
HAL Id: hal-00872224
https://hal.science/hal-00872224

Submitted on 11 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing the Transition-based RRT to deal with
complex cost spaces

Didier Devaurs, Thierry Simeon, Juan Cortés

To cite this version:
Didier Devaurs, Thierry Simeon, Juan Cortés. Enhancing the Transition-based RRT to deal with
complex cost spaces. Proc. IEEE ICRA ’13, May 2013, Karlsruhe, Germany. pp. 4105-4110. �hal-
00872224�

https://hal.science/hal-00872224
https://hal.archives-ouvertes.fr


Enhancing the Transition-based RRT to Deal with Complex Cost Spaces

Didier Devaurs, Thierry Siméon and Juan Cortés

Abstract— The Transition-based RRT (T-RRT) algorithm en-
ables to solve motion planning problems involving configuration
spaces over which cost functions are defined, or cost spaces
for short. T-RRT has been successfully applied to diverse
problems in robotics and structural biology. In this paper, we
aim at enhancing T-RRT to solve ever more difficult problems
involving larger and more complex cost spaces. We compare
several variants of T-RRT by evaluating them on various motion
planning problems involving different types of cost functions
and different levels of geometrical complexity. First, we explain
why applying as such classical extensions of RRT to T-RRT is
not helpful, both in a mono-directional and in a bidirectional
context. Then, we propose an efficient Bidirectional T-RRT,
based on a bidirectional scheme tailored to cost spaces. Finally,
we illustrate the new possibilities offered by the Bidirectional

T-RRT on an industrial inspection problem.

I. INTRODUCTION

Sampling-based motion planning has traditionally aimed at

finding feasible paths, i.e. collision-free paths, to solve com-

plex planning problems in high-dimensional spaces, without

considering the quality of the produced paths. In many

application fields, however, it is important to compute good-

quality paths w.r.t. a given cost criterion. If a feasible solution

path is found quickly, it is possible to allocate additional

computation time to improve the solution. Nevertheless,

the smoothing methods classically used during such post-

processing phase only allow to locally improve the path. For

better results, the cost criterion must be taken into account

during the space exploration itself.

The first approaches dealing with sampling-based motion

planning on cost spaces were based on the Rapidly-exploring

Random Tree (RRT) algorithm [1]. Unfortunately, they were

all focused on specific applications in the area of 2D robot

navigation [2]–[7], and some of them were evaluated only on

configuration spaces involving very coarse-grained, discrete

cost functions [2]–[4]. More importantly, all these methods

suffer from different practical drawbacks [8]. For example,

some of them rely on the estimated cost-to-goal, which tends

to bias the search straight toward the goal at the expense

of better-quality paths [2]–[4]. Also, the threshold-based

method presented in [5], [6] suffers from the non-decreasing

nature of its threshold and from its high sensitivity to the

increase rate of the threshold [8].

Apart from grid-based methods, such as A*, the first

general approach to cost-space planning was the Transition-

based RRT (T-RRT) algorithm [8], that combines the ex-

All authors are with CNRS, LAAS, 7 avenue du colonel Roche, F-31400
Toulouse, France and Univ de Toulouse, LAAS, F-31400 Toulouse, France
(e-mails: devaurs@laas.fr, nic@laas.fr, jcortes@laas.fr)

This work has been partially supported by the European Community
under Contract ICT 287617 “ARCAS”.

Fig. 1. Path produced by the Bidirectional T-RRT for a quadrotor flying
in a dense industrial environment.

ploratory strength of RRT with a stochastic optimization

mechanism. T-RRT has been successfully applied to various

robot path-planning problems [8]–[11] (some even involving

human–robot interactions [9]) as well as structural biology

problems [11], [12]. When compared to previous meth-

ods [2], [5], T-RRT produced better-quality paths [8]. But, it

has been shown that RRT (and thus T-RRT) cannot converge

toward an optimal solution [13]. That is why a variant

of RRT offering asymptotic-optimality guarantees, namely

RRT*, was developed [13]. However, it has been observed

that RRT* may converge slowly in high-dimensional spaces,

and that T-RRT may provide a reasonably good solution

faster [11].

