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Abstract—Performing aerial 6-dimensional manipulation using
flying robots is a challenging problem, to which only little
work has been devoted. This paper proposes a motion planning
approach for the reliable 6-dimensional quasi-static manipulation
with an aerial towed-cable system. The novelty of this approach
lies in the use of a cost-based motion-planning algorithm together
with some results deriving from the static analysis of cable-
driven manipulators. Based on the so-called wrench-feasibility
constraints applied to the cable tensions, as well as thrust
constraints applied to the flying robots, we formally characterize
the set of feasible configurations of the system. Besides, the
expression of these constraints leads to a criterion to evaluate
the quality of a configuration. This allows us to define a cost
function over the configuration space, which we exploit to
compute good-quality paths using the T-RRT algorithm. As
part of our approach, we also propose an aerial towed-cable
system that we name the FlyCrane. It consists of a platform
attached to three flying robots using six fixed-length cables. We
validate the proposed approach on two simulated 6-D quasi-static
manipulation problems involving such a system, and show the
benefit of taking the cost function into account for such motion
planning tasks.

I. INTRODUCTION

Aerial towed-cable systems have been used for decades,

mainly as crane devices. They have proved to be very useful

in various contexts, such as supply delivery missions and

rescue operations [3], as well as environmental monitoring and

surveillance [18]. One such system has even been successful

as a safe soft-landing device for a rover on the martian

surface [17], for instance. In all these examples, the systems

only required a certain position accuracy, for example to

execute simple trajectories [15, 13]. Little work has been done

on trying to govern a load in both position and orientation. To

the best of our knowledge, the only existing technique for 6-

dimensional manipulation with an aerial towed-cable system

requires a given discrete set of load poses [12, 7]. Such a

technique relies on solving the inverse kinematics problem

and determining the static equilibrium for all given poses.

Requiring a given set of platform poses may be too restrictive,

though, especially in constrained workspaces, because it may

provide no result, while there may exist solutions for other

intermediate poses.

This paper presents a new reliable motion planning ap-

proach for 6-dimensional quasi-static manipulation with aerial

Fig. 1. Octahedral version of the FlyCrane system.

towed-cable systems. The method only requires a start and

goal configurations as input, and provides a feasible path to

achieve the manipulation task. In addition to being feasible,

the generated manipulation path will be of good quality,

meaning that all intermediate configurations fulfill adequate

physical properties related to the forces applied to the system

and to the cable tensions. This quality will be measured by

a formal criterion derived from the static analysis of the

system, based on a similar formulation as that used for cable-

driven manipulators [6, 4]. A path-planing algorithm taking

this quality measure into account [9] will then be applied to

compute good-quality paths.

In addition to the methodology, this paper presents an aerial

towed-cable system to perform 6-D manipulation tasks, that

we call the FlyCrane. This system consists of a moving

platform attached to three flying robots by means of six

fixed-length cables linked by pairs to each robot. The 6-D

manipulation of the platform can be performed by varying the

relative positions of the flying robots. An octahedral version

of this system is illustrated in Figure 1.

The rest of the paper is organized as follows: Section II

provides an overview of our contribution, whose elements

are detailed in Sections III and IV. Section V presents an

evaluation of our approach on two 6-D manipulation problems

involving the octahedral version of the FlyCrane system.



II. OVERVIEW OF THE CONTRIBUTION

Towed-cable systems present important analogies with

cable-driven manipulators, which enable us to perform their

static analysis in a way similar to that presented in [4].

However, while cable-driven manipulators have to adjust the

lengths of their cables to reach a precise pose of the platform,

towed-cable systems have fixed-length cables and are actuated

by displacing their anchor points. Manipulating the six degrees

of freedom of a load requires a minimum of seven cables,

unless some convenient forces reduce this number. In crane

configurations, for instance, gravity acts as an implicit cable,

and therefore six cables suffice for the full 6-D manipulation.

Examples of such structures are the NIST Robocrane [1] or

more general cable-driven hexapods [4].

