimedean if, for all a, a′ ∈ A such that a ≻ a′ and for
all neighborhood V of a, there exist â ∈ V and a neighborhood V ′ of a′ such
that, for all â′ ∈ V ′, â ≻ â′. Intuitively, small changes in alternatives have
a small effect on preferences: if a ≻ a′ and one moves from a to some close
(and strictly preferred, by nonsatiation) â, then â ≻ â′ for all â′ sufficiently
close to a′. It follows that (â, a′) cannot be an upper semi-discontinuity point
for any â sufficiently close to a, ruling out the preceding example. Any upper
semi-continuous binary relation is upper archinedean, but the converse does
not hold, as shown by Section 3’s example. We can now state:

Theorem 2 Let <B be a complete binary relation on a topological space A .
Then <B is upper archimedean and strongly upper nonsatiated if and only if
there exists a complete, upper semi-continuous and strongly upper nonsatiated
binary relation <C on A such that <B is compatible with <C. Moreover, <C

is unique.
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Proof. Uniqueness follows from Theorem 1. Assume that <B is upper archi -
medean and strongly upper nonsatiated. The binary relation <C on A defined
by Equation 1 is complete by completeness of <B and upper semi-continuous
by definition. Moreover, for all a, a′ ∈ A , a <B a′ ⇒ a <C a′ and, hence, <B

is compatible with <C . Now, let a, a′ ∈ A such that a <C a′, and let V be
a neighborhood of a. Then there exists ā ∈ V such that ā <B a′. Hence, by
strong upper nonsatiation of <B, there exists ã ∈ V such that ã ≻B a′. Hence,
by upper archimedeanness of <B, there exist â ∈ V and a neighborhood V ′ of
a′ such that â ≻B â′ for all â′ ∈ V ′. It follows that â ≻C a′ by Equation 1, so
<C is strongly upper nonsatiated.

Conversely, assume that there exists a complete, upper semi-continuous and
strongly upper nonsatiated binary relation <C on A such that <B is compat-
ible with <C . Let a, a′ ∈ A such that a <B a′. Then a <C a′ by completeness
of <C and compatibility and, hence, a ∈ cl(U(≻C , a′)) by strong upper non-
satiation of <C . Hence a ∈ cl(U(≻B, a′)) by compatibility, so <B is strongly
upper nonsatiated. Now, let a, a′ ∈ A such that a ≻B a′, and let V be a neigh-
borhood of a. By the preceding argument, there exists â ∈ V such â ≻C a′.
Hence, by completeness of <B, there exists a neighborhood V ′ of a′ such that
â ≻B â′ for all â′ ∈ V ′, so <B is upper archimedean. 2

Finally, let us note that Theorem 1 and Theorem 2 also hold if upper semi-
continuity, strong upper nonsatiation, and upper archimedeanness are replaced
by their lower analogs. More precisely, say that a binary relation < on a
topological space A is:

• lower semi-continuous if, for all a ∈ A , L(<, a) is closed,
• weakly lower nonsatiated if, for all a ∈ A , a ∈ cl(L(≻, a)),
• strongly lower nonsatiated if, for all a, a′ ∈ A , a < a′ ⇒ a′ ∈ cl(L(≻, a)),
• lower archimedean if, for all a, a′ ∈ A such a ≻ a′ and for all neighborhood

V ′ of a′, there exist â′ ∈ V ′ and a neighborhood V of a such that, for all
â ∈ V , â ≻ â′.

Equation 1 then becomes:

a <C a′ ⇔ a′ ∈ cl(L(<B, a)).

Moreover, the upper and lower versions of the results can straightforwardly be
combined: say that a binary relation < on a topological space A is continuous
if it is both upper semi-continuous and lower semi-continuous, weakly (resp.,
strongly) nonsatiated if it is both weakly (resp., strongly) upper nonsatiated
and weakly (resp., strongly) lower nonsatiated, and archimedean if it is both
upper archimedean and lower archimedean.
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5 Monotonic preferences

In his pioneering work on decision making under uncertainty, Savage (1954)
mentioned the problem of indifferent selection, and informally suggested to
solve it by adjoining small monetary bonuses to alternatives. As he argued,
cognitive weak preference for a over a′ could then be behaviorally identified
with the observation that any (however small) bonus adjoined to a makes it
chosen over a′. This argument can be formally recovered as a special case of
Section 4’s analysis. More precisely, the essential point about money here is
that any strictly positive monetary bonus can be considered as an objective
improvement, i.e., it can be assumed that the agent always prefers more money.