In this paper, we discuss extensions to T-RRT aimed at

improving its performance. We first present the details of

the T-RRT algorithm (Section II) and the motion planning

problems used in our evaluation (Section III). T-RRT being

based on the basic Extend RRT, one may think that the exten-

sions improving RRT are also beneficial to T-RRT. We show

that this is not the case for the Goal-biased and the Connect

variants (Section IV). Since the Bidirectional scheme pro-

posed for RRT in [1] does not improve performance either,

we propose a tailored and efficient Bidirectional T-RRT, and

then compare it to RRT* (Section V). Finally, we present

an industrial inspection problem that only the Bidirectional

T-RRT can solve efficiently (Section VI, Fig. 1).

II. TRANSITION-BASED RRT

T-RRT extends RRT by integrating a stochastic transition

test enabling it to bias the exploration toward low-cost

regions of the configuration space [8]. This transition test

is based on the Metropolis criterion typically used in Monte

Carlo optimization methods [14]. These techniques aim at

finding global minima in complex spaces and involve ran-

domness as a means to avoid being trapped in local minima.

Similarly to these methods, T-RRT uses a transition test to



Algorithm 1: Transition-based RRT

input : the configuration space C ; the cost function
c : C→ R+ ; the root qinit ; the goal qgoal

output: the tree T
1 T ← initTree(qinit)
2 while not stopCondition(T , qgoal) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(T , qrand)
5 if refinementControl(T , qnear , qrand) then
6 qnew ← extend(qnear , qrand)
7 if qnew 6= null
8 and transitionTest(T , c(qnear), c(qnew)) then
9 addNewNodeAndEdge(T , qnear , qnew)

Algorithm 2: transitionTest (T , ci, cj)

input : the cost threshold cmax ; the current temperature T ;
the temperature increase rate Trate

output: true if the transition is accepted, and false otherwise
1 if cj > cmax then return False
2 if cj ≤ ci then return True
3 if exp(−(cj − ci) / T ) > 0.5 then

4 T ← T / 2(cj−ci) / (0.1 · costRange(T )) ; return True

5 else

6 T ← T · 2Trate ; return False

accept or reject a candidate state, based on the cost variation

associated with the local motion. The pseudo-code of T-RRT

(shown in Algorithm 1) is similar to that of the basic Extend

RRT [1], with the addition of the transitionTest and

refinementControl functions.

The transitionTest presented in Algorithm 2 is an

improved version of the one proposed in [8]. It is used to

evaluate the transition from qnear to qnew based on their

respective costs. Three cases are possible: 1) A new config-

uration whose cost is higher than the threshold value cmax
1

is automatically rejected. 2) A transition corresponding to a

downhill move is always accepted. 3) Uphill transitions are

accepted or rejected based on a probability that decreases

exponentially with the cost variation cj − ci, similarly to

the Metropolis criterion. In that case, the level of difficulty

of the transition test is controlled by the adaptive parameter

T , called temperature only by analogy to statistical physics.

Low temperatures limit the expansion to gentle slopes, and

high temperatures enable to climb steep slopes. In T-RRT, the

temperature is dynamically tuned during the search process:

1) After each accepted uphill transition, T is decreased to

avoid over-exploring high-cost regions. 2) After each rejected

uphill transition, T is increased to facilitate exploration and

avoid being trapped in a local minimum.

The adaptive tuning of the temperature ensures a given

success rate for uphill transitions, but can also produce an

unwanted side-effect: T may be reduced by the acceptation

of new states close to states already contained in the tree,

whereas increasing T may be required to go over a local cost

1A value can be provided for cmax when high-cost regions of the space
have to be forbidden.