In the proposed aerial towed-cable system, called the Fly-

Crane, the platform is also pulled by six cables, which, as

illustrated in Fig. 2, are pairwise attached to three flying

robots (instead of attaching them individually to six flying

robots). It is worth noting that three is the minimal number of

flying robots required to properly operate this system, as less

robots would not allow the manipulation of the six degrees

of freedom of the platform. Whenever the cable base points

are also coupled (B1 = B2, B3 = B4, B5 = B6), we call it

octahedral FlyCrane, because the structure can be seen as an

octahedron, comprising the following 8 triangles: the platform

base points, the triangle formed by the flying robots, and the

6 triangles made of pairs of adjacent cables. Section III-A

formalizes the notations describing the FlyCrane.

In this paper we assume that motions are performed quasi-

statically, thus neglecting the dynamic analysis of the sys-

tem. Although it may appear as a strong simplification, this

assumption is frequently made in fine-positioning situations,

where slow motion is imperative. Nevertheless, dealing with

dynamical aspects can be an interesting extension for future

work, as will be discussed in Section VI.

Even with six cables, the six degrees of freedom of the

platform can be governed only in a subset of the configuration

space of the system. Indeed, the pose of the platform is locally

determined only when all cables are in tension. Therefore, it

is important to prevent the cables from being slack or too

tight. Besides, the flying robots must be able to counteract the

forces exerted on them. These two conditions determine the

feasibility of a configuration of the system. More precisely,

to be feasible, a configuration must satisfy the following two

types of constraints, that will be formalized in Section III-B:

• Wrench-feasibility constraints: they guarantee that the

system is able to statically counteract a set of wrenches

applied on the platform while ensuring that the cable ten-

sions always lie within a pre-defined, positive acceptance

range; they are derived from the static analysis of cable-

driven manipulators [6, 4].

• Thrust constraints: they guarantee that the thrust of the

flying robots can equilibrate the forces applied on them,

namely the forces exerted by the cables and the force of

gravity.
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Fig. 2. Geometric structure of a generic FlyCrane system.

An infinite number of feasible solution paths may exist

for a given manipulation query on such a system. A way to

discriminate the less appropriate ones, is to define a criterion

assessing their quality. A good-quality path should be a path

whose intermediate configurations are attributed a low cost

with respect to the physical properties of the system. A

meaningful way to evaluate the cost of a configuration of the

system is to derive it from the previous feasibility constraints,

as will be explained in Section IV-A.

Any general path planner, such as the Rapidly-exploring

Random Tree (RRT) algorithm [11], could be applied to

compute collision-free paths satisfying the previous feasibility

constraints to perform 6-D manipulation taks with the Fly-

Crane system. However, it might not produce good-quality

paths. Since we will define a cost function over the config-

uration space, we can use a cost-based path planner, such

as the Transition-based RRT (T-RRT) [9], in order to obtain

good-quality manipulation paths. T-RRT has been successfully

applied to various types of problems in robotics [9, 2] and

structural biology [10]. But, it is worth noting that, to the best

of our knowledge, this is the first time it is applied to aerial

manipulation problems.

III. SYSTEM DESCRIPTION AND CONSTRAINTS

This section presents the FlyCrane system. First, we intro-

duce some notations and provide a description of the system.

Then, we formulate the constraints ensuring the feasibility

along the motion paths.

A. Description of the system

The FlyCrane system consists of a platform attached to six

cables of fixed lengths li. Each cable is attached to the platform

and to a flying robot at points Bi and Ai, respectively. Each

flying robot is tied to two cables so that A1 = A6, A2 = A3

and A4 = A5, as can be seen in Fig. 2.

