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Abstract

Complex computer codes are widely used in science to model physical systems. Sensitivity
analysis aims to measure the contributions of the inputs on the code output variability. An
efficient tool to perform such analysis are the variance-based methods which have been re-
cently investigated in the framework of dependent inputs. One of their issue is that they
require a large number of runs for the complex simulators. To handle it, a Gaussian process
regression model may be used to approximate the complex code. In this work, we propose
to decompose a Gaussian process into a high dimensional representation. This leads to the
definition of a variance-based sensitivity measure well tailored for non-independent inputs.
We give a methodology to estimate these indices and to quantify their uncertainty. Finally,
the approach is illustrated on toy functions and on a river flood model.

Keywords: Sensitivity analysis, dependent inputs, Gaussian process regression, functional
decomposition, complex computer codes.

1 Introduction

Many physical phenomena are investigated by complex models implemented in computer
codes. Often considered as a black box function, a computer code calculates one or sev-
eral output values which depend on input parameters. However, the code may depend on a
very large number of incomes, that can be correlated among them. Moreover, input parame-
ters are also subject to many sources of uncertainty, attributed to errors of measurements or
a lack of information. These major flaws undermine the confidence a user have in the model.
Indeed, the prediction given by the model may suffer from a large variability, leading to wrong
conclusions.
To tackle these issues, the sensitivity analysis offers a series of methods and strategies that
has been widely studied over the past decades [Saltelli et al., 2000, Saltelli et al., 2008, Cacuci
et al., 2005]. Among the wide range of proposed methods, one could cite the class of global
sensitivity analysis. Based on the assumption that the parameters implied in the model are
randomly distributed, the global sensitivity analysis aims to identify and to rank the most
contributive inputs to the response variability. One of the most popular global measure, the
Sobol index, is based on a variance decomposition. Advanced by Hoeffding [Hoeffding, 1948],
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the model function can be uniquely decomposed as a sum of mutually orthogonal functional
components when input variables are independent. Following this idea, Sobol constructs sen-
sitivity measures by expanding the global variance into partial variances. Then, the Sobol
index apportions the individual contribution of a set of inputs by the ratio between the par-
tial variance depending on this set and the global variance [Sobol, 1993].
However, the construction of such measure relies on the assumption that input variables are
independent. When incomes are dependent, the use of the Sobol index is not excluded, but it
may lead to a wrong interpretation. Indeed, as underlined by Mara et al. [Mara and Tarantola,
2012], if inputs are not independent, the amount of the response variance due to a given factor
may be influenced by its dependence to other inputs. In other word, as the Sobol index only
depends on terms of variance, we ignore how it differentiates the inputs dependence from their
interactions. From this perspective, the construction of a sensitivity measure that quantifies
the uncertainty brought by dependent inputs becomes clear.
A solution is to use a functional decomposition to build a variance-based sensitivity index.
First, Xu et al. [Xu and Gertner, 2008] propose to decompose the partial variance of an input
into a correlated and an uncorrelated contribution under the hypothesis that the effect of
each parameter on the response is linear. The authors learn these contributions by successive
linear regressions. To improve this approach, Li et al. [Li et al., 2010] propose to approximate
the model function by a High Dimension Model Representation (HDMR), that consists of a
sum of functional components of low dimensions [Li et al., 2001]. They suggest to reconstruct
each term via the usual basis functions (polynomials, splines,. . . ). Then, they deduce the de-
composition of the response variance as a sum of partial variances and covariances. Recently,
Caniou et al. [Caniou, 2012] suggest to build a HDMR by substituting the model function to
a truncated polynomial chaos [Wiener, 1938] orthogonal with respect to the product of inputs
marginal distribution. This choice is motivated by the fact that, when inputs are indepen-
dent, the functional decomposition recovers the Hoeffding one, where each (unique) summand
is expanded in terms of polynomial chaos [Sudret, 2008].
In a recent paper, Chastaing et al. [Chastaing et al., 2012] revisit the Hoeffding decomposition
in a different way. To tackle the problem of uniqueness of the components of the decomposition
proposed by the previous approaches, the authors give a unique decomposition of the theoret-
ical model. The main strength of the approach is that it is not based on surrogate modeling.
Initiated by the pioneering work of Stone [Stone, 1994], they show that any regular function
can be uniquely decomposed as a sum of hierarchically orthogonal component functions. This
means that two of these summands are orthogonal whenever all variables included in one of
the component are also involved in the other. The decomposition leads to the definition of
a generalized sensitivity index involving variance and covariance components. Further, the
same authors propose a numerical method of estimation [Chastaing et al., 2013].
However, all these approaches suffer from two major flaws for time-consuming computer codes.
First, the estimation of these measures is done by a regression method, which requires a very
large number of model evaluations to be robust. Secondly, the number of decomposition com-
ponents exponentially grows with the model dimension. In practice, we assume that only the
low-order interaction terms contain the major part of the model behaviour. However, very
few theoretical arguments confirm this assumption, and the truncation leads to an error of
approximation that can be hardly controlled.
To overcome the first issue, we surrogate the computer code with a Gaussian process regres-
sion model. It is a non-parametric approach which considers that our prior knowledge about
the code can be modeled by a Gaussian process (GP) [Santner et al., 2003, Rasmussen and
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Williams, 2006]. These models are widely used in computer experiments to surrogate a com-
plex computer code from few of its outputs ([Sacks et al., 1989]). Further, the use of a GP
model for sensitivity analysis is motivated by arguments given in the literature. For indepen-
dent inputs, a natural approach is to substitute the model function by the posterior mean of
a given GP [Chen et al., 2005]. As this approach does not consider the posterior variance of
the GP and thus the uncertainty of the surrogate modeling, Oakley & O’Hagan [Oakley and
O’Hagan, 2004] substitute the initial model to a GP in the Sobol index. Then, the sensitiv-
ity index is given by the posterior mean of the Sobol index whereas the posterior variance
measures its uncertainty. These two approaches are investigated and numerically compared
in Marrel et al. [Marrel et al., 2009].
To handle with the second issue relative to the decomposition truncation, we propose here to
extend the work done by Durrande et al. [Durrande et al., 2013] to the case of models with
dependent inputs. In particular, we deal with GP specified by a covariance kernel that belongs
to a special class of ANOVA kernels studied in [Berlinet and Thomas-Agnan, 2004, Durrande
et al., 2013]. But instead of considering the posterior mean, we propose a functional decompo-
sition of a GP distributed with respect to the posterior distribution. Similarly to the work of
Caniou et al. [Caniou, 2012], the considered GP is decomposed as a sum of processes indexed
by increasing dimension input variables. This expansion is such that the summands are mu-
tually orthogonal with respect to the product of the inputs marginal distributions. Thus, as
we have accessed to the GP, and as we can deal with each term of its decomposition, we can
easily deduce the sum of every other terms, so that a truncation error can not be produced.
Consequently, the GP development leads to the construction of sensitivity measures based
on the decomposition of the global variance as a sum of partial variances and covariances.
The difference with the use of the polynomial chaos is that GP are not intrinsically linked to
the distribution of the input variables, as it is the case for polynomial chaos [Cameron and
Martin, 1947]. Also, it should be noticed that our measure is a distribution which takes into
account the uncertainty of the surrogate modeling. Further, we propose a numerical method
to estimate our new defined measures. The procedure is experimented on several numerical
examples. Furthermore, we study the asymptotic properties of the estimated measures.