Algorithm 3: refinementControl (T , qnear, qrand)

input : the extension step-size δ ; the refinement ratio ρ
output: true if refinement is not too high, and false otherwise

1 if distance(qnear, qrand) < δ
2 and nbRefinementNodes(T ) > ρ · nbNodes(T ) then
3 return False

4 return True

barrier and explore new regions of the space. Accepting such

states only contributes to refining the exploration of low-cost

regions already reached by the tree. The objective of the

refinementControl function (shown in Algorithm 3) is

to limit this refinement and facilitate tree expansion toward

unexplored regions. The idea is to reject an expansion that

would lead to more refinement if the number of refinement

nodes already present in the tree is greater than a certain

ratio ρ of the total number of nodes, a refinement node being

defined as a node whose distance to its parent is less than

the extension step-size δ. Another benefit of the refinement

control is to limit the number of nodes in the tree, and thus to

reduce the computational cost of the nearest-neighbor search.

Following [8], we set ρ = 0.1.

Compared to the version presented in [8], the transition

test shown in Algorithm 2 includes three improvements.

(1) The first one appears at line 3. We have replaced the

boolean expression rand(0, 1) < exp(−(cj − ci) / T ) by

exp(−(cj − ci) / T ) > p with p = 0.5 to better control the

stochastic aspect of the Metropolis test. Using rand(0, 1)
instead of a fixed probability p has the following detri-

mental consequence: steep uphill moves can be accepted if

rand(0, 1) is close to 1, and gentle uphill moves can be

rejected if rand(0, 1) is close to 0. We have varied the

value of p and observed that this change has no impact

on the exploration, except if p is close to 1. In fact, the

adaptive nature of the temperature compensates any change

in p: if p is lowered, the temperature simply reaches higher

values. (2) The second improvement appears at line 6. It

consists of progressively increasing the temperature after

each rejection, instead of increasing it by performing a single

larger jump after a given number of consecutive rejections.

For that, after each rejected uphill transition, T is multiplied

by 2Trate , where Trate ∈ ]0, 1] is the temperature increase

rate. (3) The third improvement appears at line 4 and is

borrowed from [11]. It consists of providing an implicit

refinement control mechanism by making the temperature

decrease dependent on the cost variation associated with

an accepted uphill transition. For that, T is divided by

2(cj−ci) / (0.1 · costRange(T )), where costRange(T ) is the

cost difference between the highest-cost configuration and

the lowest-cost configuration of the tree. After evaluation, it

appears that all these modifications improve the performance

of T-RRT: running times are significantly reduced without

incurring any loss in path quality.

In the space where configurations whose cost is greater

than cmax are regarded as part of the obstacle regions, T-

RRT is probabilistically complete [8]. The adaptive tuning



Fig. 2. Search tree built by T-RRT on the Mountains problem. On
this 2D cost-space, the cost is the elevation.

Fig. 3. Path computed by T-RRT on the Stones problem. The cost is
the inverse of the distance between the 2-DoF disk and the obstacles.

Fig. 4. Trace of a path computed by T-RRT on the Manipulator

problem. A 6-DoF manipulator arm has to get a stick through a hole
while maximizing clearance (i.e. the distance to the obstacles).

Fig. 5. Path computed by T-RRT on the Inspection problem. The
6-DoF manipulator arm holds a sensor (the red sphere) that has to
follow the car engine as close as possible.

of the temperature allows T-RRT to automatically balance

its bias toward low-cost regions with the Voronoi bias of

RRT. The Trate parameter determines a trade-off between

low computation time and high quality of the produced paths:

A value not too small (e.g. 0.1) leads to a greedy search, and

a lower value (e.g. 0.01) enables to produce better-quality

paths. We will use only these two values for Trate. Also,

following [8], we initialize T to 10−6.

III. PLANNING PROBLEMS AND EVALUATION SETTINGS

We use four planning problems to evaluate the perfor-

mance of the T-RRT variants. The examples differ in terms of

geometrical complexity, configuration-space dimensionality

and cost-function type. The Mountains problem is the 2D

cost-space illustrated by Fig. 2, in which the cost is the

elevation. The Stones problem (presented in Fig. 3) is a

2-degrees-of-freedom (DoF) problem in which a disk goes

across a space cluttered with rectangular-shaped stones. The

objective being to maximize clearance, the cost function is

the inverse of the distance between the disk and the obstacles.

