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Abstract

We present an axiomatic model of preferences over menus that is motivated by

three assumptions. First, the decision maker is uncertain ex ante (i.e. at the time

of choosing a menu) about her ex post (i.e. at the time of choosing an option within

her chosen menu) preferences over options, and she anticipates that this subjective

uncertainty will not resolve before the ex post stage. Second, she is averse to ex

post indecisiveness (i.e. to having to choose between options that she cannot rank

with certainty). Third, when evaluating a menu she discards options that are dom-

inated (i.e. inferior to another option whatever her ex post preferences may be) and

restricts attention to the undominated ones. Under these assumptions, the decision

maker has a preference for commitment in the sense of preferring menus with fewer

undominated alternatives. We derive a representation in which the decision maker’s

uncertainty about her ex post preferences is captured by means of a subjective state

space, which in turn determines which options are undominated in a given menu,

and in which the decision maker fears, whenever indecisive, to choose an option that

will turn out to be the worst (undominated) one according to the realization of her

ex post preferences.
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1 Introduction

Consider a two-stage decision situation. In the first stage, the decision maker has to choose

a menu (or opportunity set). In the second stage, she has to choose an option from this

menu. We refer to these two stages as the ex ante and ex post stage, respectively. We

assume that the decision maker is uncertain ex ante about her ex post preferences over

options. Standard models in the literature on opportunity sets use this assumption in

order to motivate a desire for flexibility (Kreps, 1979; Nehring, 1999; Dekel, Lipman,

and Rustichini, 2001; Dekel, Lipman, Rustichini, and Sarver, 2007a; Ozdenoren, 2002;

Epstein, Marinacci, and Seo, 2007). According to these models, larger menus can never

be worse than smaller ones when a decision maker expects to learn her ex post preferences

before actually having to choose an option. In contrast to these approaches, we consider

a decision maker who anticipates that her uncertainty about her ex post preferences will

only resolve after she will have chosen an option. Such a decision maker will find herself at

the ex post stage, at least for some menus, in a situation of indecisiveness, i.e. of having

to choose an option without being certain which option she prefers. We assume that

the decision maker is averse to such situations of indecisiveness and, therefore, prefers

smaller menus to larger ones, to the extent that smaller menus enable her to avoid these

situations.

As an illustrative example, consider Bethy, who is a manager of a small division in

a large company. She is faced with the problem of assigning the execution of a project

to one of the employees. Right now she can only choose among the employees in her

division, whom she knows well and has previously observed in similar projects. She is

rather certain that Alan would be the best person to entrust with the project. However,

just before Bethy can make the decision, the CEO of the company contacts her and

suggests that she now has the possibility to pick an employee not just from her own

division, but from the entire company staff. Bethy has only limited knowledge of the

staff outside her division. In particular, she knows that Bob and Chris are well suited

to execute the project, but she finds these two candidates hard to compare: e.g., Bob

would be excellent on the financial side of the project, but Chris would do better than

Bob when it comes to marketing. Bethy knows that these two dimensions are important

for the success of the project, but the current situation makes it difficult to foresee which

one will be the most important. She is faced with a hard choice: she has to make an

important decision (for the company, for her career and that of the person who will be in

charge of the project), and take full responsibility for this decision in front of the CEO,

without being able to confidently go for either one of the possible options. In fact, she

would have much preferred sticking to her division, which would have avoided her this

situation of indecisiveness altogether. Thus she would be willing to forego candidates that

are potentially better than Alan (in fact, she may even be sure that, e.g., Chris is superior
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to Alan in all regards) in order to avoid the pain of having to choose in a situation of

indecisiveness.1.

A menu, in this example, is a set of employees from which Bethy has to choose whom to

assign the execution of the project. For simplicity, let us assume that Alan (A), Bob (B),

and Chris (C) are the only available employees in the company, so menus are nonempty

subsets of {A,B,C}. Bethy has preferences over these menus. That she prefers picking

an employee from her division only rather than from the whole company means that she

prefers the singleton menu {A} (she has to choose Alan) to the grand menu {A,B,C}
(she can choose Alan, Bob, or Chris).

This preference pattern can be captured by means of the following representation.