In order to capture this notion of objective betterness (Cubitt and Sugden,
2001), we assume that A is a partially ordered set (poset), and denote by ≥∗

its partial order relation (i.e., ≥∗ is a reflexive, antisymmetric, and transitive
binary relation on A ). If a >∗ a′, we say that a dominates a′, i.e., a is objec-
tively strictly better than a′. We also assume that the poset A is unbounded
(i.e., for all a ∈ A , there exist a′, a′′ ∈ A such that a′ >∗ a >∗ a′′) and
dense (i.e., for all a, a′ ∈ A such that a >∗ a′, there exists a′′ ∈ A such that
a >∗ a′′ >∗ a′).

The monetary incentives setup corresponds to the following special case: as-
sume A = B × R, where B is an arbitrary set of basic alternatives (on
which one wants to elicit the agent’s preferences), and R stands for the set
of monetary payoffs. Thus the alternative (b, ε) ∈ A corresponds to the ba-
sic alternative b with an adjoined monetary bonus ε (note that R can be
reduced to any open interval). Define the partial order ≥∗ on A by, for all
(b, ε), (b′, ε′) ∈ B × R,

(b, ε) ≥∗ (b′, ε′) ⇔ [b = b′ and ε ≥ ε′].

Then ≥∗ is unbounded (meaning that a positive or negative monetary bonus
can be adjoined to any alternative in A ) and dense (reflecting perfect divis-
ibility of money). Note that, more generally, R could be replaced by any set
naturally endowed with an unbounded and dense order (i.e., complete partial
order), e.g., representing quality of some good (higher quality is better), or
time (earlier is better). Besides these special cases in which incentives corre-
spond to a separate dimension of alternatives, the general setup applies if A

is, e.g., a commodity space (≥∗ being the natural vector order on Rn) or a
space of lotteries or acts whose outcomes are commodity bundles (≥∗ being
the first-order stochastic dominance relation).

Given a binary relation < on a poset A , define the binary relation <∗ on A
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by, for all a, a′ ∈ A ,

a <
∗ a′ ⇔ U(>∗, a) ⊆ U(≻, a′),

i.e., a <∗ a′ if and only if any alternative dominating a is strictly preferred to
a′, and say that < is:

• weakly upper monotonic if, for all a ∈ A , a <∗ a,
• strongly upper monotonic if, for all a, a′ ∈ A , a < a′ ⇒ a <∗ a′.

As for nonsatiation, weak upper monotonicity is the usual requirement that
dominating alternatives are strictly preferred, and strong upper monotonicity
(which implies the weak version provided that < is reflexive) follows from it
if < is transitive but must be independently stated otherwise. It is intuitively
straightforward that monotonicity implies nonsatiation: by unboundedness of
A , any alternative a ∈ A is dominated by some a′ and by denseness of A this
a′ can be taken arbitrarily close to a, so no a cannot be a local maximum if <

is monotonic. To establish this statement (and others) formally, we endow A

with the partial order topology (i.e., the topology generated by the subbasis
⋃

a∈A {U(>∗, a), L(>∗, a)}, which is well-defined by unboundedness of A ). We
then obtain:

Lemma 2 Let < be a complete and strongly upper monotonic binary relation
on an unbounded and dense poset A . Then:

(a) < is strongly upper nonsatiated,
(b) < is upper semi-continuous if and only if, for all a, a′ ∈ A , a <∗ a′ ⇒

a < a′,
(c) < is upper archimedean if and only if, for all a, a′, â ∈ A such that

[â >∗ a and a ≻ a′], there exists â′ ∈ A such that [â ≻ â′ and â′ >∗ a′].

