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Abstract

Exploring the conformational energy landscape of a
molecule is an important but challenging problem be-
cause of the inherent complexity of this landscape. As
part of this theme, various methods have been devel-
oped to compute transition paths between stable states
of a molecule. Besides the methods classically used
in biophysics/biochemistry, a recent approach originat-
ing from the robotics community has proven to be an
efficient tool for conformational exploration. This ap-
proach, called the Transition-based RRT (T-RRT) is
based on the combination of an effective path plan-
ning algorithm (RRT) with a Monte-Carlo-like transi-
tion test. In this paper, we propose an extension to T-
RRT based on a multi-tree approach, which we call
Multi-T-RRT. It builds several trees rooted at different
interesting points of the energy landscape and allows
to quickly gain knowledge about possible conforma-
tional transition paths. We demonstrate this on the ala-
nine dipeptide.

Introduction

Global thermodynamic and kinetic properties of molecules
can be extracted from an analysis of their conformational
energy landscape (Wales 2003). Thus, obtaining an accu-
rate representation of this landscape is an important problem
that has sparked the interest of the scientific community for
decades. This problem is challenging because, in general,
the energy landscape is a high-dimensional, rugged mani-
fold. Among the issues this problem raises, two particularly
interesting ones are: 1) how to achieve a significant and ef-
ficient sampling of the conformational space, and 2) how to
compute transition paths between stable states of a molecule.
Different approaches have been developed to explore and to
represent energy landscapes, but there is still room for the
development of more efficient and/or more accurate meth-
ods.

Recent work shows that algorithms originating from
the field of robotics can be a good basis for efficient
conformational-sampling and exploration methods in com-
putational structural biology (Gipson et al. 2012; Al-Bluwi,
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Siméon, and Cortés 2012). The Transition-based RRT (T-
RRT) algorithm is an example of such algorithms (Jaillet et
al. 2011). It can be applied to identify interesting points on
the energy landscape (i.e. minima and saddle-points) and to
compute probable conformational transition paths. T-RRT
is based on the Rapidly-exploring Random Tree (RRT) al-
gorithm (LaValle and Kuffner 2001), a popular path plan-
ning algorithm that can tackle complex problems in high-
dimensional spaces. RRT has been successfully used in var-
ious disciplines, such as robotics, manufacturing, computer
animation and computational structural biology. T-RRT is
an extension of RRT involving a probabilistic transition
test based on the Metropolis criterion. In the same way as
Metropolis Monte Carlo methods (Frenkel and Smit 2001),
it applies small moves to the molecular system; but, instead
of generating a single path over the conformational space,
it constructs a tree, providing a more efficient exploration.
Moreover, the tree construction is intrinsically biased toward
unexplored regions of the space, and favors expansions on
low-energy areas.

In this paper, we propose an extension of T-RRT (which
is a single-tree algorithm) based on a multi-tree approach,
which we name Multi-T-RRT. Instead of growing a single
tree rooted at a given molecular conformation, the Multi-T-
RRT grows several trees rooted at different interesting con-
formations (e.g. local minima) scattered over the exploration
space, and provided as input. These initial conformations
may correspond to experimentally-determined structures, or
may be generated by computational methods, such as simu-
lated annealing (Wilson et al. 1991), basin hopping (Wales
and Doye 1997), or recent methods based on evolutionary
search (Olson and Shehu 2012). The Multi-T-RRT algorithm
aims at quickly providing information about regions of the
energy landscape through which transition paths might be
observed between the given set of conformations. To illus-
trate this, and as a proof-of-concept, we present initial results
obtained on the alanine dipeptide, a frequent benchmark for
theoretical studies in biophysics/biochemistry.