Suppose Bethy envisions two possible scenarios: the most important dimension of the

project may be either finance (f) or marketing (m). In each scenario s = f,m, she is able

to come up with a numerical evaluation us : {A,B,C} → R of all employees. Namely,

these evaluations are given by the following table:

A B C

f 5 8 6

m 5 3 7

Thus, the set U = {uf , um} is a subjective state space capturing Bethy’s ex ante uncer-

tainty about her ex post preferences over candidates. Note that Alan is clearly “domi-

nated” by Chris, no matter what subjective state eventually realizes. Hence, even though

Bethy does not expect to know which dimension of the project turns out to be the most

important one before she has to choose an employee, she knows ex ante that Alan is by

no means the optimal employee within the grand menu. Bob and Chris, on the other

hand, cannot be ranked in this manner, as which one is more valuable depends on which

subjective states realizes. Hence she anticipates ex ante that the grand menu will leave

her in a situation of indecisiveness between Bob and Chris. In general, when evaluating

a menu, Bethy first discards all dominated employees and restricts attention to undomi-

nated ones. Thus within the grand menu {A,B,C} she restricts attention to the submenu

{B,C} (and within the singleton menu {A} she trivially restricts attention to {A} itself).

Moreover, being indecisiveness averse, Bethy imagines that no matter which subjective

state realizes, she will always end up choosing the worst possible (undominated) employee.

This yields the following, subjective state-contingent evaluation of menus:

{A} {A,B,C}
f 5 6

m 5 3

1In this sense, the decision maker who conforms to our theory prefers to avoid taking responsibility
for her decisions. This interpretation was suggested to us by Klaus Nehring.
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Finally, Bethy obtains an ex ante numerical evaluation of a menu by aggregating the two

subjective state-contingent evaluations through some increasing function from R2 to R.

If, for example, she simply sums up the two evaluations, then the singleton menu {A} is

more valuable than the grand menu {A,B,C} (10 > 9).

In this paper, we take as primitive a preference relation over menus of lotteries and

axiomatize the representation described above. Our model extends previous work by

Guerdjikova and Zimper (2008), who model the trade-off between a desire for commit-

ment arising from the presence of incomparable options and a desire for flexibility arising

from the possibility that nature may eliminate some options between the ex ante and

ex post stages. The extension is only partial since we focus on their desire for flexibility

motive, thus ignoring their desire for flexibility motive. On the other hand, we axioma-

tize a full-fledged representation of preferences over menus whereas their main result only

axiomatizes a characterization of the preference maximizing menu. Moreover, we work

with a larger class of menus than they do.

Our representation exhibits a preference for commitment, once one restricts attention

to undominated options. In other words, the decision maker always prefers a menu with

a smaller set of undominated options. It is noteworthy that our representation does

not identify which option will eventually be chosen by the decision maker (not even

contingently on the subjective state since, in fact, the decision maker does not know the

subjective state at the time of choosing an option). Thus our notion of indecisiveness

aversion arises from the fact of having to choose without knowing one’s own preferences

rather than from the outcome of this choice. In this regard, our model differs from

models of temptation (Gul and Pesendorfer, 2001; Dekel, Lipman, and Rustichini, 2009),

regret (Sarver, 2008), costly contemplation (Ergin and Sarver, 2010), or thinking aversion

(Ortoleva, 2010).

The paper is organized as follows. Section 2 presents the general setup (menus and

preferences). Section 3 introduces and discusses a concept that is central to our analysis:

a dominance relation over options (which is usual in the literature on preference for

flexibility but has a slightly different interpretation in our model). Section 4 defines our

representation concept and highlights some special cases. In Section 5 our axioms are

stated and discussed. Section 6 contains our representation theorem and a proof sketch.

Section 7 concludes. The Appendix contains the proof of the representation theorem and

auxiliary lemmas.

2 Setup

Let Z be a finite set of prizes and let ∆(Z) = {β ∈ RZ
+|
∑

z∈Z β(z) = 1} denote the

set of all probability distributions (lotteries) over Z which stand for the options of our

approach. As usual we may identify a prize z ∈ Z with the lottery in ∆(Z) assigning
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probability 1 to this prize. Given β, β′ ∈ ∆(Z) and λ ∈ [0, 1], we define the λ-mixture of

β and β′ as usual, i.e. as the lottery λβ + (1− λ)β′ ∈ ∆(Z) attaching to each prize z ∈ Z
the probability λβ(z) + (1− λ)β′(z). A non-empty subset x of ∆(Z) is interpreted as an

opportunity set or menu, i.e. as the commitment to choose some lottery β ∈ x at a given

later date. We refer to the choice of a menu as the ex ante stage and to the (implicit)

choice of a lottery within the chosen menu as the ex post stage. We endow the set of

lotteries with the Euclidean metric and the set of menus with the Hausdorff metric (see

e.g. Schneider, 1993).