The Manipulator problem (illustrated in Fig. 4) involves a

6-DoF manipulator arm that has to get a stick through a hole

while maximizing clearance. Therefore, the cost function

is the inverse of the distance between the stick and the

obstacles. In the Inspection problem (shown in Fig. 5) the

same arm holds a sensor with a spherical extremity used to

inspect a car engine. The objective being to keep the sensor

as close as possible to the engine surface, the cost function

is the distance (in millimeters) between the sphere and the

engine. We set cmax = 100 for the Inspection problem (due

to the sensor’s range) and cmax = ∞ for the others.

All the algorithms are implemented within the motion

planning platform Move3D [15]. To fairly assess the benefit

of each T-RRT variant, no smoothing is performed on

the solution paths. On a given problem, we evaluate each

algorithm on the basis of the running time t (in seconds),

the number of expansion attempts X , the number of nodes

N in the produced tree, and various quality criteria applied

to the extracted path: the average cost avgC, the maximal

cost maxC, the mechanical work MW , and the integral of

the cost IC. The mechanical work of a path is the sum of the

positive cost variations along this path [8]. For all variables,

we give values averaged over 100 runs.

IV. MONO-DIRECTIONAL VARIANTS OF T-RRT

Compared to the Extend RRT, several classical RRT exten-

sions are known to improve performance [1]. For example,

the Goal-biased RRT may converge faster to the goal. Also,

with the Connect RRT, the search tree generally grows faster.

However, when it comes to T-RRT, improving performance

means not only reducing running time, but also increasing

path quality. Thus, one may wonder whether applying these

modifications of RRT to T-RRT is beneficial.

Goal-biased T-RRT: In the same way as it is done

for RRT, implementing the Goal-biased T-RRT consists of

modifying the sampleRandomConfiguration function

(line 3 in Algorithm 1) so that it returns qgoal with a prob-

ability goalBias. The results of the evaluation of the Goal-

biased T-RRT (with goalBias = 0.01 and 0.1) are shown

in Table I. Using the Goal-biased T-RRT reduces running

time on all examples. However, when goalBias = 0.01,

path quality improves on all problems if Trate = 0.1, but



TABLE I

EVALUATION, ON FOUR PROBLEMS, OF SEVERAL VARIANTS (V) OF T-RRT: (1) Extend T-RRT, (2) Goal-biased T-RRT WITH goalBias = 0.01,

(3) Goal-biased T-RRT WITH goalBias = 0.1, (4) Connect T-RRT, (5) Bidirectional T-RRT. ALL VALUES ARE AVERAGED OVER 100 RUNS.

Trate = 0.1 Trate = 0.01

V avgC maxC MW IC t (s) N X avgC maxC MW IC t (s) N X

Mountains

1 17.4 24.8 29.3 3,230 2.2 1660 6260 16.7 22.8 26.5 3,780 2.7 1150 16,400
2 17.4 24.6 28.6 3,150 0.4 778 2280 16.7 22.8 26.2 3,800 1.6 885 12,600
3 17.7 25.7 28.6 3,030 0.1 433 1400 16.7 22.7 25.2 3,630 1.3 812 11,900
4 16.4 23.2 31.2 3,780 0.4 633 2530 16.5 22.8 29.2 4,270 1.4 749 14,700
5 17.7 23.9 30.5 3,300 0.1 282 982 16.7 22.8 27.2 3,700 0.9 861 11,700

Stones

1 31.7 63.9 159 32,200 0.6 652 4080 29.5 58.1 117 28,900 5.2 711 36,000
2 31.7 63.6 152 31,200 0.5 594 3520 29.6 58.2 115 28,400 5 702 35,600
3 32.2 67.5 159 31,200 0.3 512 2910 29.8 58 111 27,600 4.7 683 34,900
4 31.5 61.4 130 33,300 0.3 399 3170 30.8 58.9 104 31,500 4.6 597 39,000
5 31.5 63.5 146 31,300 0.1 251 1790 28.6 57.2 107 28,200 1.6 548 23,400