The paper is organized as follows. In Section 2, we introduce the first definitions and the
main features of a GP. We also study a special case of covariance kernels. They will be
used all along the article as the referenced kernels because they have good properties for
sensitivity analysis. In Section 3, we first remind the ANOVA decomposition proposed by
Durrande et al. [Durrande et al., 2013]. This expansion is done on the posterior mean of a
GP. This introduces the decomposition of the conditional Gaussian processes we develop in
this paper. After giving the advantages of such approach, we define in Section 4 a sensitivity
index well suited for models with dependent inputs. Furthermore, we describe a numerical
procedure based on the Monte Carlo estimate to compute our new sensitivity index. At the
end of Section 4, we study the convergence properties of the measure. Section 5 is devoted to
numerical applications. The goal is to show the relevance of such a sensitivity index through
several test cases. Further, we apply our methodology on a real-world problem.
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2 Gaussian process regression for sensitivity analysis

In this section, we introduce the notation that will be used along the document. We remind
the basic settings on Gaussian process regression. The purpose is to build a fast approximation
— also called meta-model — of the input/output relation of the objective function. Then,
we present a particular Gaussian process regression which is relevant to perform sensitivity
analysis with dependent inputs.

2.1 First definitions

Let (ΩX,AX,PX) be a probability space. Let f be a measurable function of a random vector
X = (X1, · · · ,Xp) ∈ R

p, p ≥ 1, and defined as,

(ΩX,AX,PX) → (Rp,B(Rp), PX) → (R,B(R))
f : ω 7→ X(ω) 7→ f(X(ω)),

where the joint distribution of X is denoted by PX. Further, we assume that PX is absolutely
continuous with respect to the Lebesgue measure, and that X admits a density pX with respect
to the Lebesgue measure, i.e. pXdx = dPX.
Also, we assume that f ∈ L2

R
(Rp,B(Rp), PX). We define the expectation with respect to PX

as follows,

E(h(X)) =

∫

Rp

h(x)pX(x)dx, h ∈ L2
R(R

p,B(Rp), PX).

Further, V (·) = E(· − E(·))2 denotes the variance, and Cov(·, ∗) = E[(· − E(·))(∗ − E(∗))] the
covariance with respect to the inputs distribution PX.
The collection of all subsets of {1, . . . , p}\{∅} is denoted by S. For u ∈ S with u = (u1, · · · , ut),
|u| = t ≥ 1, the random subvector Xu of X is defined as Xu := (Xu1

, · · · ,Xut). The marginal
density of Xu is denoted by pXu .

2.2 Introduction to Gaussian process regression

For x = (x1, · · · , xp) ∈ R
p, we consider that the prior knowledge about f(x) can be modeled

by a zero-mean Gaussian Process (GP) Z(x) defined on a probability space (ΩZ ,AZ ,PZ) plus
a known mean m(x),

f(x) = m(x) + Z(x).

From now, we denote by EZ , VZ and CovZ the expectation, variance and covariance with
respect to PZ . A GP is completely specify by its mean EZ [Z(x)] and its covariance kernel
k(x, x̃) = CovZ(Z(x), Z(x̃)). Here, we consider a zero-mean GP, that can be written as

Z(x) ∼ GP(0, k(x, x̃)). (1)

Further, we denote by D = {x1, . . . ,xn}, with x
j ∈ R

p for j = 1, · · · , n, the n-sample of
observed inputs. We write the vector of centered outputs zn := t(f(x1)−m(x1), · · · , f(xn)−
m(xn)). Further, we consider the Gaussian random vector Zn = (Z(x1), · · · , Z(xn)). Notice
that (xj)j=1,...,n are generally not sampled from the distribution PX. Indeed, they usually come
from a space-filling design procedure [Fang et al., 2006] in order to obtain good prediction
accuracy.
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In the kriging theory, the aim is to use the known values zn of Zn at points in D to predict
f(x). To perform such prediction, we consider the conditional distribution [f(x)|Zn = zn].
Standard results about Gaussian distribution gives that this conditional distribution is given
by

[f(x)|Zn = zn] = GP
(
µ(x), s2(x, x̃)

)
, (2)

with
µ(x) = m(x) + t

kn(x)K
−1
n (zn −mn), (3)

and
s2(x, x̃) = k(x, x̃)− t

kn(x)K
−1
n kn(x̃), (4)

where kn(x) = [k(x,xj)]j=1,...,n, mn = t(m(x1) · · ·m(xn)) and Kn = [k(xj ,xl)]j,l=1,...,n.

The mean µ(x) of the predictive distribution [f(x)|Zn = zn] is considered as the meta-model
for f(x) and s2(x,x) represents its mean squared error. An important property of Gaussian
process regression is that the mean µ(x) interpolates the observations zn and the variance
s2(x,x) equals zero at points in D.

2.3 Covariance kernel for sensitivity analysis

Certainly one of the most important points of Gaussian process regression is the choice of the
covariance kernel k(x, x̃), for x = (x1, . . . , xp), x̃ = (x̃1, . . . , x̃p) ∈ R

p, of the unconditioned
Gaussian process Z(x) modeling the residual f(x) − m(x). We note that k(x, x̃) must be
positive definite and we consider here that supx,x̃∈Rp k(x, x̃) < ∞. We choose in this paper a
relevant class of kernels for performing sensitivity analysis. They are built from Proposition
1 [Durrande et al., 2013].

Proposition 1 Let us consider a covariance kernel k̃(x, x̃), x, x̃ ∈ R
p, such that k̃x : x 7→

k̃(x, x̃) is in L1(R
p) for all x ∈ R

p and k̃ : (x, x̃) 7→ k̃(x, x̃) is in L1(R
p × R

p). Then the
following kernel k(x, x̃) is a covariance kernel:

k(x, x̃) = k̃(x, x̃)−
∫
k̃(x,w)pX(dw)

∫
k̃(w̃, x̃)pX(dw̃)

∫∫
k̃(w, w̃)pX(dw)pX(dw̃)

. (5)

Furthermore, if we consider a Gaussian process Z(x) ∼ GP(0, k(x, x̃)), then we have the
following equality almost surely, ∫

Z(x)pX(dx) = 0.

From now and until the end of the article, we are interested by the following covariance kernel:

k(x, x̃) = σ2
p
∏

i=1

(
1 + ki0(xi, x̃i)

)
, (6)

where, following Proposition 1, for all i = 1, . . . , p, we set:

ki0(xi, x̃i) = k̃i(xi, x̃i)−
∫
k̃i(xi, w)pXi

(w)dw
∫
k̃i(v, x̃i)pXi

(w̃)dw̃
∫∫

k̃i(w, w̃)pXi
(w)pXi

(w̃)dw dw̃
, (7)
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where (k̃i(xi, x̃i))i=1,...,p are given covariance kernels such that k̃iw : w̃ 7→ k̃i(w, w̃) is in L1(R)
for all w ∈ R and k̃i : (w, w̃) 7→ k̃(w, w̃) is in L1(R × R). A nice property of ki0(xi, x̃i),
i = 1, . . . , p, is that it is centered with respect to the marginal probability density function
pXi

. This feature is going to be exploited in Section 3.
The choice of k̃i(x, x̃), i = 1, . . . , p, is of importance since it controls the regularity in the ith

direction of the Gaussian process Z(x) and thus the smoothness of the meta-model (see [Stein,
1999] and [Rasmussen and Williams, 2006]). For instance, for m ∈ N, the partial derivative
∂mZ(x)/∂mxi exists in mean square sense if and only if the 2m derivative of k̃i0(xi, x̃i) exists
at point xi = x̃i. Examples of such covariance kernels k̃i are given in Section 5. For each of
them, we will also provide the analytical expression of ki0.