We restrict attention to menus that are polytopes, i.e. convex hulls of (non-empty) finite

sets of lotteries. We can view these menus as determined by a finite set of linear constraints

or, equivalently, we can think of the decision maker as considering finite menus but being

able to randomize between options. This restriction is necessary for our representation

theorem to hold (see Appendix). Let X denote the set of all such menus. We consider a

decision maker endowed with a weak preference relation % over X, capturing her ex ante

ranking of menus. From % we define the strict preference relation � and the indifference

relation ∼ as usual, i.e. for all x, x′ ∈ X, x � x′ if and only if x % x′ but not x′ % x, and

x ∼ x′ if and only if both x % x′ and x′ % x. % is said to be complete if for all x, x′ ∈ X,

either x % x′ or x′ % x, and transitive if for all x, x′, x′′ ∈ X, x % x′ % x′′ implies x % x′′

(we will in fact assume below that % is both complete and transitive).

In Bethy’s illustrative example, the set of prizes is the set Z = {A,B,C} of employees,

the set of options is the set ∆(Z) of lotteries over employees (any such lottery correspond-

ing to Bethy picking an employee randomly), and the set of menus is the set X of convex

hulls of finite sets of lotteries over employees. Thus X contains in particular the singleton

menu {A} (Bethy has to choose from her own division, i.e. pick Alan for sure) and the

grand menu conv({A,B,C}) (Bethy can choose from the whole company, i.e. pick Alan,

Bob, or Chris, or randomize between them with any probabilities she wishes), where

conv(·) denotes convex hull. That she strictly prefers choosing from her own division

rather than the whole company means that her preference relation % on X is such that

{A} � conv({A,B,C}).

3 The Dominance Relation

We first derive from % a dominance relation %∗ over lotteries as follows: for all β, β′ ∈
∆(Z),

β %∗ β′ ⇔ {β} ∼ conv({β, β′}).

From %∗ we define the relations �∗ and ∼∗ as above. Moreover, since %∗ can (and, in

general, will) be incomplete, we denote by ./∗ its noncomparability relation, i.e. for all

x, x′ ∈ X, x ./∗ x′ if and only if neither x %∗ x′ nor x′ %∗ x. We interpret the relation
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β %∗ β′ as meaning that the decision maker decisively weakly prefers β to β′, i.e. is certain

ex ante that she will weakly prefer β to β′ ex post. That is to say, even if she is uncertain

ex ante about her ex post preferences, all ex post preferences she deems possible are such

that β is weakly preferred to β′. We now explain why this is naturally characterized by

the singleton menu {β} being indifferent (according to the primitive preference relation)

to the larger (and, hence, more flexible) menu conv({β, β′}).
First, assume the decision maker decisively weakly prefers β to β′ (i.e. β %∗ β′).

Then adding β′ to the singleton menu {β} should neither improve nor worsen this menu

(the convex hull is just to have a menu in X). In fact, in this case we should also have

conv({β, β′}) % {β′}, a property that will follow from our axioms (see Lemma 2 in the

Appendix). Conversely, suppose that the decision maker does not decisively weakly prefer

β to β′. This may be the case for two reasons:

• First, she may decisively strictly prefer β′ to β (i.e. β′ �∗ β). In this case,

adding β′ to the singleton menu {β} should improve this menu, so we should have

conv({β, β′}) � {β} (as well as {β′} ∼ conv({β, β′}), see Lemma 2 in the Ap-

pendix).

• Second, she may be indecisive between β and β′ (i.e. β ./∗ β′). In this case, under

our assumption that she is averse to such indecisiveness, we should have {β} �
conv({β, β′}) and {β′} � conv({β, β′}) (see Lemma 2 in the Appendix).

In both cases, we do not have {β} ∼ conv({β, β′}), justifying the above definition. In

Bethy’s example, that Alan is dominated by Chris means that C �∗ A, and this should be

reflected in the ex ante ranking of menus by the fact that {C} ∼ conv({A,C}) � {A} (i.e.

Bethy is indifferent between being forced to pick Chris and having to choose/randomize

between Alan and Chris, and strictly prefers both of these two menus to being forced

to pick Alan). The fact that Bob and Chris are not dominated by each other means

that B ./∗ C, and this should be reflected by the fact that {B} � conv({B,C}) and

{C} � conv({B,C}) (i.e. Bethy strictly prefers being forced to pick Bob, as well as being

forced to pick Chris, to having to choose/randomize between Bob and Chris).