Methods

Rapidly-exploring Random Tree (RRT)

Starting from an initial conformation, qinit, RRT iteratively
constructs a tree T that tends to rapidly expand on the



Algorithm 1: Transition-based RRT

input : the conformational space C
the energy function E : C → R

the initial conformation qinit

the target conformation qgoal (optional)
the extension step-size δ

output: the tree T
1 T ← initTree(qinit)
2 while not stopCondition(T , qgoal) do
3 qrand ← sampleRandomConformation(C)
4 qnear ← findNearestNeighbor(T , qrand)
5 if refinementControl(T , qnear , qrand) then
6 qnew ← extend(qnear , qrand, δ)
7 if qnew 6= null and
8 transitionTest(T , E(qnear), E(qnew)) then
9 addNewNode(T , qnew)

10 addNewEdge(T , qnear , qnew)

conformational space C, thanks to the implicit enforce-
ment of a Voronoi bias (LaValle and Kuffner 2001). The
nodes and edges of T correspond to states (i.e. molec-
ular conformations) and small-amplitude moves between
states, respectively. At each iteration of the tree construc-
tion, a conformation qrand is randomly sampled in C.
Then, an extension toward qrand is attempted, starting from
its nearest neighbor, qnear, in T . This means performing
an interpolation between qnear and qrand, at a distance
equal to the extension step-size, δ, from qnear (except if
distance(qnear, qrand) < δ, in which case the result of
the interpolation is qrand itself). If the extension succeeds, a
new conformation qnew is added to T and an edge is built
between qnear and qnew. The criteria on when to stop the ex-
ploration can be reaching a given target conformation qgoal,
a given number of nodes in the tree, a given number of iter-
ations, or a given running time.

Transition-based RRT (T-RRT)

Contrary to RRT, T-RRT allows to explore a conformational
space over which an energy function is defined. T-RRT
(whose pseudo-code is shown in Algorithm 1) extends RRT
by integrating a stochastic transition test enabling it to steer
the exploration toward low-energy regions of the conforma-
tional space (Jaillet et al. 2011). Similarly to the Metropolis
criterion typically used by Monte Carlo simulations in statis-
tical physics (Frenkel and Smit 2001), this transition test is
used to accept or reject a candidate state, based on the energy
variation associated with the local move from the previous
state to this state. Compared with RRT, T-RRT also features
a refinement-control mechanism that will be detailed in the
sequel.

The transitionTest presented in Algorithm 2 is
used to evaluate the transition between the conformations
qnear and qnew based on their respective energies. Three
cases are possible: 1) A new conformation whose en-
ergy is higher than the threshold value Emax is automat-
ically rejected. 2) A transition corresponding to a down-
hill move (Ej ≤ Ei) is always accepted. 3) Uphill tran-

Algorithm 2: transitionTest (T , Ei, Ej)

input : the energy threshold Emax

the current temperature T
the temperature increase rate Trate

output: true if the transition is accepted, false if not
1 if Ej > Emax then return False
2 if Ej ≤ Ei then return True
3 if exp(−(Ej − Ei) / (K · T )) > 0.5 then

4 T ← T / 2(Ej−Ei) / (0.1 · energyRange(T ))

5 return True

6 else

7 T ← T · 2Trate

8 return False

Algorithm 3: refinementControl (T , qnear, qrand)

input : the extension step-size δ
the refinement ratio ρ

output: true if refinement is low enough, false if not
1 if distance(qnear, qrand) < δ and
2 nbRefinementNodes(T ) > ρ · nbNodes(T ) then
3 return False

4 return True

sitions are accepted or rejected based on the probability
exp(−(Ej−Ei) / (K ·T )) (whereK is the Boltzmann con-
stant), which decreases exponentially with the energy vari-
ation Ej − Ei. In that case, the level of difficulty of the
transition test is controlled by the temperature T, which is
an adaptive parameter of the algorithm. Low temperatures
limit the expansion to gentle slopes, and high temperatures
enable to climb steep slopes. The temperature is dynami-
cally tuned during the search process, which allows T-RRT
to automatically balance its tendency to steer the explo-
ration toward low-energy regions with the Voronoi bias of
RRT. After each accepted uphill transition, T is decreased
to avoid over-exploring high-energy regions. More pre-

cisely, it is divided by 2(Ej−Ei) / (0.1 · energyRange(T )), where
energyRange(T ) is the energy difference between the
highest-energy and the lowest-energy conformations in the
tree. After each rejected uphill transition, T is increased to
facilitate the exploration and to avoid being trapped in a
local minimum. More precisely, it is multiplied by 2Trate ,
where Trate ∈ ]0, 1] is the temperature increase rate. The
Trate parameter determines a trade-off between low compu-
tation time and low energy of the produced paths: A value
not too small (e.g. 0.1) leads to a greedy search, and a lower
value (e.g. 0.01) enables to produce lower-energy paths. In
the rest of the paper, we use only these two values for Trate.