Manipulator

1 6.3 8 8 10,200 2.1 776 7130 5.8 6.6 3.8 9,110 6.9 709 26,400
2 6.1 7.5 4.4 8,310 0.3 201 2060 5.8 6.6 2.5 7,590 0.8 119 6,820
3 6.2 7.6 3.3 7,420 0.1 92 921 5.8 6.7 2.3 7,190 0.6 89 5,640
4 5.9 7.9 8.2 11,600 1 492 3910 5.5 7.2 5.3 10,600 2.9 415 15,300
5 6 7.6 3.5 7,910 0.1 101 1170 5.7 6.7 2.3 7,710 0.8 112 7,410

Inspection

1 24.1 80.9 379 89,000 11.3 321 2720 1.7 10.9 88.9 6,260 78.4 288 23,600
2 21.5 72.6 356 77,800 10.7 293 2520 1.8 11 91.3 6,580 78.2 293 23,500
3 19.1 73.3 324 65,900 9.9 270 2340 1.6 9.9 87.4 5,870 77.5 274 23,300
4 12.3 49.9 236 45,000 9.8 146 2190 1.8 12.6 78.3 6,420 64 202 20,600
5 21.6 74.5 332 75,200 8.7 254 2530 1.6 7.5 87.2 5,750 69 304 25,200

not if Trate = 0.01. On the contrary, when goalBias = 0.1,

path quality globally improves if Trate = 0.01, but not if

Trate = 0.1, especially on 2-DoF problems. Therefore, the

Goal-biased T-RRT lacks robustness.

Connect T-RRT: Contrary to the Connect RRT, the

Connect T-RRT can be implemented in various ways, due

to the presence of the transition test. The simplest way

consists of iterating the extend and transitionTest

functions until qrand or an obstacle is reached (without

adding the intermediate states to the tree). When compared

to other variants (delaying temperature tuning, or limiting

uphill transitions), this implementation yields the best results,

which are reported in Table I. Using the Connect T-RRT

reduces running time, but does not always increase path

quality, especially if Trate = 0.01.

V. BIDIRECTIONAL T-RRT

The Bidirectional RRT is known to be more efficient than

the Extend RRT [1]. In its best implementation, computation

is divided between growing two trees (from qinit and qgoal
respectively) and trying to connect them. At each iteration,

an expansion is attempted from one tree toward a random

configuration and, if it succeeds, an expansion is attempted

from the other tree toward the new node, potentially leading

to the junction of both trees; then, the roles of the trees are

reversed by swapping them. We now explain why applying

this exact scheme to T-RRT does not improve its perfor-

mance, and we present an efficient implementation of the

Bidirectional T-RRT.

Tree Expansion: In the Bidirectional RRT, the attempt

to expand one tree toward a random configuration can be

done with an Extend or Connect function [1]. Which one

is the best depends on the problem at hand. We observe

that the same happens for the Bidirectional T-RRT: using

a Connect function leads to lower running times, except on

the Inspection problem. But, even when the Connect function

is computationally beneficial, this generally happens at the

expense of path quality. Therefore, it seems preferable to

expand the trees using the Extend function.

Tree Junction: In the Bidirectional RRT, the attempt to

link both trees can use an Extend or a Connect function [1].

1) Applying the Extend function lacks efficiency because

this requires the trees to come at a distance smaller than the

extension step-size, which may lead the two trees to explore

a wider space area than a single tree would do. This is indeed

what we observe with the Bidirectional T-RRT on very cost-

constrained problems, such as Inspection: the Bidirectional

T-RRT is then slower than its mono-directional counterpart.

2) Applying the Connect function is more efficient to reduce

running time, but this happens again at the expense of path

quality. Thus, the best junction strategy appears to be some

kind of Connect function that creates no node, and only tries

to add a linking edge. Also, this function should be applied

only if the trees are closer than a given threshold, not to waste

time checking potential edges that are unlikely to be valid. If

this threshold is too low, though, the tree junction becomes

difficult, as with the Extend function. A value of ten times

the extension step-size seems to achieve the right balance.

Finally, we have observed that accepting uphill transitions

was not beneficial: the tree junction should be attempted only

along flat or downhill slopes.