Proof. (a). Let a, a′ ∈ A such that a < a′ and let V be a neighborhood
of a. By unboundedness of A , there exists ã ∈ A dominating a such that
V contains all â ∈ A such that [ã >∗ â and â >∗ a]. By denseness of A ,
there exists such a â. By strong upper monotonicity of <, â ≻ a′ and, hence,
a ∈ cl(U(≻, a′)).

(b). Assume that < is upper semi-continuous, let a, a′ ∈ A such that a <∗ a′,
and let V be a neighborhood of a. By the preceding argument, there exists
â ∈ V such that â >∗ a and, hence, â ≻ a′, so a < a′. Conversely, assume
that, for all a, a′ ∈ A , a <∗ a′ ⇒ a < a′, and let a, a′ ∈ A such that
a ∈ cl(U(<, a′)). For all â ∈ A such that â >∗ a, L(>∗, â) is a neighborhood
of a and, hence, there exists ã ∈ L(>∗, â) such that ã < a′. By strong upper
monotonicity of <, this implies â ≻ a′. Hence a <∗ a′ and, hence a < a′.

(c). Assume that < is upper archimedean, and let a, a′, â ∈ A such that
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[â >∗ a and a ≻ a′]. Then L(>∗, â) is a neighborhood of a and, hence, there
exist ã ∈ L(>∗, â) and a neighborhood V ′ of a′ such that ã ≻ ã′ for all ã′ ∈ V ′.
Hence â ≻ ã′ for all ã′ ∈ V ′ by strong upper monotonicity of < and, in
particular, â ≻ â′ for some â′ ∈ V ′ such that â′ >∗ a′. Conversely, assume
that, for all a, a′, â ∈ A such that [â >∗ a and a ≻ a′], there exists â′ ∈ A

such that [â ≻ â′ and â′ >∗ a′]. Let a, a′ ∈ A such that a ≻ a′ and let V be
a neighborhood of a. Then there exists â ∈ V such that â >∗ a and, hence,
there exists â′ ∈ A such that [â ≻ â′ and â′ >∗ a′]. It follows that L(>∗, â′) is
a neighborhood of a′. Now, suppose there exists ã′ ∈ L(>∗, â′) such that not
â ≻ ã′. Then ã′ < â by completeness of < and, hence, â′ ≻ â by strong upper
monotonicity of <, a contradiction. 2

Note that the weak version of part a also holds: if < is weakly upper monotonic,
then it is weakly upper nonsatiated. Parts b and c give restatements of the
preceding section’s topological properties given the order structure assumed
in the present section. In particular, archimedeanness now more transparently
reflects the property that small changes in alternatives have a small effect
on preference: if a ≻ a′ and some (however small) bonus is adjoined to a

(yielding the alternative â), then it must be possible to adjoin some (small
enough) bonus to a′ (yielding the alternative â′) so as to preserve the relation
â ≻ â′. We obtain analogs of Theorems 1 and 2 in this setup:

Theorem 3 Let <B and <C be two complete binary relations on an un-
bounded and dense poset A such that <B is compatible with <C. If <C is
upper semi-continuous and strongly upper monotonic, then <C = <∗

B
.

Proof. Let a, a′ ∈ A . If a <C a′, then a <∗

C
a′ by strong upper monotonicity of

<C and, hence, a <∗

B
a′ by compatibility. Conversely, if a <∗

B
a′, then â <C a′

for all â ∈ A such that â >∗ a by completeness of <C and compatibility. Now,
for all â ∈ A such that â >∗ a, there exists ã ∈ A such that â >∗ ã >∗ a

by denseness of A and, hence, â ≻C a′ by strong upper monotonicity of <C .
Hence a <∗

C
a′ and, hence, a <C a′ by upper semi-continuity of <C . 2

Theorem 4 Let <B be a complete binary relation on an unbounded and dense
poset A . Then <B is upper archimedean and strongly upper monotonic if
and only if there exists a complete, upper semi-continuous and strongly upper
monotonic binary relation <C on A such that <B is compatible with <C.
Moreover, <C is unique.