Let OXY Z and PX ′Y ′Z ′ be the fixed and the moving

reference frames attached to the ground and to the platform,
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Fig. 3. αij measures the angle between the plane of the platform and the
plane of cables i and j attached to the same flying robot.

respectively. Any configuration of the system can be uniquely

represented by q = (p,R,α) ∈ C = SE(3)×T
3, where p =

[x, y, z]T is the position vector of a point P on the platform

expressed in the fixed frame, R is a 3 × 3 rotation matrix

providing the orientation of PX ′Y ′Z ′ relative to OXY Z, and

α = [α16, α23, α45]
T, where each αij is the dihedral angle

between the plane formed by cables i and j and the plane

of the platform (see Fig. 3). The entries of R can be defined

in a variety of ways. Due to its advantageous properties [5],

here we use the parameterization provided by tilt-and-torsion

angles, τ = {φ, θ, σ}, for which

R = Rz(φ)Ry(θ)Rz(σ − φ). (1)

Let Ai and Bi be the points where the ith cable is attached

to the flying robot and to the platform respectively (Fig. 2). We

denote by ai and a′
i the position vectors of point Ai expressed

in OXY Z and in PX ′Y ′Z ′, respectively. Similarly, bi and

b′i will denote the position vectors of point Bi expressed in

OXY Z and in PX ′Y ′Z ′, respectively. Then, the coordinates

of points Ai can be expressed as

ai = p+Ra′
i, (2)

where a′
i = b′i + li Rb′

ij

(αij)Rn(βi)
b′

ij

‖b′

ij‖
, with b′ij being

the vector Bj − Bi expressed in PX ′Y ′Z ′, n being the unit

vector normal to the platform, and βi being the angle of cable

i with respect to vector b′ij .

Finally, we have to consider that some external forces f , as

gravity for instance, are applied on the load of the platform.

Any of these forces and its associated torque constitute what

is called a wrench, ŵ = [fT, (f × p)T]T. We denote by

ŵ0 the resultant applied wrench, which can be subject to

some uncertainties due to perturbations introduced by external

agents. We model such perturbations as a six-dimensional

ellipsoid W centered in ŵ0, defined as

(ŵ − ŵ0)
TE (ŵ − ŵ0) ≤ 1,

where E is a constant 6×6 positive-definite symmetric matrix,

and where ŵ and ŵ0 are assumed to be given in a frame

PXY Z centered in P and parallel to OXY Z, although any

other frame could be assumed if desired. In practice, the

ellipsoid W can be constructed by propagating known bounds

on other variables related to ŵ, using the tools from ellipsoidal

calculus [14], for example.

B. Feasibility conditions

The configurations of the FlyCrane system that are quasi-

statically reachable have to satisfy some feasibility conditions,

which are of two types. On the one hand, the system must

be able to statically counteract the forces applied on the

platform with positive and acceptable cable tensions. Such

condition imposes the so-called wrench-feasibility constraints

on the configurations, which are acquired from cable-driven

manipulators [6, 4]. On the other hand, the forces applied on

each flying robot cannot exceed the thrust that it is able to

exert. Let us formally describe both types of conditions:

The wrench-feasibility requirement on a configuration

q ∈ C implies that for each wrench ŵ ∈ W there must be

a vector

f = [f1, . . . , f6]
T ∈ D = (f1, f1)× . . .× (f6, f6)

of cable tensions satisfying

J(q) · f = ŵ,

where J(q) is the 6 × 6 screw Jacobian of the towed-cable

system at q given in the same frame as ŵ, and (fi, fi) is

the range of cable tensions that can be resisted by the ith
cable, with fi > 0. Let f0 be the vector of cable tensions

corresponding to a given ŵ0 ∈ W , i.e.,

J(q) · f0 = ŵ0. (3)

By noting that J(q)(f −f0) = ŵ− ŵ0, it is easy to see that,

for a given q, the set F(q) of cable tensions f corresponding

to all ŵ ∈ W is the ellipsoid given by

(f − f0)
TK (f − f0) ≤ 1,

where K = J(q)TE J(q). This ellipsoid will be bounded in

all directions or unbounded in some, depending on whether

det(J(q)) 6= 0 or not. However, it is not difficult to see

that J(q) is non-singular over the wrench-feasible configu-

rations [4], so that F(q) will always be a bounded ellipsoid

in our case. Now, for q to be wrench-feasible, we must have

F(q) ⊆ D, which can be checked as follows. For each

i = 1, . . . , 6 let vi ∈ R
6 be a vector satisfying

vT

i K vi = 1

Kivi = 0

}

, (4)

where Ki stands for the matrix K with its ith row removed.