Note that our dominance relation is very similar to Kreps (1979)’s “domination” re-

lation, and also has a similar interpretation. The only difference is that in the absence of

decisive preference/dominance, the decision maker prefers larger menus in Kreps (1979)’

model whereas she prefers smaller menus in our model. Of course, this just reflects the

fact that Kreps (1979) assumes the decision maker expects to learn her ex post preferences

before choosing a lottery whereas we assume she does not. Dekel, Lipman, and Rustichini

(2001), who neither assume that the decision maker prefers larger menus nor smaller ones

in the most general model they consider, also use a similar definition and interpretation

in their comparative notion of subjective uncertainty.
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From %∗ we define the set c(x) of undominated (i.e. not strictly dominated) lotteries

in a menu x ∈ X by

c(x) = {β ∈ x|@β′ ∈ x, β′ �∗ β}.

Under our assumption that the decision maker discards all dominated lotteries and re-

stricts attention to undominated ones, she should be indifferent between choosing a lot-

tery in x or in c(x) (see Lemma 2 in the Appendix). Thus in Bethy’s example, since

B ./∗ C �∗ A, we have c(conv({A,B,C})) = conv({B,C}) and, if Bethy restricts atten-

tion to undominated options, we should then have conv({A,B,C}) ∼ conv({B,C}).

4 Representation

We look for a representation of % as follows:

Definition. An indecisiveness averse representation of % is a couple (U, g), where

U ⊆ RZ is nonempty, closed, convex, and such that for all β, β′ ∈ ∆(Z),

β %∗ β′ ⇔ [∀u ∈ U,Eu(β) ≥ Eu(β′)], (1)

and g : RU → R is continuous, weakly increasing on U(X) = {(minβ∈xEu(β))u∈U |x ∈ X},
and such that for all x, x′ ∈ X,

x % x′ ⇔ g

((
min
β∈c(x)

Eu(β)

)
u∈U

)
≥ g

((
min

β′∈c(x′)
Eu(β′)

)
u∈U

)
. (2)

The interpretation of the representation is as follows. The decision maker envisions a

set of possible ex post preferences. Each of these is an expected-utility preference repre-

sented by a von Neumann-Morgenstern utility function u ∈ U , so U can be interpreted as

a (subjective) state space. From Equation (1), a lottery β weakly dominates a lottery β′

if and only if β has weakly higher expected utility than β′ regardless of the ex post utility

function (E(·) denotes mathematical expectation). Equation (1) also implies that the set

c(x) of undominated lotteries in a menu x can be computed from U as:

c(x) = {β ∈ x|@β′ ∈ x,EU(β′) > EU(β)},

where EU(β′) > EU(β) means Eu(β′) ≥ Eu(β) for all u ∈ U , with strict inequality for

some u ∈ U . The set c(x) can be shown to be nonempty and compact (see Lemma 1 in the

Appendix). From Equation (2), the evaluation of a menu x is fully determined by the set

c(x), reflecting our assumption that the decision maker restricts attention to undominated

lotteries. More precisely, for each ex post utility function, the decision maker evaluates a

menu x by the lowest possible expected utility an undominated lottery in x can give her.

This reflects our assumption of aversion to indecisiveness. Finally, the different possible
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ex post utility functions are aggregated through the increasing function g. In Bethy’s

example, the subjective state space is U = conv({uf , um}), where uf , um ∈ RZ are the

utility functions defined in the introduction, and the aggregator is g((ru)u∈U) = ruf +rum .

Note that the set U of ex post utility functions plays a double role in the representation.

First, it determines the mapping x → c(x), i.e. the set of undominated options for each

menu x. The larger U , the larger c(x) for a given x. Second, it determines the mapping

c(x) → (minβ∈c(x)Eu(β))u∈U . The larger c(x), the lower minβ∈c(x)Eu(β) for each u ∈ U
and, hence, the lower the ex ante utility of x since g is increasing. In the extreme case

where the decision maker is not indecisive between any two lotteries (i.e. %∗ is complete),

U can be taken to be a singleton, so the second role disappears and we have

x % x′ ⇔ max
β∈x

Eu(β) ≥ max
β′∈x′

Eu(β′).

Thus, we are brought back to standard indirect utility for which menus are simply ranked

according to their optimal options. In the opposite extreme case where the decision

maker is indecisive between any two (distinct) lotteries (i.e. %∗ is maximally incomplete),

U encompasses all possible expected-utility preferences and c(x) = x for all x ∈ X, so we

have

x % x′ ⇔ g

((
min
β∈x

Eu(β)

)
u∈U

)
≥ g

((
min
β′∈x′

Eu(β′)

)
u∈U

)
.