Proof. Assume that <B is upper archimedean and strongly upper monotonic.
By Theorem 2, it is sufficient to show that the binary relation <C on A

defined by Theorem 1 is strongly upper monotonic. Let a, a′, â ∈ A such that
a <C a′ and â >∗ a. Then L(>∗, â) is a neighborhood of a and, hence, there
exists ā ∈ L(>∗, â) such that ā <B a′. By denseness of A , there exists ã ∈
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L(>∗, â) such that ã >∗ ā and, hence ã ≻B a′ by strong upper monotonicity
of <B. Hence, by upper archimedeanness of <B, there exist ǎ ∈ L(>∗, â) and
a neighborhood V ′ of a′ such that ǎ ≻B â′ for all â′ ∈ V ′. By strong upper
monotonicity of <B, it follows that â ≻B â′ for all â′ ∈ V ′. Hence not a′ <C a,
i.e., a ≻C a′ by completeness of <C .

Conversely, assume that there exists a complete, upper semi-continuous and
strongly upper monotonic binary relation <C on A such that <B is compatible
with <C . By Theorem 2, it is sufficient to show that <B is strongly upper
monotonic. Let a, a′ ∈ A such that a <B a′. Then a <C a′ by completeness
of <C and compatibility and, hence a <∗

C
a′ by strong upper monotonicity of

<C . Hence a <∗

B
a′ by compatibility. 2

As in the general case, lower versions of weak and strong monotonicity can be
defined and the corresponding results follow. Moreover, the upper and lower
results can be combined, but note that strong upper monotonicity and strong
lower monotonicity are equivalent for a complete binary relation (and similarly
for weak monotonicity).

6 Pseudo-utility

It is well-known (Cantor, 1895) that a complete binary relation < on a set A

is representable by a utility function (i.e., there exists a function u : A → R

such that, for all a, a′ ∈ A , u(a) ≥ u(a′) ⇔ a < a′) if and only if it is transitive
and separable (i.e., there exists a countable subset A of A such that, for all
a, a′ ∈ A such that a ≻ a′, there exists â ∈ A such that a < â < a′).
Now, in the present setup, starting from a complete binary relation <B on a
topological space A , we derive a complete binary relation <C and, if <C is
transitive and separable, it can be represented by a utility function u, even
though <B might be neither transitive nor separable. Furthermore, because
<C is continuous, we know that u can be taken continuous provided that A

satisfies certain topological properties (Eilenberg, 1941; Debreu, 1954; Rader,
1963), even though <B might be discontinuous. Thus, the present analysis
can yield generalizations of classical results on representation of preferences
by continuous utility functions.

Because <B is compatible with <C but might not be equal to <C , a utility
function u representing <C does not in general represent <B in the classical
sense, but in the following, weaker sense (Moulin, 1988; Subiza and Peris,
1998):

Definition 2 A function u : A → R is a pseudo-utility representation of
a binary relation <B on a set A if, for all a, a′ ∈ A , u(a) > u(a′) ⇒ a ≻B a′.
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A pseudo-utility representation u is not a full utility representation because it
looses information on the preference relation between alternatives a, a′ ∈ A

such that u(a) = u(a′) (i.e., in the present framework, on indifferent selec-
tion). For this reason, a constant u is a pseudo-utility representation of any
binary relation and, therefore, additional restrictions must be imposed for the
representation to be of interest. Subiza and Peris (1998) assume that A is
a topological space (endowed with some finite measure) and require u to be
continuous and nontrivial (i.e., if [a ≻B â and â ≻B a′] for all â in some open
subset of A , then u(a) > u(a′)). In the present setup, by nonsatiation of <C ,
a stronger requirement than nontriviality can be imposed: say that u is locally
unbounded above if, for all open subset V of A , arg maxa∈V u(a) = ∅.

Lemma 3 Let <B be a binary relation on a topological space A and u be a
pseudo-utility representation of <B. If u is locally unbounded above, then it is
nontrivial.