Observe that if J(q) is non-singular, then K and Ki are

full row rank, and if the ith component of vi, vi,i, is chosen

positive, then there is exactly one vector vi satisfying Eq. (4).

Using Lagrange multipliers, it can be shown that, for the

solutions vi of Eq. (4) with vi,i ≥ 0, f0−vi and f0+vi are

the vectors in F(q) attaining the smallest and largest value



along the ith coordinate. Thus, for any configuration q, the

tensions associated to the ith cable will take values between

ti(q) = f0,i − vi,i and ti(q) = f0,i + vi,i. Hence, when

det(J(q)) 6= 0, we have that F(q) ⊆ D if, and only if, for

i = 1, . . . , 6
ti(q) > fi, (5)

and

ti(q) < fi. (6)

Then, the configurations satisfying the conditions of

Eqs. (1)-(6) are able to equilibrate any external wrench in W
applied on the platform ensuring that the cables will not be

too tight nor slack, i.e. are wrench-feasible.

As we said above, the thrust conditions also need to be

satisfied. Clearly, each flying robot is subject to the forces

applied by the attached cables i and j and its weight vector

gij , whose resultant should not exceed in norm the maximum

thrust hij > 0 that the robot is able to exert. Now, if

ui =
bi−ai

‖bi−ai‖
is the unit vector associated to the ith cable,

then, in order to compensate the applied forces, each robot

must satisfy

max{‖gij + (f0,i + λi)ui + (f0,j + λj)uj‖} < hij , (7)

where (λi, λj) ∈ [−vi,i, vi,i]× [−vj,j , vj,j ].
All the previous conditions define the feasible configurations

that the aerial towed-cable system can reach, satisfying both

the wrench-feasibility and thrust constraints.

IV. PATH PLANNING STRATEGY

The current aim of the FlyCrane system is the 6-D quasi-

static manipulation of a load. The resolution of such a manip-

ulation problem can be seen as a path-planning query with the

additional feasibility constraints given in Section III-B. In fact,

the required manipulation motion should also avoid solutions

that may approach the violation of such constraints. With this

in mind, we will define a quality measure on the configurations

q of the system, given as a function c : C → R+, or cost

function.

Given two feasible configurations qinit and qgoal, classical

sampling-based path planners, such as the Rapidly-exploring

Random Tree (RRT) algorithm [11], aim at finding a collision-

free, feasible path between them, but are not able to consider a

continuous cost function defined over the configuration space.

Therefore, we cannot expect to obtain good-quality results

with RRT. Instead, we will base our path-planning strategy

on a variant of RRT, called the Transition-based RRT (T-

RRT) algorithm [9], that takes this cost into account during

the configuration-space exploration and that tends to produce

a good-quality path, i.e. a path following low-cost regions of

the configuration space.

A. Quality measure

Let us first define the criteria that will characterize good-

quality configurations, and the function to measure such qual-

ity. The quality measure should evaluate whether a feasible

configuration is close to, or far from, non-feasible ones.

Therefore, a meaningful way to measure this quality relies

on the fulfillment of the feasibility constraints provided in

Section III, for which we will combine the conditions given

in Eqs. (5)-(7).

Given a configuration q, we define the cost of q, c(q), as

1
∏

ij (mij(q)− hij)
∏

k

(

tk(q)− fk
) (

fk − tk(q)
) , (8)

where mij(q) is the maximum value of the left term of Eq. (7)

associated to q. It is clear that c(q) > 0 on any feasible

configuration q. But whenever some cable tensions approach

their limits or whenever the forces applied on some robot

approach the thrust of the robot, then c(q) tends to infinity.