Now, let V = −U and define h : RV → R by h(z) = g(−z) for all z ∈ RV . Then h is

weakly decreasing and we have

x % x′ ⇔ h

((
max
β∈x

Ev(β)

)
v∈V

)
≥ h

((
max
β′∈x′

Ev(β′)

)
v∈V

)
.

This is basically Dekel, Lipman, and Rustichini (2001)’s “ordinal EU representation” with

negative rather than positive monotonicity.

5 Axioms

In order to characterize the representation defined above, we now introduce several axioms.

In order to avoid cumbersome expressions, we make use of the dominance relation %∗ and

the set c(x) of undominated lotteries in a menu x in the statement of the axioms, but

one should keep in mind that all these objects are derived from the primitive preference

relation % on X.

Axiom 1 (Weak order). % is complete and transitive.

This is a standard axiom, necessary for any utility representation.

Axiom 2 (Dominance transitivity). %∗ is transitive.
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Axiom 3 (Dominance independence). For all β, β′, β′′ ∈ ∆(Z) and λ ∈ (0, 1), if β %∗ β′,

then λβ + (1− λ)β′′ %∗ λβ′ + (1− λ)β′′.

Axiom 4 (Dominance continuity). For all β, β′, β′′, β′′′ ∈ ∆(Z), the set {λ ∈ [0, 1]|λβ +

(1− λ)β′ %∗ λβ′′ + (1− λ)β′′′} is closed.

These three axioms together mean that the dominance relation %∗ is a (possibly

incomplete) expected-utility preference relation. In particular, Axioms 2 and 3 seem to

be natural consistency properties, given our interpretation of the dominance relation as

reflecting the decision maker’s certain judgments about her ex post preferences. Note that

transitivity of %∗ neither implies nor is implied by transitivity of %, which is imposed

in Axiom 1. Independence of %∗, on the other hand, is weaker than independence of

%, which is not imposed (for a detailed discussion of independence for preferences over

menus, see Dekel, Lipman, and Rustichini, 2001).

Axiom 5 (Indecisiveness aversion). For all x, x′ ∈ X, if for all β ∈ c(x), there exists

β′ ∈ c(x′) such that β %∗ β′, then x % x′.

This is our key axiom, stating that if every lottery that is undominated in x weakly

dominates some lottery that is undominated in x′, then x is weakly preferred to x′.

To understand its logic, suppose every lottery β ∈ c(x) weakly dominates some lottery

β′ ∈ c(x′), and let y′ denote the set of all such β′’s, i.e. all lotteries in c(x′) that are

weakly dominated by some lottery in c(x). Since y′ can basically be obtained from c(x)

by weakly worsening (in the sense of the dominance relation) all lotteries in c(x), it seems

natural for the decision maker to weakly prefer c(x) to y′. Now, c(x′) may also contain

lotteries that do not belong to y′, i.e. that are not weakly dominated by any lottery in

c(x). Such a lottery β̂′ ∈ c(x′) \ y′ cannot, however, weakly dominate any lottery β′ ∈ y′

(indeed, if β̂′ ∼∗ β′ then β̂′ ∈ y′, and if β̂′ �∗ β′ then β′ /∈ c(x′), a contradiction in

both cases), so it is necessarily noncomparable to all lotteries in y′. Thus, such lotteries

only create indecisiveness, so the decision maker must prefer y′ to c(x′) if she is averse

to indecisiveness. Moreover, if the decision maker restricts attention to undominated

lotteries, then she must be indifferent between x and c(x), as well as between x′ and c(x′).

By transitivity, then, x must be weakly preferred to x′. Lemma 2 in the Appendix gives

formal insights into this axiom.

Axiom 6 (Undominated continuity). For all x, x′, (xn)n≥1, (x
′
n)n≥1 ∈ X such that c(xn)→

c(x) and c(x′n)→ c(x′), if xn % x′n for all n ≥ 1, then x % x′.

This is a continuity axiom that is distinct from Axiom 4. Since the decision maker

restricts attention to undominated lotteries, the notion of continuity that is relevant to

our representation involves converging sequences of sets of undominated lotteries rather

than menus (note that we may have c(xn)→ c(x) without xn → x and vice versa).
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6 Representation Theorem

We obtain the following result:

Theorem. There exists an indecisiveness averse representation of % if and only if %

satisfies Axioms 1 to 6.