Proof. Assume that u is locally unbounded above, and let a, a′ ∈ A such that
[a ≻B â and â ≻B a′] for all â in some open subset V of A . Then u(a) ≥ u(â)
and u(â) ≥ u(a′) because u is a pseudo-utility representation of <B. Moreover,
by local unboundedness of u, it is not possible that u(a) = u(â) for all â ∈ V .
Hence there must exist â ∈ V such that u(a) > u(â) and, hence, u(a) > u(a′),
so a ≻B a′. 2

In order to establish pseudo-utility representation results, we need to charac-
terize those behavioral preference relations <B on A for which the cognitive
preference relation <C on A defined by Equation 1 is transitive. Say that a
binary relation < on a topological space A is upper closure-transitive if, for
all a, a′, a′′ ∈ A , [a ∈ cl(U(<, a′)) and a′ ∈ cl(U(<, a′′))] ⇒ a ∈ cl(U(<, a′′)).
In the present setup, upper closure-transitivity is weaker than transitivity, but
still yields equivalence between weak and strong nonsatiation:

Lemma 4 Let < be a complete, upper archimedean, and weakly upper nonsa-
tiated binary relation on a topological space A . Then:

(a) if < is transitive, then it is upper closure-transitive,
(b) if < is upper closure-transitive, then it is strongly upper nonsatiated.

Proof. (a). Assume that < is transitive, let a, a′, a′′ ∈ A such that [a ∈
cl(U(<, a′)) and a′ ∈ cl(U(<, a′′))], and let V be a neighborhood of a. Then
there exists â ∈ V such that â < a′. By weak upper nonsatiation of <, there
exists ã ∈ V such that ã ≻ â and, hence, ã ≻ a′ by transitivity of <. Hence,
by upper archimedeanness of <, there exist ā ∈ V and a neighborhood V ′ of
a′ such that ā ≻ â′ for all â′ ∈ V ′. Moreover, there exists ã′ ∈ V ′ such that
ã′ < a′′ and, hence, ā ≻ â′′ by transitivity of <, so a ∈ cl(U(<, a′′)).
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(b). Assume that < is upper closure-transitive, let a, a′ ∈ A such that a < a′,
and let V be a neighborhood of a. Then, by weak upper nonsatiation of <,
there exists â ∈ V such that â ≻ a. Hence, by upper archimedeanness of <,
there exist ã ∈ V and a neighborhood V̄ of a such that ã ≻ ā for all ā ∈ V̄ .
Now, suppose there does not exist ǎ ∈ V such that ǎ ≻ a′. Then a′ < ǎ for
all ǎ ∈ V by completeness of < and, hence, a ∈ cl(U(<, ǎ)) for all ǎ ∈ V by
upper closure-transitivity of <, a contradiction. Hence there exists ǎ ∈ V such
ǎ ≻ a′, so a ∈ cl(U(≻, a′)). 2

Note that the converse of part a does not hold: upper closure-transitivity is
strictly weaker than transitivity. For example, consider the commodity space
A = R2 of Section 3 and the behavioral preference relation <B on A defined
therein, and amend <B by assuming (2, 0) ≻B (1, 1) ≻B (0, 2) ≻B (2, 0).
Then <B is not transitive, but it is upper closure-transitive (upper closure-
transitivity of <B is equivalent to transitivity of the third cognitive relation
<C defined in the example, independently of the latter amendment of <B).

We obtain a generalization of Rader (1963)’s representation result on a second-
countable topological space:

Theorem 5 Let <B be a complete binary relation on a second-countable topo-
logical space A . Then <B is upper archimedean, weakly upper nonsatiated and
upper closure-transitive if and only if there exists an upper semi-continuous
and locally unbounded above pseudo-utility representation u of <B. Moreover,
u is unique up to a strictly increasing transformation f : u(A ) → R such that
f ◦ u is upper semi-continuous.

Proof. Assume that <B is upper archimedean, weakly upper nonsatiated and
upper closure-transitive. Then, by Theorem 2 and Lemma 4, there exists a
complete, upper semi-continuous and weakly upper nonsatiated binary rela-
tion <C on A such that <B is compatible with <C . Moreover, <C is transitive
by Theorem 1 and Lemma 4. Because A is second-countable, it follows from
Rader (1963)’s result that there exists an upper semi-continuous utility rep-
resentation u of <C . Moreover, u is locally unbounded above by weak upper
nonsatiation of <C . Finally, u is a pseudo-utility representation of <B because
<B is compatible with <C .