Actually, c(q) takes higher values when q gets closer to violate

any of the conditions of Eqs. (5)-(7), which is the kind of

quality measure that we are looking for. Indeed, we will say

that qa is of better quality than qb if c(qa) < c(qb).
Appendix A shows that c(q) is a continuous differentiable

function over the set of feasible configurations, which is a

crucial property for the T-RRT planner to perform properly,

because no abrupt cost changes are expected to occur. It

is important to add that while the path is computed in

C = SE(3)×T
3, it will have to be translated to the space R

9

of quadrotor coordinates to be executed. Since the wrench-

feasibility constraints are fulfilled all along the path, the

Jacobian J(q) of the system will never be singular on it,

guaranteeing that the path in R
9 will correspond to a unique

smooth path in C. In other words, despite the system being

actuated by moving the quadrotors, its stiffness will never be

lost, because non-smoothnesses or path bifurcations will never

be encountered.

Note finally that the lower-cost regions of C are very

favorable to perform manipulation tasks, not only because they

correspond to feasible regions, but also because they maintain

a security margin from the configurations where constraint

violations occur (either the loss of tension, or the breakage

of a cable, or a thrust insufficiency). Finding a path with low

cost values will thus be beneficial to properly maneuver of the

FlyCrane system.

B. Transition-based RRT

The principle of RRT is to iteratively construct a tree that

tends to rapidly expand on the configuration space, thanks

to the implicit enforcement of a Voronoi bias [11]. At each

iteration of the tree construction, a configuration qrand is

randomly sampled in C, and an expansion toward qrand is

attempted, starting from its nearest neighbor in the tree, qnear,

which potentially leads to the addition of a new configuration

qnew to the tree. T-RRT extends RRT by integrating a stochas-

tic transition test enabling it to steer the exploration toward

low-cost regions of the space. This transition test is based

on the Metropolis criterion typically used in Monte Carlo

optimization methods [16]. These techniques aim at finding

global minima in complex spaces and involve randomness as

a means to avoid being trapped in local minima. Similarly,

T-RRT uses a transition test to accept or reject a candidate



Algorithm 1: Transition-based RRT

input : the configuration space C
the cost function c : C → R+

the root configuration qinit

the goal configuration qgoal

output: the tree T
1 T ← initTree(qinit)
2 while not stopCondition(T , qgoal) do

3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(T , qrand)
5 if refinementControl(T , qnear , qrand) then
6 qnew ← extend(qnear , qrand)
7 if qnew 6= null
8 and transitionTest(T , c(qnear), c(qnew)) then
9 addNewNodeAndEdge(T , qnear , qnew)

state, based on the cost variation associated with the local

motion from the previous state to this state. The pseudo-

code of T-RRT (shown in Algorithm 1) is similar to that of

RRT [11], with the addition of the transitionTest and

refinementControl functions.

The transitionTest presented in Algorithm 2 is used

to evaluate the transition between the configurations qnear and

qnew based on their respective costs. Three cases are possible:

1) A new configuration whose cost is higher than the threshold

value cmax is automatically rejected. 2) A transition corre-

sponding to a downhill move (cj ≤ ci) is always accepted. 3)

Uphill transitions are accepted or rejected based on the proba-

bility exp(−(cj−ci) / T ), which decreases exponentially with

the cost variation cj−ci, similarly to the Metropolis criterion.

In that case, the level of difficulty of the transition test is

controlled by the adaptive parameter T , called temperature

here only by analogy to statistical physics. Low temperatures

limit the expansion to gentle slopes, and high temperatures

enable to climb steep slopes. The temperature is dynamically

tuned during the search process, which allows T-RRT to

automatically balance its bias toward low-cost regions with the

Voronoi bias of RRT. After each accepted uphill transition, T
is decreased to avoid over-exploring high-cost regions: More

precisely, T is divided by 2(cj−ci) / (0.1 · costRange(T )), where

costRange(T ) is the cost difference between the highest-

cost configuration and the lowest-cost configuration present in

the tree T . After each rejected uphill transition, T is increased

to facilitate exploration and to avoid being trapped in a local

minimum: More precisely, T is multiplied by 2Trate , where

Trate ∈ ]0, 1] is the temperature increase rate. In the rest of the

paper, we use Trate = 0.1 and we initialize T to 10−6. A value

can be provided for cmax only when prior knowledge of the

planning problem is available and some regions of the space

are forbidden. Note that, in the space where configurations

whose cost is greater than cmax are considered as part of the

obstacle regions, T-RRT is probabilistically complete [9].