The adaptive temperature tuning of T-RRT ensures a
given success rate for uphill transitions, which can also con-
tribute to refining the exploration of low-energy regions al-
ready reached by the tree, as a side effect. The objective
of the refinementControl function (shown in Algo-
rithm 3) is to limit this refinement and facilitate the tree ex-
pansion toward unexplored regions. The idea is to reject an
expansion that would lead to more refinement if the num-



Algorithm 4: Multi-T-RRT

input : the conformational space C
the energy function E : C → R

the initial conformations qkinit, k = 1..n
the extension step-size δ

output: the tree T
1 for k = 1..n do

2 Tk ← initTree(qkinit)

3 while not stopCondition({Tk | k = 1..n}) do
4 T ′ ← chooseNextTreeToExpand()
5 qrand ← sampleRandomConfiguration(C)

6 q′near ← findNearestNeighbor(T ′, qrand)

7 if refinementControl(T ′, q′near , qrand) then
8 qnew ← extend(q′near , qrand, δ)
9 if qnew 6= null and

10 transitionTest(T ′, E(q′near), E(qnew)) then
11 addNewNode(T ′, qnew)

12 addNewEdge(T ′, q′near , qnew)

13 (T ′′, q′′near)← findNearestTree(qnew)

14 if distance(qnew, q′′near) ≤ δ then
15 T ← merge(T ′, qnew, T ′′, q′′near)

n← n− 1

ber of refinement nodes already present in the tree is greater
than a certain ratio ρ of the total number of nodes. In prac-
tice, we consider that an expansion can yield a refinement
node when the distance between qnear and qrand is less than
the extension step-size δ. Another benefit of the refinement
control is to limit the number of nodes in the tree and thus to
reduce the computational cost of the neighbor search. Here,
we set ρ to 0.1.

Multi-T-RRT

As an extension to the T-RRT algorithm, we propose a multi-
tree variant: Multi-T-RRT. Instead of building a single tree
rooted at some initial conformation, the idea is to build
n trees rooted at n given conformations qkinit, k = 1..n.
The pseudo-code of the Multi-T-RRT is presented in Algo-
rithm 4. At each iteration, a tree T ′ is chosen for expansion,
which can simply be done in a round-robin fashion. Then,
an extension is attempted toward a randomly sampled con-
formation qrand, starting from its nearest neighbor, q′near ,
in T ′. If the extension succeeds, the new conformation qnew
is added to T ′, and an edge is built between q′near and qnew.
Then, after searching for the conformation q′′near, which is
the closest to qnew within all trees other than T ′, if it ap-
pears that the distance between qnew and q′′near is less than
or equal to the extension step-size δ, T ′ is linked to and
merged with T ′′, the tree to which q′′near belongs. In that
case, the number of trees is decreased by 1. The space ex-
ploration continues until all trees are merged into a single
one or another stopping condition (number of nodes, num-
ber of expansions, running time) is met.

Besides being simple, Algorithm 4 is the most efficient
way to implement the Multi-T-RRT. We have compared it to
other variants, trying different strategies to expand the trees

and connect them. For example, expanding the trees in a
round-robin fashion toward a conformation qrand sampled
at each iteration is more efficient than 1) expanding all trees
at each iteration toward the same conformation qrand, or 2)
sampling qrand first and then expanding the tree that is the
closest to it. Attempting to link a tree to its closest neighbor
after a successful expansion is more effective than connect-
ing it to all other trees, or to some randomly chosen trees.
Attempting this connection after each successful expansion
works better than doing it only when the tree’s bounding box
increases in size.