The proof appears in the Appendix, here we only provide a brief sketch for the suf-

ficiency part. First, by Axioms 1 to 4, the dominance relation %∗ is a (possibly incom-

plete) expected-utility preference relation. Hence, by Dubra, Maccheroni, and Ok (2004)’s

Multi-Expected Utility Theorem, there exists a non-empty, closed, convex set U ⊆ RZ

satisfying Equation 1. This is the subjective state space. Moreover, using Axiom 5, it can

be shown that x ∼ conv(c(x)) for all x ∈ X (see Lemmas 1 and 2 in the Appendix), i.e.

the decision maker restricts attention to undominated lotteries. It is therefore sufficient

to establish the representation on the set K ⊆ X of menus that are of the form conv(c(x))

for some x ∈ X. On this set, % is complete, transitive (Axiom 1), and continuous (Axiom

6) and, hence, can be represented by a continuous utility function v : K → R. Using

Axiom 5 again, it can then be shown, by means of arguments from convex analysis, that

for all x, x′ ∈ K, if minβ∈xEu(β) ≥ minβ′∈x′ Eu(β′) for all u ∈ U then x % x′. Con-

sequently, one can define a continuous and increasing aggregator g : RU → R such that

v(x) = g((minβ∈xEu(β))u∈U) for all x ∈ K, which establishes Equation 2 and completes

the proof of the sufficiency part.

7 Conclusion

We have introduced and axiomatized a representation of preferences over menus captur-

ing the notion of indecisiveness aversion. In our representation, the decision maker’s ex

ante uncertainty about her ex post preferences is captured by means of a subjective state

space. Since this uncertainty does not resolve before the choice of option, it gives rise

to indecisiveness at the ex post stage. More specifically, the decision maker discards op-

tions that are clearly dominated, and evaluates the remaining set of undominated options

pessimistically, as if she would end up with the worst possible undominated option, no

matter which subjective state realizes. This gives rise to a preference for commitment, in

the sense of preferring menus with fewer undominated options.

Our representation is ordinal in the sense that our aggregator is only required to be

weakly increasing and continuous. A natural refinement of the present model would be

to look for a more specific representation in which the aggregator has a linear form. That

is to say, one could look for a positive measure µ on U such that, for all x, x′ ∈ X,

x % x′ ⇔
∫
u∈U

(
min
β∈c(x)

Eu(β)

)
dµ (u) ≥

∫
u∈U

(
min

β′∈c(x′)
Eu(β′)

)
dµ (u) .
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One thing to note about this representation is that it is not truly linear. This is because

it is not true that c(λx + (1 − λ)x′) = λc(x) + (1 − λ)c(x′) in general. In fact, it is only

true that c(λx+ (1−λ)x′) ⊆ λc(x) + (1−λ)c(x′) but the converse does not hold because,

roughly speaking, by mixing between two menus one can get rid of some undominated

options. Therefore, this representation does not imply the independence axiom, but

only the following, weaker axiom: For all x1, x2, x̄, y1, y2 ∈ X and λ ∈ (0, 1) such that

conv(c(yi)) = conv(λc(xi) + (1− λ)c(x̄)), i = 1, 2, if x1 % x2 then y1 % y2. This makes it

tempting to try to work on the class {conv(c(x))|x ∈ X} and parallel the proof of Dekel,

Lipman, and Rustichini (2001); Dekel, Lipman, Rustichini, and Sarver (2007a)’s additive

representation theorem. However, since this class is not convex, a similar argument to

theirs (in particular for Lemma S11 in Dekel, Lipman, Rustichini, and Sarver, 2007b) is

not at hand in our model. We leave the problem of axiomatizing a linear representation

of indecisiveness averse preferences open for future research.

Appendix

Lemma 1. Assume there exists U ⊆ RZ such that %∗ satisfies Equation (1). Then for

all x ∈ X, conv(c(x)) ∈ X.