The adaptive temperature tuning of T-RRT ensures a given

success rate for uphill transitions, which can also con-

tribute to refining the exploration of low-cost regions already

Algorithm 2: transitionTest (T , ci, cj)

input : the cost threshold cmax

the current temperature T
the temperature increase rate Trate

output: true if the transition is accepted, and false otherwise
1 if cj > cmax then return False
2 if cj ≤ ci then return True
3 if exp(−(cj − ci) / T ) > 0.5 then

4 T ← T / 2(cj−ci) / (0.1 · costRange(T ))

5 return True

6 else

7 T ← T · 2Trate

8 return False

Algorithm 3: refinementControl (T , qnear, qrand)

input : the extension step-size δ
the refinement ratio ρ

output: true if refinement is not too high, and false otherwise
1 if distance(qnear, qrand) < δ
2 and nbRefinementNodes(T ) > ρ · nbNodes(T ) then
3 return False

4 return True

reached by the tree, as a side effect. The objective of the

refinementControl function (shown in Algorithm 3) is

to limit this refinement and facilitate the tree expansion toward

unexplored regions. The idea is to reject an expansion that

would lead to more refinement if the ratio of current refinement

nodes with respect to the total number of nodes in the tree

is greater than a certain value ρ, a refinement node being

defined as a node whose distance to its parent is less than the

extension step-size δ. Another benefit of the refinement control

is to limit the number of nodes in the tree and thus to reduce

the computational cost of the neighbor search. Following the

suggestion in [9], we set ρ to 0.1.

V. TEST CASES

In this section, we evaluate the proposed approach on

two 6-D quasi-static manipulation problems involving the

FlyCrane system (cf. Fig. 1). The first example is a complex

task (inspired by classical motion planning benchmarks) in

which the FlyCrane has to get a 3-D puzzle piece through a

hole, as illustrated by Fig. 4. The second example, presented

in Fig. 5, simulates a more realistic situation in which the

FlyCrane has to install a lightweight footbridge between two

buildings to evacuate people during a rescue operation. These

examples differ in terms of difficulty: the Rescue problem is

the easiest one because it requires only a translation and two

rotations about a single axis of the FlyCrane for a solution

to be found; the Puzzle problem requires to simultaneously

perform a translation and four rotations about two axes of

the FlyCrane. In both problems, the octahedral FlyCrane

with an equilateral platform is considered. In our simulation

environment, the cables are 2 m long, and the platform sides

are 1.4 m long.



Fig. 4. The Puzzle problem: the FlyCrane has to get a 3D puzzle piece through a hole.

Fig. 5. The Rescue problem: the FlyCrane has to install a lightweight footbridge between two buildings for a rescue operation.

TABLE I
EVALUATION OF RRT AND T-RRT ON THE Puzzle AND Rescue PROBLEMS. AVERAGE VALUES OVER 100 RUNS ARE GIVEN FOR: THE AVERAGE COST

avgC , THE MAXIMAL COST maxC , THE MECHANICAL WORK MW , THE INTEGRAL OF THE COST IC , THE RUNNING TIME t (IN SECONDS), THE

NUMBER OF NODES N IN THE TREE, AND THE NUMBER OF EXPANSION ATTEMPTS X .

Puzzle Rescue

avgC maxC MW IC t (s) N X avgC maxC MW IC t (s) N X

RRT 1130 11,684 11,651 300,793 34 2654 15,609 102 575 554 80,750 126 1361 193,517
T-RRT 78 229 193 30,352 169 4698 78,501 36 42 11 24,588 54 379 207,778

On both examples, we evaluate the performance of the RRT

and T-RRT algorithms on the basis of their running time t
(in seconds), the number of attempted expansions X , and the

number of nodes N in the produced tree. To avoid generating

trivially-non-feasible paths, RRT only accepts feasible (i.e.

collision-free and satisfying the aforementioned feasibility

constraints) configurations. After performing a smoothing op-

eration (based on the random shortcut method [8]) on the paths

generated by RRT and T-RRT, we evaluate the path quality by

computing the average cost avgC, the maximal cost maxC,

the mechanical work MW , and the integral of the cost IC.