Further, we also consider that the objective function can be rewritten as

f(x) = f0 + Z(x),

where f0 is the constant mean of f(x) and Z(x) is defined as (1), where the covariance kernel
k(x, x̃) is given by (6). The choice of k(x, x̃) is relevant here to propose a decomposition.
Indeed, this definition implies the following properties:

1. If we set Z0 ∼ N
(
0, σ2

)
, and, for all u ∈ S, Zu(xu) ∼ GP(0, σ2

∏

i∈u k
i
0(xi, x̃i)) are

independent processes, then, if

Z(x) = Z0 +
∑

u∈S

Zu(xu), (8)

we have that Z(x) ∼ GP(0, k(x, x̃)). Indeed, as done in [Durrande et al., 2013], k(x, x̃)
can be decomposed as it follows,

k(x, x̃) = σ2 + σ2
∑

u∈S

∏

i∈u

ki0(xi, x̃i).

2. Let us consider two sets u, v ∈ S such that u 6= v, and Zu(xu) ∼ GP(0, σ2
∏

i∈u k
i
0(xi, x̃i)),

Zv(xv) ∼ GP(0, σ2
∏

i∈v k
i
0(xi, x̃i)). We have the following equalities almost surely:

∫

Zu(xu)

(
p
∏

i=1

pXi
(xi)

)

dx = 0, (9)

and
∫

Zu(xu)Zv(xv)

(
p
∏

i=1

pXi
(xi)

)

dx = 0. (10)

Using Proposition 1, we know that the linear transformation
∫
Zu(xu) (

∏p
i=1 pXi

(xi)) dx
is Gaussian, and

∫

Zu(xu)

(
p
∏

i=1

pXi
(xi)

)

dx ∼ N
(

0, σ2

∫
∏

i∈u

ki0(xi, x̃i)
∏

i∈u

pXi
(xi)dx

)

.
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By replacing ki0 by its expression (7), we deduce (9). Now, for u 6= v, and i ∈ u \ v, we
have,

∫

Zu(xu)Zv(xv)

(
p
∏

i=1

pXi
(xi)

)

dx =

∫

Zv(xv)

(∫

Zu(xu)pXi
(xi)dxi

)

pxic
dxic ,

where xic is the complementary set of xi, i.e. xic = (xj)j 6=i. Again with Proposition 1,
we conclude that (10) is satisfied.

Discussion about the choice of the covariance kernel when the input parameters

are independent. The kernel given in (6) provides a relevant prior for the sensitivity anal-
ysis when PX = ⊗p

i=1PXi
. In this case, the Sobol index [Sobol, 1993] of Z(x) — modeling our

prior knowledge about f(x) — is given by:

Su =
V [Zu(Xu)]

V [Z(X)]
, ∀ u ∈ S,

where Zu checks Equalities (9) and (10).
By setting σ2

u = σ2
∏

i∈u

(
1 + ki0(xi, xi)

)
and σ2

v = σ2
∏

i∈v

(
1 + ki0(xi, xi)

)
where u 6= v ∈ S,

we have:

EZ [V (Zu(Xu)] =

∫

σ2
u

∏

i∈u

pxi
(dxi)

and
CovZ (V [Zu(Xu)], V [Zv(Xv)]) = 0.

Therefore, we notice the sensitivity of Xu in the model is monitored by σ2
u, always strictly

positive. This means that, through the decomposition (8), we consider a priori that every
group of input variables is contributive in the model. We also consider a priori that the
sensitivity indices are uncorrelated.

3 ANOVA decomposition of conditional Gaussian processes

We propose in this section a representation of f(x) as a sum of increasing dimension Gaus-
sian processes. Our main contribution is to consider the complete predictive distribution
[f(x)|Zn = zn], given by (2), and not only the predictive mean µ(x). This allows us for
quantifying the uncertainty due to the meta-modeling on the sensitivity indices estimation.

3.1 ANOVA decomposition of the predictive mean

This paragraph is dedicated to the functional decomposition of the predictive mean µ(x).
Although it has been already developed and studied in [Durrande et al., 2013], we remind it
here for the good understanding of the extension proposed in Paragraph 3.2.

Remind that we consider the prior knowledge Z(x) ∼ GP(0, k(x, x̃)), where k(x, x̃) is defined
by Equations (6)-(7). Following Paragraph 2.2, we consider the predictive distribution

[f(x)|Zn = zn] ∼ GP(µ(x), s2(x, x̃)),
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where, from the definition of k(x, x̃), we can decompose µ(x) as follows,

µ(x) = µ0 +
∑

u∈S

µu(xu), (11)

with µ0 = f0 +
t
1nK

−1
n (zn − f01n) and

µu(xu) =
∏

i∈u

t
k
i
0,n(x)K

−1
n (zn − f01n), ∀ u ∈ S. (12)

1n the n-vector of 1, kn(x) = [k(x,xj)]j=1,...,n, ki
0,n(xi) = [ki0(xi, x

j
i )]j=1,...,n (see Equation

(7)) and Kn = [k(xj ,xl)]j,l=1,...,n.
Thanks to the property of the kernel ki0, we can deduce that, for all u, v ∈ S with u 6= v:

∫

µu(xu)

(
p
∏

i=1

pXi
(xi)

)

dx = 0,

and
∫

µu(xu)µv(xv)

(
p
∏

i=1

pXi
(xi)

)

dx = 0.

From this decomposition, [Durrande et al., 2013] deduce an analytical sensitivity measure,
that we call SD

u here, to quantify the contribution of a given Xu in the model. It is defined
as,

SD
u =

V [µu(Xu)]

V [µ(X)]
, (13)

with components (µu)u∈S having the same properties as the ones of the Hoeffding expan-
sion [Hoeffding, 1948]. Thus, we can analyse the effect of each group of variables on the global
variability, when the initial model f is substituted to the predictive mean µ.

However, when we only consider the predictive mean, we neglect an important part of informa-
tion contained in the posterior variance. In addition, if the uncertainty of µ(x) is important,
this means that the surrogate model does not ajust properly the objective function, leading
to a wrong sensitivity analysis.
In the following part, we take into account the uncertainty of the meta-modeling by defin-
ing a functional ANOVA decomposition of a predictive distribution. Inspired by the work
of [Durrande et al., 2013], we extend their work to a more general decomposition, and we also
extend the sensitivity indices defined by (13) to the definition of sensitivity indices when input
variables can be non independent.