Proof. First, c(x) is nonempty since x is compact (Eliaz and Ok, 2006, Lemma 3). Since

a polytope has only finitely many faces and each of these faces is closed, it is sufficient

to show that c(x) is a union of faces of x. Let β ∈ c(x). We know that β belongs to

the relative interior of some face f of x (Rockafellar, 1970, Theorem 18.2). It is sufficient

to show that f ⊆ c(x). Suppose there exists β′ ∈ f such that β′ /∈ c(x). Then, clearly,

β′ 6= β. Moreover, by Equation 1 and the definition of c(x), there exists β̄′ ∈ x such

that U · (β̄′ − β′) > 0, where · denotes scalar product and U · (β̄′ − β′) > 0 means

u · (β̄′ − β′) ≥ 0 for all u ∈ U with strict inequality for at least some u ∈ U . Now,

since β belongs to the relative interior of f , there exists β′′ ∈ f and λ ∈ (0, 1) such that

β = λβ′ + (1 − λ)β′′ (Rockafellar, 1970, Theorem 6.4). Let β̄ = λβ̄′ + (1 − λ)β′′. Then

U · (β̄ − β) = λU · (β̄′ − β′) > 0, so β /∈ c(x), a contradiction.

Lemma 2. Assume % satisfies Axioms 1 to 5. Then:

1. For all β, β′, β′′ ∈ ∆(Z) and λ ∈ (0, 1), β %∗ β′ if and only if λβ + (1 − λ)β′′ %∗

λβ′ + (1− λ)β′′.

2. For all x, x′ ∈ X, if c(x) ⊆ c(x′), then x % x′.

3. For all x ∈ X, conv(c(x)) ∈ X.

4. For all x ∈ X, x ∼ conv(c(x)).
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5. For all β, β′ ∈ ∆(Z),

β ∼∗ β′ ⇔ {β} ∼ conv({β, β′}) ∼ {β′},

β �∗ β′ ⇔ {β} ∼ conv({β, β′}) � {β′},

β ./∗ β′ ⇔ [{β} � conv({β, β′}) and {β′} � conv({β, β′})].

Proof. 1. Follows from Axioms 1 to 4 (Dubra, Maccheroni, and Ok, 2004, Lemma 1).

2. Follows immediately from Axiom 5.

3. By Axioms 1 to 4, there exists a nonempty, closed, convex set U ⊆ RZ such that %∗

satisfies (1) (Dubra, Maccheroni, and Ok, 2004). Hence the result follows from Lemma 1.

4. By parts 2 and 3 of this lemma, it is sufficient to prove that c(conv(c(x))) = c(x).

First, we show that for all β ∈ x, there exists β′ ∈ c(x) such that β′ %∗ β. Let y = {β̄ ∈
x|β̄ %∗ β}. Since x is compact and %∗ is continuous (Dubra, Maccheroni, and Ok, 2004,

Proposition 1), y is compact and, hence, there exists β′ ∈ y such that β̄ �∗ β′ for no

β̄ ∈ y (Eliaz and Ok, 2006, Lemma 3). Suppose β̄ �∗ β′ for some β̄ ∈ x\ y. Since β′ %∗ β

by definition of y, it follows that β̄ �∗ β by transitivity of %∗, so β̄ ∈ y, a contradiction.

Hence β′ ∈ c(x).

Now, by definition, c(x) = {β ∈ x|@β′ ∈ x, β′ �∗ β} and c(conv(c(x))) = {β ∈
conv(c(x))|@β′ ∈ conv(c(x)), β′ �∗ β}. Let y′ = {β ∈ conv(c(x))|@β′ ∈ x, β′ �∗ β}.
Then y′ = c(x) ∩ conv(c(x)) = c(x). We show that c(conv(c(x))) = y′. Clearly, y′ ⊆
c(conv(c(x))) since conv(c(x)) ⊆ x. Conversely, let β ∈ conv(c(x)) \ y′. Then there exists

β′ ∈ x such that β′ �∗ β. By the argument above, there then exists β′′ ∈ c(x) such that

β′′ %∗ β′ and, hence, β′′ �∗ β, so β /∈ c(conv(c(x))). Hence c(conv(c(x))) ⊆ y′.

5. The indifference property follows immediately from the definition of %∗. Now, for

all β, β′ ∈ ∆(Z), we obviously have c({β}) = {β} and c({β′}) = {β′}. Moreover, by part

1 of this lemma,

c(conv({β, β′})) =


{β} if β �∗ β′,

{β′} if β′ �∗ β,

conv({β, β′})) if β ∼∗ β′ or β ./∗ β′.