The mechanical work of a path is the sum of the positive cost

variations along the path [9]. For all variables, we give values

averaged over 100 runs, as reported in Table I.

Unsurprisingly, Table I shows that T-RRT provides better-

quality paths than RRT on both examples: on the Puzzle prob-

lem, all cost statistics are more than one order of magnitude

lower for paths generated by T-RRT; on the Rescue problem,

they are between three and 50 times lower. Since it generally

requires more expansion attempts to find configurations with

acceptable cost, T-RRT is often slower than RRT, as is the case

on the Puzzle problem (169 s vs 34 s). However, it is worth

noting that T-RRT runs faster than RRT on the Rescue problem

(54 s vs 126 s), thanks to the lower number of nodes added

to the tree (379 vs 1361), which makes the nearest-neighbor

search faster.

We were interested in finding out what made path quality

differ between RRT and T-RRT. For that, we computed the

tensions exerted on each cable and the forces exerted on

each quadrotor, along the paths produced by RRT and T-

RRT, after dividing every path into 100 steps corresponding to

intermediate configurations of the system. Then, for each path-

step, we computed the minimal and maximal tensions (over

all cables) and forces (over all quadrotors) over the 100 paths

produced by RRT and over the 100 paths produced by T-RRT.

Therefore, for each step, we obtained the tension ranges and

the force ranges yielded by RRT and T-RRT. Fig. 6 presents

the profiles of the tension range and of the force range,

respectively, on the Rescue problem. Similar plots have been

obtained on the Puzzle problem. We can see that using T-RRT

leads to smaller tension and force ranges than using RRT. Most

importantly, we observe that RRT produces paths along which

a tension or a force can be dangerously close to a bound of its

validity interval. For example, Fig. 6.a shows that, along some

path, at least one tension comes close to zero, meaning that

at least one cable almost goes slack. Similarly, on the Puzzle



Fig. 6. Profiles of a) the tension range and b) the force range, observed over 100 paths produced by RRT and T-RRT on the Rescue problem. The filled
areas between the red curves represent the ranges for T-RRT; the areas between the green curves represent the ranges for RRT.

problem, one force comes close to the maximal thrust value.

As a conclusion, we argue that integrating the path-planning T-

RRT algorithm into the 6-D proposed manipulation approach

allows us to plan safer paths for the FlyCrane system.

VI. CONCLUSION

We have presented an approach for the 6-dimensional quasi-

static manipulation of a load with an aerial towed-cable

system. The main contribution of the approach lies in the

combination of results deriving from the static analysis of

cable-driven manipulators with the application of a cost-based

motion-planning algorithm to solve manipulation queries. The

link underlying this combination is the definition of a qual-

ity measure for the configurations of the system. First, this

quality measure is based on the wrench-feasibility constraints

applied to cable-driven manipulators and on additional thrust

constraints, and allows: 1) to discriminate non-feasible from

feasible configurations, and 2) to favor configurations that are

far from violating these constraints, by attributing them a low

cost. Second, this quality measure leads to the definition of

a cost function, thus allowing for the use of a cost-based

motion-planning algorithm, namely the Transition-based RRT

(T-RRT). As a result, rather than simply computing collision-

free paths, the proposed approach produces good-quality paths,

with respect to the constraints imposed on the system.

As part of our approach, we have additionally proposed

an aerial towed-cable system that we have named the Fly-

Crane. This system consists of a platform attached to three

flying robots by means of three pairs of fixed-length cables.