Bidirectional T-RRT: To sum up, the best implemen-

tation for a Bidirectional T-RRT is the one presented in

Algorithm 4. At each iteration, one tree is expanded toward a

random configuration (if the refinementControl allows

it). If a new node is created and passes the transition

test, a connection to its nearest neighbor in the other tree

is attempted, via the attemptLink function shown in

Algorithm 5. If both nodes are closer than ten times the

extension step-size, and if it is possible to connect them

following a downhill slope, both trees are merged.



Algorithm 4: Bidirectional T-RRT

input : the configuration space C ; the cost function
c : C→ R+ ; the root qinit ; the goal qgoal

output: the tree T
1 T1 ← initTree(qinit) ; T2 ← initTree(qgoal)
2 while not stopCondition(T1, T2) do
3 qrand ← sampleRandomConfiguration(C)

4 q1near ← findNearestNeighbor(T1, qrand)

5 if refinementControl(T1, q1near , qrand) then

6 qnew ← extend(q1near , qrand)
7 if qnew 6= null
8 and transitionTest(T1, c(q1near), c(qnew)) then

9 addNewNodeAndEdge(T1, q1near , qnew)

10 q2near ← findNearestNeighbor(T2, qnew)

11 T ← attemptLink(T1, qnew, T2, q2near)

12 swap(T1, T2)

Algorithm 5: attemptLink(T1, q1, T2, q2)

input : the extension step-size δ
output: the tree T

1 if distance(q1, q2) < 10 · δ then
2 qcur ← q1 ; qnext ← extend(q1, q2)
3 while qnext 6= null and c(qnext) ≤ c(qcur) do
4 qcur ← qnext ; qnext ← extend(qcur , q2)

5 if qcur = q2 then
6 T ← linkAndMerge(T1, q1, T2, q2)

Evaluation: Results obtained with the Bidirectional T-

RRT are reported in Table I. Compared to the Extend T-RRT,

it greatly reduces running time, up to an order of magnitude.

Moreover, it globally improves path quality: all cost measure-

ments are reduced, sometimes very significantly (e.g. on the

Inspection problem), apart from a few exceptions (mainly

on the Mountains problem) for which we observe a small

increase. Therefore, our Bidirectional scheme significantly

improves the performance of T-RRT.

Cost Profiles: The cost profiles of paths obtained on the

Manipulator problem reveal why the Bidirectional T-RRT

can improve path quality (cf. Fig. 6). When T-RRT starts a

descending phase after passing a saddle point, temperature is

high because of the previous ascension, making the transition

test less selective: uphill moves are accepted on the way

down. The produced path is then a succession of downhill

and uphill steps, leading to a jerky cost profile. On the

contrary, when T-RRT is on an ascending phase, it is hard

to go on: few uphill moves are accepted from a given node.

But, these moves enable to reach the saddle point and appear

in the extracted path. An ascending path is thus a rather

smooth succession of uphill moves, as can be seen in Fig. 6

for the first half of both cost profiles. Furthermore, with the

Bidirectional T-RRT, the second half is also an ascending

one, but performed by the second tree. Taken in reverse

direction, it appears as a smooth descent.

Tree Growth Bias: Besides its tree-linking role, the

junction procedure proposed in [1] introduces a bias in the

search process: at each iteration, one tree is potentially grown

5

7

0 1path	portion

c
o
s
t

Bidirectional	TǦRRT
Extend	TǦRRT

Fig. 6. Cost profiles of two paths produced on the Manipulator problem
by the Extend and Bidirectional T-RRT respectively. These paths are
representative in the sense that their associated cost measurements are close
to average values obtained over 100 runs. Cost profiles obtained with the
Goal-biased and Connect T-RRT are similar to that of the Extend T-RRT.

toward a new node from the other tree. While using the tree-

linking mechanism presented in Algorithm 5, we evaluated

the impact of this bias. For that, at each iteration, if a new

node was created in the tree Ta, and if the junction to Tb

failed, we attempted to grow Tb toward the new node in Ta

using the Extend function. After evaluation, this bias appears

to increase running time on some problems and to globally

decrease path quality.