3.2 ANOVA decomposition of the conditional Gaussian processes

We saw in the previous paragraph that the considered covariance kernel k(x, x̃) (6) leads to an
ANOVA decomposition (11) of µ(x) which is suitable to perform sensitivity analysis. However,
as emphasized by [Oakley and O’Hagan, 2004], performing a sensitivity analysis based on a
Gaussian process regression using only the predictive mean can be inappropriate. Indeed, in
the framework of computer experiments, few observations zn + f0 of f(x) are available and
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thus the uncertainty on the meta-model µ(x) can be non-negligible. For this reason, it is
worth taking into account the uncertainty on the meta-model and to consider the complete
predictive distribution. Nevertheless, it is non trivial to find the analogous of the ANOVA
decomposition of the predictive mean to the predictive distribution. The proposition below
allows for handling this issue [Chilès and Delfiner, 1999].

Proposition 2 Let consider the random process fn(x) defined as

fn(x) = µ(x)− t
kn(x)K

−1
n Zn + Z(x), (14)

where Z(x) ∼ GP(0, k(x, x̃)) with k(x, x̃) = σ2
∏p

i=1

(
1 + ki0(xi, x̃i)

)
, µ(x) is the predictive

mean defined by (11), Zn = t(Z(x1), . . . , Z(xn)) is the Gaussian random vector corresponding
to the value of Z(x) at points in the experimental design set D = {x1, . . . ,xn}, kn(x) =
[k(x,xj)]j=1,...,n and Kn = [k(xi,xj)]i,j=1,...,n. Then, we have

fn(x) ∼ [f(x)|Zn = zn]. (15)

To get the proof of Proposition 2, the reader could refer to [Chilès and Delfiner, 1999]. Here,
this result is of great interest since it allows for defining a Gaussian process fn(x) distributed
with respect to the predictive distribution [f(x)|Zn = zn]. Our goal is now to find a de-
composition for fn(x) which is suitable for performing sensitivity analysis. Following the
decompositions of µ(x) given in (11)-(12) and of Z(x) given in (8), the decomposition of fn

is given in Proposition 3.

Proposition 3 Let fn(x) be the random process defined by (14) of Proposition 2. Then,

fn(x) = fn
0 +

∑

u∈S

fn
u (xu), (16)

with 





fn
0 = µ0 − t

1nK
−1
n Zn + Z0,

fn
u (xu) = µu(xu)−

∏

i∈u
t
k
i
0,n(x)K

−1
n Zn + Zu(xu), ∀u ∈ S.

(17)

Furthermore, since ki0 defined in Equation (7) is centered with respect to the marginal density
pXi

, the following properties holds almost surely for all u, v ∈ S, u 6= v:

∫

fn
u (xu)

(
p
∏

i=1

pXi
(xi)

)

dx = 0, (18)

and
∫

fn
u (xu)f

n
v (xv)

(
p
∏

i=1

pXi
(xi)

)

dx = 0. (19)

The proof of proposition 3 is straightforward, by the decomposition of µ(x) given by (11)-(12),
by the decomposition of Z(x) given by (8), and by the definition of k(x, x̃) given by (6). The
properties of the summands (fn

u )u are also immediate.
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Remark: The suggested decomposition (16) allows for taking into account the meta-model
uncertainty in the sensitivity index estimates. Furthermore, we highlight that it is easy to
sample with respect to the distribution of fn(x). Indeed, from Proposition 3 we deduce that
we can perform it by sampling with respect to the distribution of Z(x) ∼ GP(0, k(x, x̃)) and
applying the linear transformation presented in (14). Moreover, to obtain a sample of fn

u (xu)
we just have to sample Zu(xu) ∼ GP

(
0,
∏

i∈u k
i
0(xi, x̃i)

)
.

4 Sensitivity measure definition for dependent input variables

Now, we adapt the methodology of [Li et al., 2010] to construct sensitivity indices for models
with dependent inputs. First, we define a sensitivity measure based on the result of Proposition
3. Then, we present an estimation procedure of the sensitivity measure in Paragraph 4.2.
Finally, we present in Paragraph 4.3 how to take into account the uncertainty of the index
estimation.

4.1 Sensitivity measure definition

As presented in Section 3, the model function f(x) is substituted to fn(x) = fn
0 +
∑

u∈S fn
u (xu)).

Therefore, the global variance can now be decomposed as

V (fn(X)) =
∑

u∈S

[

V (fn
u (Xu)) + Cov(fn

u (Xu), f
n
uc(Xuc))

]

(20)

where fn
uc(X) = fn(X) − fn

u (Xu). In this way, the sensitivity index associated to the group
of variables Xu is given by

Sf
u =

V [fn
u (Xu)] + Cov[fn

u (Xu), f
n
uc(X)]

V [fn(X)]
(21)

We note that Sf
u is defined on the probability space (ΩZ ,AZ ,PZ) as V and Cov are the vari-

ance and covariance with respect to PX. Therefore, Sf
u integrates the uncertainty related to

the meta-model approximation. In practice, the mode or the mean of the distribution Sf
u may

be used to get a scalar measure of sensitivity.

It also should be noted that this index is analogous with the Sobol one in the independent
case when f is replaced by fn. Indeed, by (18) and (19), we have

1. For u 6= v ∈ S,
Cov (fn

u (Xu), f
n
v (Xv)) = 0.

2. For a given u ∈ S, by integrating fn with respect to the distribution of the all inputs
except the ones indexed by u, we have that

fn
u (Xu) = E [fn(X)|Xu] +

∑

v⊂u
v 6=u

(−1)|u|−|v|
E [fn(X)|Xv ] .
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Hence, when PX = PX1
⊗ · · · ⊗ PXp ,

Sf
u =

V (E [fn(X)|Xu]) +
∑

v⊂u
v 6=u

(−1)|u|−|v|V (E [fn(X)|Xv ])

V [fn(X)]
.

For models with dependent inputs, the parametric functional ANOVA decomposition men-
tioned in Section 1 [Li et al., 2010, Caniou, 2012, Chastaing et al., 2013] requires to estimate
2p components, which is hardly achievable in practice when p gets large. Thus, their decom-
position must be truncated but in this case we loose a part of model information.
Here, we have accessed to the approximation fn(x) of f(x) without processing all the terms
fn
u (xu), u ∈ S, thanks to the equality fn(x) = µ(x) − t

kn(x)K
−1
n Zn + Z(x) where Z(x) ∼

GP(0, k(x, x̃)), and µ(x) = f0 +
t
kn(x)K

−1
n (zn − f01n). Furthermore, for any u ∈ S, we have

an explicit expression of fn
u (xu) given by (17). Thus, as fn = fn

u + fn
uc , the complementary

summand fn
uc of fn

u can be easily deduced, avoiding the truncation error in the estimation.

4.2 Estimation procedure

The aim of this section is to provide an efficient numerical estimation of the sensitivity measure
Sf
u , for a given u ∈ S. As already mentioned, Sf

u lies in (ΩZ ,AZ ,PZ). Further, we describe

a numerical procedure for only one realization Sf
u . In practice, this procedure is repeated Ns

times to take into account the uncertainty of the meta-model.