We have evaluated the approach, in simulation, on two 6-

D manipulation problems involving an octahedral version of

the FlyCrane system. The results of the evaluation show that

the proposed motion planning approach is suitable to solve

6-D quasi-static manipulation tasks. Furthermore, they have

confirmed that RRT, which is the original variant of T-RRT

that does not take the cost into account, may produce paths

that occasionally approach dangerous situations, while T-RRT

produces safer paths.

The proposed approach allows for extensions in several

ways. In particular, we expect to extend the method to consider

positioning errors for the flying robots, which could be due to

external force perturbations and to errors in the localization

methods. For this, similar techniques to those applied in this

paper could be used. Additionally, an interesing and challeng-

ing extension to this work is the introduction of dynamics in

the motion of the load and of the flying robots, as they play

an important role in the overall manipulation of the system.

In this paper, we have applied the proposed approach in

simulated environments. As part of our future work, we plan

to implement this approach in a real aerial towed-cable system.

This will serve as a testbed for the validation of the method

and its further extensions, providing relevant feedback on the

real limitations of the approach and the system. In real-life

situations, the proposed approach could be helpful in various

applications. As illustrated by the simulated Rescue problem,

one possible application is the construction of platforms for the

evacuation of people in rescue operations. Another application

could be the installation of platforms in uneven terrains for the

landing of manned or unmanned aircrafts. More generally, it

could be useful for the assembly of structures in places difficult

to access for humans.
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planning on configuration-space costmaps. IEEE Trans.

Robotics, 26(4):635–646, 2010.

[10] L. Jaillet, F.J. Corcho, J.J. Pérez, and J. Cortés. Ran-
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APPENDIX

Let us prove that the cost c(q), as defined in Sec. IV-A, is

a continuously differentiable function c : C → R+. Note that

c(q) can be equivalently determined as the solution c > 0 of

c
∏

ij

(mij(q)− hij)
∏

k

(tk(q)− fk)(fk − tk(q)) = 1. (9)

We can now define a system of polynomial equations formed

by Eqs. (1)-(4), and Eq. (9), which we write as

F (x) = 0, (10)

where x refers to an nx-vector encompassing all of its

variables, (q,R,ai,f0,vi, c). By the Implicit Function The-

orem, the solutions c of Eq. (10) will define a continuously

differentiable function c(q) if the differential matrix of F with

respect to all variables x except those of q, F {x−q}, is full

rank. Such matrix is of the form






























−I3

∗ −I3

∗ J(q)
2vT

1K

K1

∗
. . .

2vT

6K

K6

∗ d































,

where d =
∏

ij(mij(q)−hij)
∏

k(tk(q)−fk)(fk−tk(q)), the

empty blocks represent zero-matrices, and asterisks indicate

non-zero blocks. For being a lower triangular square matrix,

it is sufficient to prove that the diagonal blocks are all full

rank. Clearly, the 3× 3 identity matrices are full rank.

The screw Jacobian J(q) can be shown to be full rank over

the wrench-feasible configurations by contradiction. Indeed, if

J(qs) were rank deficient for some qs, then so would be K. In

such case, there would exist some i for which all vi ∈ ker(Ki)
would lie in ker(K), and thus, it would be vT

i Kvi = 0, which

contradicts Eq. (4), and hence J(q) cannot be rank deficient

over the feasible configurations.

The 6× 6 block matrices involving K and Ki can only be

rank deficient if vi,i = 0, which cannot be satisfied along the

feasible configurations, as we are about to prove. If vi,i = 0
for some i, then by replacing Kivi = 0 into vT

i Kvi = 1,

we obtain the dot product of two vectors: vT

i , with vi,i = 0,

and the vector Kvi, whose components are all zero except

that in position i. The result of this dot product is 0, which

contradicts Eq. (4), as it should be 1.

Finally, d is never zero, because of Eq. (9). Therefore, we

have shown the existence and the continuous differentiability

of function c. Additionally, as the previous matrix F {x−q} is

a full-rank sub-matrix of maximum dimension of the Jacobian

F {x}, we can also certify that the solution set of Eq. (10) is

a smooth manifold.
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