Common Expansion Direction: We also evaluated a

variant of the Bidirectional T-RRT in which, at each iteration,

both trees are grown toward the same random configuration,

and up to two junctions are attempted depending on the

number of new nodes. This variant appears to be less

efficient than the one presented in Algorithm 4. Its running

time is slightly higher because of the greater number of

attempted junctions. More importantly, the quality of the

paths produced is globally reduced.

Balanced Trees and Local Temperature: Finally, we

evaluated two other versions of the Bidirectional T-RRT.

The first one, which has proven to be beneficial to RRT on

some problems, consists of ensuring that both trees remain

balanced (in terms of number of nodes). The second one is

specific to T-RRT and involves having a separate temperature

associated to each tree. After evaluation, it is unclear whether

these modifications are advantageous or not. They both

appear to have sometimes a positive impact and sometimes

a negative impact on performance.

Comparison with RRT*: We implemented RRT* so that

it minimized the mechanical work of a path, which has been

shown to be a good criterion to assess path quality [8]. As

it is the quality criterion T-RRT tends to minimize, a fair

comparison with RRT* must be based on the mechanical

work. Results of this comparison are shown in Fig. 7.

On the Mountains problem, RRT* quickly finds a better

solution than T-RRT, even though the Bidirectional T-RRT

performs equally well for 0.1 s. On the Stones problem,

RRT* cannot find a solution in less than 0.5 s, contrary

to the Bidirectional T-RRT, which succeeds in 0.1 s; but,

given enough time, RRT* converges toward a better solution.

On the Manipulator and Inspection problems involving a

6-DoF manipulator arm, even in its Extend form, T-RRT

outperforms RRT*. As pointed out in [11], RRT* converges

very slowly, except on 2D problems.



Mountains

0

5

10

15

20

25

30

35

0 1 2 3
t	(s)

M
W

RRT*

Extend	TǦRRT
Bidirectional	TǦRRT

Stones

0

25

50

75

100

125

150

175

0 2 4 6
t	(s)

RRT*

Extend	TǦRRT
Bidirectional	TǦRRT

Manipulator

0

2

4

6

8

10

12

0 2 4 6 8
t	(s)

RRT*

Extend	TǦRRT
Bidirectional	TǦRRT

Inspection

0

200

400

600

800

1000

1200

1400

0 50 100 150 200
t	(s)

RRT*

Extend	TǦRRT
Bidirectional	TǦRRT

Fig. 7. Path cost (measured by the mechanical work MW ) versus running time (t, in seconds) for solution paths produced by T-RRT and RRT*. For
each segment representing T-RRT, the left point corresponds to Trate = 0.1 and the right point to Trate = 0.01. Values are averaged over 100 runs.

VI. INDUSTRIAL INSPECTION PROBLEM

This section presents a path planning problem for a flying

robot in a dense industrial environment, as illustrated by

Fig. 1. For safety reasons, the quadrotor has to move in this

environment trying to maximize its distance to obstacles.

This scenario is an example of an industrial inspection

problem involving aerial robots, such as those addressed

in the framework of the ARCAS project (http://www.arcas-

project.eu). One of the goals of this project is to develop

robot systems for the inspection and maintenance of indus-

trial installations difficult to access for humans.

In this example, the quadrotor is modeled as a 3-DoF

sphere (i.e. a free-flying sphere) representing the safety zone

around it; therefore, no visibility constraint is considered.

We assume that the motions of the quadrotor are performed

quasi-statically, thus neglecting dynamic constraints. We

restrict the problem to planning in position, controllability

issues being out of the scope of this paper.

When running the Extend T-RRT on this problem, we

observed that only 38 of the 100 runs succeeded in less than

five minutes with Trate = 0.1, and 67 with Trate = 0.01.