Conversely, assume that there exists an upper semi-continuous and locally
unbounded above pseudo-utility representation u of <B. Define the binary
relation <C on A by, for all a, a′ ∈ A , a <C a′ ⇔ u(a) ≥ u(a′). Then u

is a utility representation of <C and, hence, <C is complete, transitive, and
upper semi-continuous. Moreover, <C is weakly upper nonsatiated because
u is locally unbounded above, and <B is compatible with <C because u is
a pseudo-utility representation of <B. Hence <B is upper archimedean and
weakly upper nonsatiated by Theorem 2 and Lemma 4. Moreover, <B is upper
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closure-transitive by Theorem 1 and Lemma 4.

For the uniqueness part, let u be an upper semi-continuous and locally un-
bounded above pseudo-utility representation of <B and let f : u(A ) → R.
Clearly, if f is strictly increasing then f ◦ u is also a locally unbounded
above pseudo-utility representation of <B. Conversely, if f ◦ u is a locally
unbounded above pseudo-utility representation of <B then, for all a, a′ ∈
A , u(a) > u(a′) ⇒ a ≻ a′ ⇒ f ◦ u(a) ≥ f ◦ u(a′). Moreover, suppose there
exist a, a′ ∈ A such that [u(a) > u(a′) and f ◦ u(a) = f ◦ u(a′)]. Then
V = {â ∈ A : u(a) > u(â)} is an open subset of A by upper semi-continuity
of u and a′ ∈ arg maxâ∈V f ◦ u(â), a contradiction because f ◦ u is locally
unbounded above. Hence f is strictly increasing. 2

In order to get a lower version of this result, say that a binary relation <

on a topological space A is lower closure-transitive if, for all a, a′, a′′ ∈ A ,
[a′ ∈ cl(L(<, a)) and a′′ ∈ cl(L(<, a′))] ⇒ a′′ ∈ cl(L(<, a)), and say that
a function u : A → R is locally unbounded below if, for all open subset V

of A , arg mina∈V u(a) = ∅. The analog of Theorem 5 then holds. Moreover,
the two results can be combined, yielding a generalization of Debreu (1954)’s
representation result. Say that < is closure-transitive if it is both upper closure
transitive and lower closure-transitive, and that u is locally unbounded if it is
locally unbounded above and locally unbounded below.

Theorem 6 Let <B be a complete binary relation on a second-countable topo-
logical space A . Then <B is archimedean, weakly nonsatiated and closure-
transitive if and only if there exists a continuous and locally unbounded pseudo-
utility representation u of <B. Moreover, u is unique up to a strictly increasing
transformation f : u(A ) → R such that f ◦ u is continuous.

We conclude with a generalization of Eilenberg (1941)’s representation result
on a first-countable and connected topological space:

Theorem 7 Let <B be a complete binary relation on a first-countable and
connected topological space A . Then <B is archimedean, weakly nonsatiated
and closure-transitive if and only if there exists a continuous and locally un-
bounded pseudo-utility representation u of <B. Moreover, u is unique up to a
strictly increasing and continuous transformation.

The proofs of Theorem 6 and Theorem 7 are similar to that of Theorem 5
and, therefore, omitted. Note that in Theorem 7, connectedness of A yields a
stronger uniqueness result (Wakker, 1991).
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Conclusion

This paper shows that preferences can be derived from choice behavior in a
way that is robust to indifferent selection. More precisely, a suggestion by
Savage (1954) to reveal indifferent selection by considering small monetary
perturbations of alternatives is formalized in a general topological setup, and
is found to essentially rely on an assumption of continuity of preferences.

Although Savage (1954)’s argument is well known, it is seldom used to elicit
indifference in practice. Rather, the experimental literature generally resorts
to such devices as randomization or delegation. A possible defense of this
standard practice is that the monetary perturbation method, although more
satisfactory in theory, is impossible to implement because there is no such
thing as an infinitely small monetary bonus in practice. Nevertheless, using
some small bonus as an approximation could still represent an improvement
over the usual elicitation methods. For example, if an experimental study
provides evidence of some strict preference pattern violating a standard axiom,
then such evidence could be strengthened by checking for robustness of the
pattern to the adjunction of this small bonus.
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