We empirically estimate the variance and the covariance involved in (21) with a Monte-
Carlo integration. Therefore, we consider the following estimator from m realizations T =
(tj1, · · · , tjp)j=1,...,m of the random variable X defined on the probability space (ΩX,AX,PX):

Sf
u,m =

1
m

∑m
j=1 f

n
u (t

j
u)2 −

(
f̄n
u

)2
+ 1

m

∑m
j=1 f

n
u (t

j
u)fn

uc(tj)− f̄n
u f̄

n
uc

1
m

∑m
j=1 f

n(tj))2 −
(

1
m

∑m
j=1 f

n(tj)
)2 (22)

where f̄n
u = 1

m

∑m
j=1 f

n
u (t

j
u), f̄n

uc = 1
m

∑m
j=1 f

n
uc(tj) and t

j
u = (tji )i∈u, j = 1, . . . ,m. We point

out that Sf
u,m lies in the product probability space (ΩZ ,AZ ,PZ). Therefore, we generate sev-

eral realizations of Sf
u,m to get an estimate of it. This procedure is described further below.

First, let us denote M =

(
T

D

)

, where D = (xj)j=1,...,n is the experimental design set. For

u ∈ S, we denote Mu =

(
Tu

Du

)

, where Tu = (tju)j=1,...,m and Du = (xj
u)j=1,...,n.

1. To get a realization of fn
u (xu), we generate a sample from the distribution of

Zu(xu) ∼ GP

(

0,
∏

i∈u

ki0(xi, x̃i)

)

,

on M with the following procedure:

(a) Compute K
u
0,m =

⊙

i∈u k
i
0 (Mi,Mi) and the Cholesky decomposition L

u
0,m of Ku

0,m

where
⊙

stands for the term-wise matrix product. K
u
0,m is the covariance matrix

of Zu(xu) at points in Mu.
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(b) Generate one realization zu(Mu) of Zu(xu) on Mu from the Cholesky decomposi-
tion of Ku

0,m (see [Rasmussen and Williams, 2006] Appendix A.2) with,

zu(Mu) = L
u
0,mεu, (23)

where εu is a sample generated from the distribution N (0, In+m) where I is the
identity matrix of size (n+m)× (n+m).

2. To generate a realization of fuc(x) on M, we generate a sample from the distribution of

Zuc(x) ∼ GP

(

0, k(x, x̃)−
∏

i∈u

ki0(xi, x̃i)

)

,

on M, with the following procedure:

(a) Compute Km = k (M,M) and the Cholesky decomposition L
uc

0,m of Km − K
u
0,m.

k (M,M) is the covariance matrix of Z(x) at points in M.

(b) Generate one realization zuc(M) of Zuc(x) on M with

zuc(M) = L
uc

0,mεuc , (24)

where εuc is sampled from the distribution N (0, In+m).

3. We deduce a sample z(M) of Z(x) on M with:

z(M) = zu(Mu) + zuc(M). (25)

Moreover, as M =

(
T

D

)

and Mu =

(
Tu

Du

)

, z(M), zu(Mu) and zuc(M) can be rewritten

in the following forms:

z(M) =

(
z(T)
z(D)

)

, zu(Mu) =

(
zu(Tu)
zu(Du)

)

and zuc(M) =

(
zuc(T)
zuc(D)

)

.

4. We can deduce the samples f̃n(T), f̃n
u (Tu) and f̃n

uc(T) of respectively fn(x), fn
u (xu)

and fn
uc(x) on T with the following formulas:







f̃n(T) = µ(T)− k(T,D)K−1
n z(D) + z(T),

f̃n
u (Tu) = µu(Tu)−

(⊙

i∈u k
i
0 (Ti,Di)

)
K

−1
n z(D) + zu(Tu),

f̃n
uc(T) = f̃n(T)− f̃n

u (T)

(26)

where Kn = k(D,D), and

{
µ(T) = tk(T,D)K−1

n (zn − f01n) + f0
µu(Tu) =

⊙

i∈u
tki0 (Ti,Di)K

−1
n (zn − f01n)

We note that k(T,D) and
(⊙

i∈u k
i
0 (Ti,Di)

)
have been already computed with Km

and K
u
0,m (Step 1 and 2) as,

Km = k(M,M) =

(
k(T,T) k(T,D)
k(D,T) k(D,D)

)

,

12



and

K
u
0,m =

⊙

i∈u

ki0 (Mi,Mi) =

(⊙

i∈u k
i
0 (Ti,Ti)

⊙

i∈u k
i
0 (Ti,Di)

⊙

i∈u k
i
0 (Di,Ti)

⊙

i∈u k
i
0 (Di,Di)

)

.

5. We deduce that a sample sfu,m of Sf
u,m is given by

sfu,m =

1
m

∑m
j=1 f̃

n
u (t

j
u)2 −

(
¯̃fn
u

)2
+ 1

m

∑m
j=1 f̃

n
u (t

j
u)f̃n

uc(tj)− ¯̃fn
u
¯̃fn
uc

1
m

∑m
j=1 f̃

n(tj))2 −
(

1
m

∑m
j=1 f̃

n(tj)
)2 , (27)

where
¯̃
fn
u = 1

m

∑m
j=1 f̃

n
u (t

j
u) and

¯̃
fn
uc = 1

m

∑m
j=1 f̃

n
uc(tj).

4.3 Asymptotic normality of the sensitivity index estimator

We have presented in the previous paragraph a procedure to sample Sf
u,m defined in Equation

(22). However, for given realizations of random processes fn
u (Xu) and fn

uc(X), the estimated
sensitivity measure comes from a Monte-Carlo integration and thus integrates a Monte-Carlo
error. The purpose of this paragraph is to quantify it. A natural approach is to use an
asymptotic normality result as stated in Proposition 4.

Proposition 4 For u ∈ S, let us consider the respective realizations of fn
u (Xu), f

n
uc(X) and

fn(X) denoted by f̃n
u (Xu), f̃

n
uc(X) and f̃n(X) respectively. We denote the theoretical sensitivity

measure for Xu associated to f̃n by

sfu =
V (f̃n

u (Xu)) + Cov(f̃n
u (Xu), f̃

n
uc(X))

V (f̃n(X))
,

where we assume that V (f̃n(X)) 6= 0. Suppose also that E
[

f̃n
u (X)4

]

< ∞ for all u ∈ S. Then,

for any u ∈ S, we have, when m → ∞:

√
m
(

sfu,m − sfu

)
L−→ N

(
0, t(▽φ(µ))Γ▽ φ(µ)

)
(28)

where µ = E(U), Γ = V (U),

U =
(

f̃n
u (Xu) f̃n

uc(X) f̃n(X) f̃n
u (Xu)

2 f̃n(X)2 f̃n
u (Xu)f̃

n
uc(X)

)
,

and

φ(u1, u2, u3, u4, u5, u6) =
u4 − u21 + u6 − u1u2

u5 − u23
.

The proof of Proposition 4 is straightforward by using the Delta method (see [Van Der Vaart,
1998]). We highlight that the terms µ and Γ in Proposition 4 can be estimated from the
sample T = (tj)j=1,...,m used in the Monte-Carlo integration (22).

In practice, we use the asymptotic result given in Proposition 4 to estimate the Monte Carlo
error. Thus, to take into account both the uncertainty of the surrogate model and the one of
the Monte Carlo integration, we proceed as follows,
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1. Generate f̃n(T), f̃n
u (Tu) and f̃n

uc(T) from the sample T with the estimation procedure
given in Paragraph 4.2.

2. Generate a sample of size K from the limit distribution N
(

0, t(▽φ(µ̂))Γ̂▽ φ(µ̂)
)

where

µ̂ = 1
m

∑m
j=1U(tju), Γ̂ = 1

m

∑m
j=1[U(tju)− µ̂]2, and

U =
(

f̃n
u f̃n

uc f̃n (f̃n
u )

2 (f̃n)2 f̃n
u f̃

n
uc

)
.