The success rate was even lower for the Connect T-RRT. On

the other hand, the Bidirectional T-RRT can find a solution

in less than 3 s (on average over 100 runs) when Trate = 0.1,

and in about 38 s when Trate = 0.01. The Goal-biased T-

RRT is about twice faster, but produces lower-quality paths,

with cost measurements up to 30% higher. The example

trajectory in Fig. 1 is typical of what the Bidirectional T-RRT

produces when Trate = 0.01: it shows that the quadrotor

follows a convoluted path in order to maximize clearance.

When Trate = 0.1, solution paths are more diverse, some

being shorter but having a lower clearance.

VII. CONCLUSION

We have presented several enhancements to the T-RRT

algorithm. First, we have described how its transition test

can be modified to improve performance. Then, we have an-

alyzed various extensions inspired by classical RRT variants.

We have shown that the Goal-biased and Connect T-RRT are

delicate to use because, despite reducing running time, they

sometimes decrease path quality. Moreover, naively applying

the Bidirectional paradigm as defined for RRT yields poor-

quality solution paths. Thus, we have developed a specific

Bidirectional variant to T-RRT, and we have shown that

it improves performance compared to the Extend T-RRT,

mainly in terms of success rate and running time, but also

often in terms of path quality. It does not always outperform

the Goal-biased and Connect T-RRT, but it provides more

consistent results and is therefore a better choice. Finally, we

have illustrated the need to enhance T-RRT with a realistic

industrial inspection problem. In such a context, the Extend

T-RRT cannot find a solution in a reasonable amount of time,

contrary to the Bidirectional T-RRT.

In the short future, we aim to investigate further im-

provements and extensions of T-RRT. In particular, more

sophisticated heuristics for the adaptive variation of the

temperature parameter could lead to a faster exploration

while maintaining path quality. We are also investigating

a multiple-tree approach, similar to proposed extensions of

RRT (see e.g. [16]), to enable the effective application of T-

RRT to highly-complex problems in very large workspaces.

REFERENCES

[1] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:

New Directions. A K Peters, 2001.
[2] C. Urmson and R. Simmons, “Approaches for heuristically biasing

RRT growth,” in Proc. IROS, 2003.
[3] D. Ferguson and A. Stentz, “Anytime RRTs,” in Proc. IROS, 2006.
[4] ——, “Anytime, dynamic planning in high-dimensional search

spaces,” in Proc. IEEE ICRA, 2007.
[5] A. Ettlin and H. Bleuler, “Rough-terrain robot motion planning based

on obstacleness,” in Proc. ICARCV, 2006.
[6] ——, “Randomised rough-terrain robot motion planning,” in Proc.

IROS, 2006.
[7] J. Lee, C. Pippin, and T. R. Balch, “Cost based planning with RRT in

outdoor environments,” in Proc. IROS, 2008.
[8] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on

configuration-space costmaps,” IEEE Trans. Robot., vol. 26 (4), 2010.
[9] J. Mainprice, E. A. Sisbot, L. Jaillet, J. Cortés, R. Alami, and

T. Siméon, “Planning human-aware motions using a sampling-based
costmap planner,” in Proc. IEEE ICRA, 2011.

[10] D. Berenson, T. Siméon, and S. S. Srinivasa, “Addressing cost-space
chasms in manipulation planning,” in Proc. IEEE ICRA, 2011.

[11] R. Iehl, J. Cortés, and T. Siméon, “Costmap planning in high dimen-
sional configuration spaces,” in Proc. IEEE/ASME AIM, 2012.

[12] L. Jaillet, F. J. Corcho, J.-J. Pérez, and J. Cortés, “Randomized tree
construction algorithm to explore energy landscapes,” J. Comput.

Chem., vol. 32 (16), 2011.
[13] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” Int. J. Robot. Res., vol. 30 (7), 2011.
[14] J. C. Spall, Introduction to Stochastic Search and Optimization:

Estimation, Simulation, and Control. Wiley, 2003.
[15] T. Siméon, J.-P. Laumond, and F. Lamiraux, “Move3D: A generic

platform for path planning,” in Proc. IEEE ISATP, 2001.
[16] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki,

“Sampling-based roadmap of trees for parallel motion planning,” IEEE

Trans. Robot., vol. 21 (4), 2005.