Results

Alanine Dipeptide

As a proof of concept, we have used the Multi-T-RRT
to explore the energy landscape of the alanine dipeptide,
i.e. the alanine residue acetylated in its N-terminus and
methylamidated in its C-terminus: Ace-Ala-Nme. Despite
its small size, it is a common test-model because of its com-
plex energy landscape characterized by several local min-
ima (Chodera et al. 2006). Note that, since the shape of this
landscape is very sensitive to the parameters of the explo-
ration method, we do not compare our results to those avail-
able in the literature.

Figure 1: Ramachandran map of the alanine dipeptide in its
(φ, ψ) space, with the locations of six local energy minima
and their corresponding conformations (Chodera et al. 2006;
Jaillet et al. 2011).



Table 1: Energy and (φ, ψ) coordinates of the local minima
of the alanine dipeptide (Jaillet et al. 2011). For reference,
the lowest energy value is set to 0 kcal/mol.

C5 PII αR αP Cax
7 αL

φ (◦) -145 -65 -62 -143 45 43
ψ (◦) 160 148 -49 -70 -116 61
E (kcal/mol) 0 0.3 1 1.6 3.3 3.9

The conformational exploration was performed using an
internal-coordinates representation of the alanine dipeptide,
assuming constant bond lengths and bond angles. There-
fore, the conformational parameters were the dihedral an-
gles {φ, ψ, χ} of the Ala residue, χ of the Ace capping, χ
of the Nme capping, ω of the Ace-Ala peptide bond, and ω
of the Ala-Nme peptide bond. As the peptide bond torsions
are known to undergo only small variations, the ω angles
were allowed to vary only up to 10◦ from the planar trans
conformation.

The (φ, ψ) angles of the alanine dipeptide (i.e. the (φ, ψ)
angles of the Ala residue) are very important because their
flexibility allows internal hydrogen bonds to form. To visu-
alize the results of the conformational exploration, we have
used a projection of the energy landscape on these (φ, ψ) an-
gles, namely the Ramachandran map. This map (see Fig. 1)
was generated by varying both dihedral angles with a 10◦

step and energy-minimizing the conformation correspond-
ing to each (φ, ψ) pair using a steepest descent method while
blocking the (φ, ψ) angles (Jaillet et al. 2011).

The local energy minima used as input for the confor-
mational exploration were six stable states of the alanine
dipeptide (see Fig. 1), namely the C5, PII , αR, αP , Cax

7 ,
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Figure 2: Projection on the (φ, ψ) space of the alanine dipep-
tide of the transition paths produced by 100 runs of the
Multi-T-RRT, with Trate = 0.1.

αL states (Chodera et al. 2006). The conformations corre-
sponding to these minima were produced by an iterative sim-
ulated annealing protocol (Jaillet et al. 2011). Their energy
and (φ, ψ) coordinates are presented in Table 1.

Force Field

To compute conformational energy values, we have used the
AMBER parm96 force-field with an implicit representation
of the solvent using the Generalized Born approximation.
Note that, for the sake of computational efficiency, we have
implemented our own version of this force field as part of
our application. This avoids having to make system calls to
the AMBER tools.

Multi-T-RRT Parameters

The conformations used as input for the Multi-T-RRT were
the six aforementioned local energy minima. The conforma-
tional distance required by the Multi-T-RRT was defined as
the Euclidean distance in the (φ, ψ) space. The extension
step-size δ was set to 0.1, so that the maximal angular vari-
ation between two conformations was about 6◦. The (rel-
ative) energy threshold Emax in the transition test was set
to 8 kcal/mol (see the energy scale on the right-hand side
of the Ramachandran map). The Boltzmann constant being
1.987 · 10−3 kcal/mol/K, by setting the initial temperature
to 70 K, we imposed the probability of accepting an energy
increment of 0.1 kcal/mol to be around 50% at the beginning
of the exploration.