Thus, a Monte Carlo error is obtained for one realization sfu,m.

3. Repeat Steps 1-2 Ns times to take into account the uncertainty of the surrogate model.

5 Applications

We illustrate in this section our sensitivity measure on academic and industrial examples.
First, we present explicit examples of covariance kernels ki0, and a procedure to estimate their
parameters. Further, we illustrate the estimation procedure of Paragraph 4.2 through several
numerical applications.

5.1 Example of covariance kernels

Here, we analytically compute zero mean kernels for two usual kernels associated with uniform
distributions. First, let us consider that (see Equation (7)):

ki0(x, x̃) = k̃i(x, x̃)−
∫
k̃i(x, u)pXi

(u)du
∫
k̃i(v, x̃)pXi

(v)dv
∫ ∫

k̃i(u, v)pXi
(u)pXi

(v)dudv
, x, x̃ ∈ R.

Example 1: We consider an exponential kernel for k̃i(x, x̃) with an uniform marginal pXi
,

namely,

ki(x, x̃) = exp

(

−1

2

|x− x̃|
θi

)

, θi > 0,

and
pXi

∼ U (ai, bi) .

Then, the corresponding covariance kernel ki0(x, x̃) is given by:

ki0(x, x̃) = exp
(

−1
2
|x−x̃|
θi

)

− θi

bi−ai+2θi
(

exp(− 1

2

bi−ai
θi

)−1
)×

(

2− exp(−1
2
x−ai
θi

)− exp(−1
2
bi−x
θi

)
)

·
(

2− exp(−1
2
x̃−ai
θi

)− exp(−1
2
bi−x̃
θi

)
)

We note that the exponential kernel is stationary — i.e. it is invariant under translations in
the input parameter space — and corresponds to the covariance of an Ornstein-Uhlenbeck
process. Furthermore, the corresponding process is continuous in mean square sense and
nowhere differentiable. Therefore this kernel is appropriate for rough function f(x).
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Example 2: We consider a Gaussian kernel for k̃i(x, x̃) with an uniform marginal pXi
,

namely,

ki(x, x̃) = exp

(

−1

2

(x− x̃)2

θ2i

)

, θi > 0,

and
pXi

∼ U (ai, bi) .

Then, the corresponding covariance kernel ki0(x, x̃) is given by:

ki0(x, x̃) = exp
(

−1
2
(x−x̃)2

θ2i

)

−A(x)A(x̃)/B,

where

A(x) = −
√
π√
2
θierf

(
ai − x

θi
√
2

)

+

√
π√
2
θierf

(
bi − x

θi
√
2

)

,

B = −2θ2i + θi
√
2erf

(
ai − bi

θi
√
2

)√
π(ai − bi) + 2 exp

(

−1

2

(ai − bi)
2

θ2i

)

θ2i ,

and the error function is given by

erf(x) =
2√
π

∫ x

0
exp(−t2)dt.

We note that the Gaussian kernel corresponds to processes infinitely continuously differentiable
in mean square sense. Therefore this kernel is appropriate for very smooth function f(x).
Closed form expressions can also be derived for 5/2-Matérn and 3/2-Matérn covariance kernels
(see [Stein, 1999]) by straightforward calculations. Due to their complex expression, they are
not presented here. Though, we note that these kernels correspond respectively to once and
twice continuously differentiable processes in mean square sense. Therefore, they could be a
relevant compromise between the exponential and the Gaussian kernels.

5.2 Covariance kernel parameter estimation

We deal in this section with the estimation of the model parameters using a maximum likeli-
hood method. Let us consider the covariance kernel

k(x, x̃) = σ2
p
∏

i=1

(
1 + ki0(xi, x̃i)

)
,

where ki0(xi, x̃i) is one of the covariance kernels given in Example 1 or Example 2 of Paragraph
5.1. Therefore, the parameters to be estimated are the variance parameter σ2, the mean f0
and the hyper-parameter θ = (θi)i=1,...,p of (ki0(xi, x̃i))i=1,...,p.

First, let us consider the maximum likelihood estimate of f0:

f̂0 =
(
t
1nK

−1
n 1n

)−1 t
1nK

−1
n zn, (29)

where zn = (f(xi))i=1,...,n and Kn = [k(xi,xj)]i,j=1,...,n is the covariance matrix of the ob-
servations at points D = (xi)i=1,...,n, with x

i ∈ R, for all i = 1, . . . , n. Then, we substitute
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f̂0 in the likelihood and maximize it with respect to σ2. We obtain the following maximum
likelihood estimate of σ2:

σ̂2 =
t(zn − f̂01n)K

−1
n (zn − f̂01n)

n
. (30)

Finally, we substitute σ2 with σ̂2 in the likelihood to obtain the marginal likelihood:

L(θ; zn) = n log(σ̂2) + log(detKn). (31)

The estimate θ̂ of θ is obtained by minimizing (31) with respect to θ. In practice, we use an
evolutionary algorithm coupled with a BFGS (Broyden-Fletcher-Goldfarb-Shanno) procedure
(see [Avriel, 2003]).

5.3 Academic example: the Ishigami function

Let us consider the Ishigami function:

z(x1, x2, x3) = sin(x1) + 7 sin(x2)
2 + 0.1x43 sin(x1) (32)

with (x1, x2, x3) ∈ [−π, π]3. This function is a classical tabulated function for sensitivity
analysis [Saltelli et al., 2000].

5.3.1 Gaussian process regression model building

First of all, let us present the meta-model building. The considered experimental design set is
a Latin-Hypercube-Sampling (LHS) [Stein, 1987] of n = 150 points optimized with respect to
the maximin criterion. This criterion maximizes the minimum distance between the points.
We consider the Gaussian covariance kernel presented as Example 2 of Paragraph 5.1. The
maximum likelihood estimates of the model parameters are given below (see Paragraph 5.2):

θ̂ =
(
1.98 1.44 1.63

)
, σ̂2 = 16.50, f̂0 = 3.40.

The efficiency of the model is assessed on a test set Xtest of size nt uniformly spread on [−π, π]3

with the following coefficient:

Q2 = 1−
∑

x∈Xtest
(µ(x)− f(x))2

∑

x∈Xtest

(
µ(x)− f̄

)2 , f̄ =

∑

x∈Xtest
f(x)

nt

,

where µ(x) is the predictive mean given in (11). The coefficient Q2 represent the part of
the model discrepancy explained by the meta-model. The closer to 1, the more efficient is
the meta-model. Here, the estimated efficiency is Q2 = 98.2%. Then, we have an accurate
meta-model.

5.3.2 Ishigami function with independent inputs

We consider the product measure PX = PX1
⊗ PX2

⊗ PX3
with Xi uniformly distributed on

[−π, π], i.e. Xi ∼ U(−π, π), for i = 1, 2, 3. In this case, the theoretical sensitivity indices
coincide to the classical Sobol indices (see [Sobol, 1993]). Their values are indicated in Table
1. The purpose of this paragraph is to study the relevance of the suggested indices in the case
of independent inputs.
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To perform the Monte-Carlo integration presented in Paragraph 4.2, we generate a sample
T = (tj)j=1,...,m of m = 10, 000 points with respect to the product measure PX. Further,

we generate Ns = 200 realizations (see sfu,m in Equation (27)) of the estimator Sf
u,m of the

sensitivity measure Sf
u with u ∈ {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.