We now show that β %∗ β′ implies conv({β, β′}) % {β′}. Suppose β %∗ β′ and

{β′} � conv({β, β′}). Then {β} ∼ conv({β, β′}) by definition of %∗ and, hence, {β′} �
{β} by transitivity of %. But since c({β}) = {β}, c({β′}) = {β′}, and β %∗ β′, we

have {β} % {β′} by Axiom 5, a contradiction. This establishes the strict preference

property as well as the⇐ part of the noncomparability property. For the⇒ part, assume

β ./∗ β′. Then c({β}) ⊆ c(conv({β, β′})) and c({β′}) ⊆ c(conv({β, β′})), so we have

{β} % conv({β, β′}) and {β′} % conv({β, β′}) by part 2 of this lemma. Suppose these

two preferences are in fact indifferences. Then β ∼∗ β′, a contradiction. Hence one of
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the two must be strict. Suppose the other one is an indifference. Then we face the same

contradiction as above. Hence both preferences are strict.

Proof of the Representation Theorem. Obviously, Axiom 1 is necessary for a

representation to exist. Given this axiom, we know that %∗ is reflexive and, hence,

Axioms 2 to 4 are necessary and sufficient for the existence of a nonempty, closed, convex

set U ⊆ RZ such that %∗ satisfies Equation (1) (Dubra, Maccheroni, and Ok, 2004). It

remains to prove that Axioms 5 and 6 are necessary and sufficient for the existence of a

continuous and weakly increasing aggregator g : U(X)→ R such that % satisfies Equation

(2). It is easy to check that these axioms are necessary. The remainder of this proof is

devoted to the sufficiency part.

Assume % satisfies Axioms 1 to 6. Let K = {conv(c(x))|x ∈ X}. Clearly, for all

x ∈ X and u ∈ U , we have minβ∈c(x)Eu(β) = minβ∈conv(c(x))Eu(β). Hence, by parts 3

and 4 of Lemma 2, it is sufficient to find a continuous and weakly increasing aggregator

g such that, for all x, x′ ∈ K,

x % x′ ⇔ g

((
min
β∈x

Eu(β)

)
u∈U

)
≥ g

((
min
β′∈x′

Eu(β′)

)
u∈U

)
.

Since K is a subset of a separable metric space (Klein and Thompson, 1984), Axioms 1 and

6 imply the existence of a continuous utility function v : K → R such that, for all x, x′ ∈
K, x % x′ if and only if v(x) ≥ v(x′) (Debreu, 1954). We now claim that for all x, x′ ∈ K,

if minβ∈xEu(β) ≥ minβ′∈x′ Eu(β′) for all u ∈ U , then x % x′. If the claim is correct,

then we can define the aggregator g : U(K) = U(X) → R by, for all (ru)u∈U ∈ U(K),

g((ru)u∈U) = v(x) for any x ∈ K such that (minβ∈xEu(β))u∈U = (ru)u∈U . Moreover, it is

clear that g is then weakly increasing, so the proof is complete.

To prove the claim, let x ∈ K and define the sets

y = {γ ∈ RZ |∀u ∈ U, u · γ ≥ min
β∈x

u · β},

y′ = {γ ∈ RZ |∃β ∈ x, U · γ ≥ U · β}.

By Equation (1) and Axiom 5, it is sufficient to show that y′ = y. Define the set k =

{γ ∈ RZ |U · γ ≥ 0}. Then k is a closed convex cone and, more precisely, is the polar of

the cone generated by −U . Clearly, y′ = x+ k. Since x is a polytope and k is closed and

convex, y′ is closed and convex (Rockafellar, 1970, Theorem 20.3) and, hence, is equal to

the intersection of all closed half-spaces containing it (Rockafellar, 1970, Theorem 11.5).

For all u ∈ RZ , define the set hu = {γ ∈ RZ |u · γ ≥ infγ′∈y′ u · γ′}. Clearly, we have

y′ =
⋂
{hu|u ∈ RZ} =

⋂
{hu|u ∈ V }, where V = {u ∈ RZ | infγ′∈y′ u · γ′ > −∞}. By

definition, −V is the barrier cone of y′ and, hence, is the polar of the recession cone of

y′ (Rockafellar, 1970, Corollary 14.2.1). But since x is a polytope, the recession cone of
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y′ is the recession cone of k and, since k is a cone, the recession cone of k is k. Thus

−V is the polar of k and, hence is the cone generated by −U . Since U is convex, this

latter cone is
⋃
{λU |λ ≥ 0} and, since hu = hλu for all λ > 0 by definition, we have

y′ =
⋂
{hu|u ∈ U}. Finally, since k is a cone and x is a polytope, infγ′∈y′ u · γ′ > −∞

implies infγ′∈y′ u · γ′ = minγ′∈x u · γ′, so the latter equality implies y′ = y.
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