Transition Paths

The Multi-T-RRT was used to compute transition paths be-
tween the local energy minima of the alanine dipeptide. To
get an idea of the likelihood of the produced transition paths,
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Figure 3: Projection on the (φ, ψ) space of the alanine dipep-
tide of the transition paths produced by 100 runs of the
Multi-T-RRT, with Trate = 0.01.



the Multi-T-RRT was run 100 times. After each run, i.e.
when the six trees rooted at the different minima were all
merged into a single tree, a path was extracted from that tree
for each pair of minima and projected on the (φ, ψ) space.
Fig. 2 and Fig. 3 were obtained by aggregating the results
of these 100 runs of the Multi-T-RRT with Trate = 0.1 and
Trate = 0.01 respectively. The first outcome of these tests is
that the multi-T-RRT is extremely fast: Fig. 2 was produced
in about 1 min (i.e. less than 1 s for each run), and Fig. 3 was
produced in about 8 min (i.e. about 5 s for each run).

As already mentioned, when Trate = 0.1, the Multi-T-
RRT covers the conformational space more quickly than
when Trate = 0.01. But, in the latter case, it produces
lower-energy transition paths. In fact, the regions contain-
ing the transition paths in Fig. 3 are narrower and fit better
within the lower-energy areas of the landscape, in compari-
son to Fig. 2. Moreover, when Trate = 0.1, some transition
paths between αL and Cax

7 go through the saddle point S1,
whereas, when Trate = 0.01, all transition paths between
αL and Cax

7 go through the saddle point S2 whose energy

Figure 4: Locations and conformations of the four main
saddle-points of the alanine dipeptide.

Table 2: Relative energy and (φ, ψ) coordinates of the
saddle-points of the alanine dipeptide.

S1 S2 S3 S4

φ (◦) 66 65 -2 -1
ψ (◦) -15 131 92 -88
E (kcal/mol) 5.87 5.85 5.21 5.03

is lower (see Table 2). As a general remark, we observe that
none of the transition paths goes through the energetic bar-
rier corresponding to φ ∈ [100◦, 150◦]. Finally, only few
transition paths go through the medium-energy area corre-
sponding to φ ∈ [−150◦,−50◦] and ψ ∈ [0◦, 50◦].

Saddle Points

We have also used the Multi-T-RRT to find the main transi-
tion states (i.e. the saddle points) of the alanine dipeptide.
For that, we have run the Multi-T-RRT 1000 times (500
times with Trate = 0.1 and 500 times with Trate = 0.01).
After each run, we have extracted from the produced tree
the transition paths between αL and Cax

7 , between αL and
PII , and between αR and Cax

7 ; we have also computed the
maximal energy observed along each of these paths. Then,
for each class of transition path, we have extracted the con-
formation having the lowest energy maximum, across the
1000 runs. Following this procedure, we have isolated the
four saddle points shown in Fig. 4. Their energy and (φ, ψ)
coordinates are presented in Table 2.

Conclusion

We have addressed the problem of computing transition
paths between stables states of a molecule by exploring its
energy landscape. We have based our work on the use of the
T-RRT algorithm, which originates from the robotics field,
but which has been already used to sample the conforma-
tional space of a molecule. In this paper, we have proposed
a multi-tree extension of T-RRT: the Multi-T-RRT. Instead
of exploring the conformational space by growing a sin-
gle tree, the Multi-T-RRT constructs several trees rooted at
different interesting conformations. We have evaluated this
algorithm on the alanine dipeptide, by computing transi-
tion paths between local minima of its energy landscape, as
well as their associated saddle-points. The main benefit of
the Multi-T-RRT is to quickly provide some interesting in-
formation about the regions through which these transition
paths might go. Indeed, a single run of the Multi-T-RRT can
terminate within seconds, and it takes only a few minutes to
run it several times and aggregate the results.

This work is only a preliminary step in the direction of
what we plan to achieve. As future work, we aim to develop
a version of the Multi-T-RRT that could produce in a single
run some transition paths that could have a relevant inter-
pretation, which is not the case now (because we have to
aggregate the results produced by several runs before inter-
preting them). For that, instead of building a tree obtained by
growing and merging several trees over the conformational
space, we would have to build a graph potentially contain-



ing cycles. This would allow the Multi-T-RRT to produce
more interesting transition paths through the energy land-
scape. Then, we could evaluate the algorithm on other, more
complex, systems, and compare our results to those obtained
with other methods.
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