To get a scalar quantity estimate Ŝf
u of Sf

u , we consider that Ŝf
u is the mode of the probability

density estimate of the Ns = 200 realizations of Sf
u,m. We note that the estimate of the

probability density is based on a normal kernel function with a window parameter optimal for
estimating a normal density [Bowman and Azzalini, 1997].
The estimated indices are given in Table 1. Furthermore, we provide the confidence intervals
of each estimators using the procedure given in Paragraph 4.3 that allows to take into account
the meta modeling and the Monte Carlo errors. To do that, we consider a sample of size
K = 200 for each realization.

Index S1 S2 S3 S12 S13 S23

Analytical 0.314 0.442 0 0 0.244 0

Estimate 0.310 0.447 0.000 0.001 0.238 0.000

2.5%-quantile 0.308 0.430 -0.001 -0.001 0.231 -0.001

97.5%-quantile 0.320 0.452 0.001 0.002 0.253 0.001

Table 1: Sensitivity measure estimates for the Ishigami function with independent input
parameters.

We see that the estimated sensitivity measures fit the theoretical ones. This emphasizes the
efficiency of the suggested estimation procedure.
To show the relevance of the estimated 95%-confidence intervals, we reiterate the presented
procedure with 500 Gaussian process regression models built from different maximin-LHS
design sets. For each design set, the parameters θ, σ2 and f0 are estimated with a maximum
likelihood method. We thus have 500 estimated 95% confidence intervals and we verify whether
they include the true index or not. The ratio of intervals including the true indices, also called
the coverage rate, has to be close to 95%. The results of this procedure is presented in Table
2. Moreover, these intervals are compared with the ones considering only the meta-modeling
error (i.e. without using the procedure presented in Paragraph 4.3 to evaluate the Monte-
Carlo integration error).
Furthermore, to show the issue involving the meta-modeling error, we compare the coverage
rate of the empirical estimation ŜD

u of the sensitivity index SD
u proposed by Durrande et al.(see

Paragraph 3.1) to the one of our sensitivity measure. To evaluate the Monte-Carlo error of
ŜD
u , we apply the procedure presented in Paragraph 4.3. The results are presented in Table 2.

We see in Table 2 that the empirical confidence intervals obtained with the suggested proce-
dure are better than those which only take into account the meta-model or the Monte-Carlo
error. In particular, the confidence intervals found with the estimator ŜD

u and considering
only the Monte-Carlo error are widely underestimated. However, we see that they are all
underestimated for the second order indices. Especially for the indices corresponding to the
non-influent interactions, namely, S12 and S23. The underestimation could be due to a poor
learning of the interactions by the meta-model.
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Index Error S1 S2 S3 S12 S13 S23

Ŝf
u

MC + Meta-model 0.95 0.97 0.91 0.76 0.81 0.74
Meta-model 0.87 0.94 0.87 0.08 0.29 0.21

ŜD
u MC + predictive mean 0.67 0.65 0.39 0.00 0.26 0.05

Table 2: Coverage rates of 500 empirical confidence intervals. The theoretical confidence
interval is 95%. The coverage rates for the suggested confidence intervals taking into account
the uncertainty of both the meta-model approximation and the Monte-Carlo integration are
labeled “MC+meta-model” ; the ones taking into account only the meta-model error are
labeled “meta-model” ; the ones taking into account only the Monte-Carlo error and using the
predictive mean are labeled “MC+predictive mean”.

5.3.3 Ishigami function with perfectly correlated inputs

We present here a sensitivity analysis with PXi
∼ U(−π, π), i = 1, 2, 3, and where we assume

that X1 = X2 and X1, X2 independent of X3.
Therefore, we can either perform a sensitivity analysis considering only two independent vari-
ables (Case i) or perform a sensitivity analysis with three input variables where two of them
have a perfect positive linear relationship (Case ii). We use the classical Sobol indices for Case
i, and we perform our procedure for Case ii.
As the two sensitivity analyses formally correspond to the same underlying function, it should
have a connection between them. The purpose of this paragraph is to numerically observe it.
Since X1 = X2, we can consider the following function:

zsob(i) (X1,X3) = sin(X1) + 7 sin(X1)
2 + 0.1X4

3 sin(X1),

with X1 independent of X3. Further, we denote Ŝsob
u , for u ∈ {{1}, {3}, {13}} the estimators

of the Sobol index. Our indices are denoted Ŝf
u , for u ∈ {{1}, {2}, {3}, {12}, {13}, {23}}, as

we consider the mode of the distribution estimate. Results are given in Table 3.

Index Ŝ1 Ŝ2 Ŝ3 Ŝ12 Ŝ13 Ŝ23

Ŝf
u 0.308 0.439 0.001 0.001 0.238 0.012

Ŝsob
u 0.751 - 0.001 - 0.245 -

Table 3: Sensitivity measure estimates for the Ishigami function with X1 = X2, X1, X2

independent of X3 and PXi
∼ U(−π, π), i = 1, 2, 3.

We see in Table 3 that we empirically found that Ŝsob
1 ≈ Ŝf

1 + Ŝf
2 + Ŝf

12, Ŝ
sob
3 ≈ Ŝf

3 and Ŝsob
13 ≈

Ŝf
13 + Ŝf

23. Therefore, we numerically observe a direct correspondence between the classical
sensitivity analysis for independent inputs and the suggested one for dependent inputs.
This connection strengthen the relevance of the considered index since, in the independent
case, the Sobol indices are commonly accepted as a good measure of sensitivity. However,
the connection is only established when the considered model can be reduced to an equivalent
model which have independent inputs. For general cases, the interpretation will be much more
complex (see Paragraph 5.4).
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5.3.4 Modeling dependence with copulas

To define the dependence among random variables, it is usual to use the copula functions [Nelsen,
2006]. Indeed, a copula function aims to join the joint distribution of a set of variables to
its marginal distributions. If the cumulative distribution function (cdf) of X is denoted FX,
and F1, · · · , Fp are the respective marginal cdf of X1, · · · ,Xp, then there exists a copula
p-dimensional C such that, for all x ∈ R

p,

FX(x) = C(F1(x1), · · · , Fp(xp)).

Most of copulas belong to a class of copulas, specified by the type of dependence it models.
For instance, among the upper tail dependence, one could cite the the family of Gumbel
copulas [Nelsen, 2006]. Thus, copulas provide a simple and natural way to measure the
dependence. However, copulas are not the most widely used tool in practice. To measure the
dependence, it is usual to refer to the Pearson’s correlation coefficient, that measures the linear
dependence among variables. It is especially appropriated to elliptical distributions [Fang
et al., 1990], but it may be misleading for other types of distribution. The Spearman’s rho is a
good alternative to the Pearson’s coefficient because it could be adapted to any distribution.
Based on the probability of concordance and discordance of random variables, the Spearman’s
rho is also well-known as a rank correlation, i.e. the linear Pearson correlation coefficient
applied on the rank of observations. The main advantage of this measure is that it does not
depend on the marginal distributions, but only on the structure of dependence. Furthermore,
it is a copula-based measure of association, i.e. when the dependence between two random
variables is modelized by a copula C, the Spearman’s rho, denoted ρS, admits the following
expression,

ρS = 12

∫∫

[0,1]2
C(u, v)dudv − 3.

Through the Ishigami function, we study the influence of this coefficient on the estimation of
our sensitivity measures. We fix ρS, and we model our dependence by two different copulas.
The aim is to know if the dependence may be summarized by the Spearman’s rho in the
sensitivity analysis in presence of dependent incomes.
We assume that each couple of variables (Xi,Xj), i 6= j admits the same Spearman’s rho,
ρS = 0.7. We use the Gaussian copula, and the Clayton copula on uniform marginal distribu-
tions over [−π, π]. Further, for a given experimental design set of n = 200 points, we compare
the two dependence structure. Further, the Monte Carlo sample is of size m = 10, 000, and
we made Ns = 200 realizations of Sf

u,m. Figure 1 illustrates the distribution of the indices for
both Gaussian and Clayton copulas.

Notice that, depending on the type of dependence, we do not obtain the same conclusion.
Especially for S1 and S13, we notice that the two distributions are disjoint, meaning a sig-
nificant difference whether we use a Gaussian copula or a Clayton one. This shows that it is
not enough to only consider a measure of association to model the dependence in sensitivity
analysis.
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Figure 1: Distribution of the sensitivity measures with Gaussian and Clayton copulas
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Figure 2: The river flood model

5.4 Industrial example: the river flood inundation

We illustrate our method with the study of a river flood inundation. In this problem, the
river flow is compared with the height of a dyke that protects an industrial site [Faivre et al.,
2013, De Rocquigny, 2006]. The river flow may lead to inundations that are desirable to
avoid. To study this phenomenon, the maximal overflow of the river is modelized by a crude
simplification of the 1-D Saint Venant equations, when uniform and constant flow rate is
assumed. The model is given by the following expression,

S = Zv + h
︸ ︷︷ ︸

Zc

−Hd − Cb, h =




Q

BKs

√
Zm−Zv

L





0.6

,

where S is the maximal overflow that depends on eight parameters. The river flow and the
parameters implied in the model are represented in Figure 2. These variables are physical and
geometrical parameters subject to a spatio-temporal variability or to errors of measurements.
Thus, leading a sensitivity analysis in this model has a real interest for this model. The
meaning of the incomes and their distribution are given in Table 4.
In this study, we assume that (Q,Ks) is a correlated pair, with correlation coefficient ρ = 0.5.
This correlation is admitted in real case, as we consider that the friction coefficient increases
with the flow rate. Also, (Zv , Zm) and (L,B) are assumed to be dependent with the same
Pearson coefficient ρ = 0.3, because data are supposed to be simultaneously collected by the
same measuring device. As for Cb and Hd, they are supposed to be independent.
We take a first sample of n = 200 observations, and a Monte Carlo sample of size m = 5000.
Further, we generate Ns = 100 realizations of the first order sensitivity indices. We then
consider the mode of the probability density estimate of these realizations. We repeat the
procedure 100 times to obtain a Monte Carlo error for each sensitivity index. Further, we
compare our result to the generalized sensitivity indices defined in [Chastaing et al., 2013],
built from a functional decomposition, called hierarchical decomposition. The estimation of
these last indices is based on a regression approach, and a recursive procedure [Chastaing
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Variables Meaning Distribution

h maximal annual water level -

Q maximal annual flow rate Gumbel G(1013, 558) tr. to [500; 3000]

Ks Strickler coefficient Normal N(30, 8) tr. to [15,+∞[

Zv river downstream level Triangular T (49, 50, 51)

Zm river upstream level Triangular T (54, 55, 56)

Hd dyke height Uniform U([7, 9])
Cb bank level Triangular T (55, 55.5, 56)

L length of the river stretch Triangular T (4990, 5000, 5010)

B river width Triangular T (295, 300, 305)

Table 4: Description of inputs-output of the river flood model (tr. to=truncated to)

et al., 2013]. Further, as this procedure suffers from the curse of dimensionality, a greedy al-
gorithm is adopted to select a sparse number of informative components. This other strategy
will be called the GHOGS (for Greedy Hierarchical Orthogonal Gram-Schmidt) strategy. The
comparison with our methodology is given by Figure 3.

Through the result, we observe for both decompositions the same phenomena for the last
six inputs (Zv, Zm, Hd, Cb, L and B). The width (B) and the length (L) of the river are
not influent parameters in the model. Also, for both decompositions, the dyke height is
the most contributive variable in the global variability. Moreover, the bank level (Cb) has a
negligible impact on the model output and its contribution has the same order of magnitude
for both analyses. The main difference between the two procedures is the contribution of the
correlated pair (Q,Ks). In the GHOGS procedure, we observe that the flow rate Q is highly
contributive with respect to the Strickler coefficient Ks. This contribution is less important
for the Gaussian processes approach while the one of Ks is slightly larger. Furthermore, we
note that the sum of contributions for the pair (Q,Ks) is similar for the two analyses.
We see in (21) that the sensitivity measure is decomposed into a sum of a variance term
V [fn

u (Xu)]/V [fn(X)] and a covariance term Cov[fn
u (Xu), f

n
uc(X)]/V [fn(X)]. The same type

of decomposition is present in the index provided by the GHOGS procedure [Chastaing et al.,
2013]. The variance term represents the main contribution of the inputs without the depen-
dence part. The covariance term represents the contribution of the dependence to the index.
We represent for the two methods the estimated variance and the covariance parts in Figure
4. We observe that the GP and the GHOGS behave differently, as we are not faced to the
same decomposition. In the GP approach, the model tends to balance the main contribution,
whereas the GHOGS is more discriminant. The covariance contribution is the same in the
GHOGS procedure for (Q,Ks), which seems reasonable as it is estimated from a hierarchically
orthogonal decomposition [Chastaing et al., 2012]. However, we observe a significant differ-
ence between the covariance part of Q and the one of Ks, that may be due to the fact that
we measure Cov(fn

Ks
, fn

Kc
s
). This last term implies a large sum of terms that may weaken the
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(a) GHOGS procedure
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(b) GP modelling

Figure 3: Sensitivity indices estimation with the GHOGS method (a) and the GP modelling
(b)

main contribution, and that lead to a negative covariance contribution.

6 Conclusions

Through this work, we propose a solution for dealing with complex computer codes in presence
of dependent input variables in the model. The definition of a variance-based sensitivity index
aims at quantifying the contribution of a (group of) variable(s) in the model and can be
decomposed as a sum of ratio of variances, interpreted as the main contribution, and a ratio
between covariance terms and the global variance, interpreted as the contribution due to the
dependence. The attractive side of such methodology is to be able to quantify the uncertainty
of the sensitivity measure, and thus to compute confidence intervals for each estimation. The
question about the choice of the ANOVA kernel has not been raised in this work, as this choice
may have a strong influence on the values of the sensitivity indices. This remains an open
problem.
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(a) Variance term for the GHOGS procedure
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(b) Variance term for the GP modelling
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(c) Covariance term for the GHOGS
procedure
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(d) Covariance term for the GP modelling

Figure 4: Variance (a) & (b) and covariance (c) & (d) terms for the Sensitivity indices esti-
mation with the GHOGS method (a) & (c) and the GP modelling (b) & (d)
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