
HAL Id: hal-00872218
https://hal.science/hal-00872218

Submitted on 11 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallelizing RRT on distributed-memory architectures
Didier Devaurs, Thierry Simeon, Juan Cortés

To cite this version:
Didier Devaurs, Thierry Simeon, Juan Cortés. Parallelizing RRT on distributed-memory architectures.
Proc. IEEE ICRA ’11, May 2011, Shanghai, China. pp. 2261-2266. �hal-00872218�

https://hal.science/hal-00872218
https://hal.archives-ouvertes.fr

Parallelizing RRT on Distributed-Memory Architectures

Didier Devaurs, Thierry Siméon and Juan Cortés

Abstract— This paper addresses the problem of improving
the performance of the Rapidly-exploring Random Tree (RRT)
algorithm by parallelizing it. For scalability reasons we do so on
a distributed-memory architecture, using the message-passing
paradigm. We present three parallel versions of RRT along
with the technicalities involved in their implementation. We
also evaluate the algorithms and study how they behave on
different motion planning problems.

I. INTRODUCTION

Due to a wide range of applications, sampling-based

path planning has benefited from a considerable research

effort [1], [2]. It has proven to be an effective framework

suitable for a large class of problems in domains such

as autonomous robotics, manufacturing, virtual prototyp-

ing, computer graphics, structural biology, and medicine.

These application fields yield increasingly difficult, highly-

dimensional problems with complex geometric and kinody-

namic constraints.

The Rapidly-exploring Random Tree (RRT) has become

a popular algorithm for solving single-query motion plan-

ning problems [3]. It is suited to solve robot motion plan-

ning problems involving holonomic, non-holonomic, kino-

dynamic, or kinematic closure constraints [3]–[5]. It is also

applied to the validation and control of hybrid systems [6],

[7]. In biology, it is used to analyze genetic network dy-

namics [8] or protein-ligand interactions [9], [10]. However,

when applied to complex problems, the incremental growth

of an RRT can become computationally expensive [9], [11],

[12]. Some techniques have been proposed to improve the

efficiency of RRT, by controlling the sampling domain [12],

reducing the complexity of the nearest neighbor search [13],

or employing gap reduction techniques [11].

Our objective is to further investigate RRT improvement

by exploiting speedup from parallel computation. Some re-

sults have been obtained in that sense (Section II). However,

existing work considers mainly shared-memory architectures

and thus small-scale parallelism, up to 16 processors [14]–

[17]. In this work, we are interested in what can be achieved

by larger-scale parallelism. We focus on parallelizing RRT

on distributed-memory architectures, using the message-

passing paradigm. Our contribution is three-fold. First, we

propose three parallel versions of RRT, based on classical

parallelization schemes: OR parallel RRT, Distributed RRT

and Manager-worker RRT (Section III). Second, beside the

abstract view provided by the algorithms themselves, we

All authors are with CNRS ; LAAS ; 7 avenue du colonel Roche, F-
31077 Toulouse Cedex 4, France and Université de Toulouse ; UPS, INSA,
INP, ISAE ; UT1, UTM, LAAS ; F-31077 Toulouse Cedex 4, France
{devaurs,nic,jcortes}@laas.fr

present the main technicalities involved in their development

(Section III). Third, we evaluate the algorithms on several

motion planning problems and show their differences in

behavior, depending on the problem type (Section IV).

II. RELATED WORK

A. Parallel Motion Planning

The idea of improving motion planning performance by

using parallel computation was raised in prior work. In a

survey of some early work [18], a classification scheme was

proposed to review different motion planning approaches and

some related parallel processing methods. A more recent

trend is to exploit the current multi-core technology available

on many of today’s PCs, that easily allows having multiple

threads collaboratively solving a problem [19].

Among the most classical approaches, the embarrassingly

parallel paradigm exploits the fact that some randomized

algorithms, such as the Probabilistic Road-Map (PRM), are

what is termed “embarrassingly parallel” [20]. The massive

inherent parallelism of the basic PRM algorithm enables a

significant speedup, even with relatively simplistic paralleliz-

ing strategies, especially on shared-memory architectures.

In this approach, computation time is minimized by having

several processes cooperatively building the road-map.

Another simple approach is known as the OR parallel

paradigm. It was first applied to theorem proving, before

being used to provide a parallel formulation of the Ran-

domized Path Planner (RPP) [21]. Its principle is to have

several processes running the same sequential randomized

algorithm, each one trying to build its own solution. The

first process to reach a solution reports it and broadcasts a

termination message. The idea here is to minimize computing

time by finding a small-sized solution. Despite its simplicity,

the OR parallel paradigm has been successfully applied to

other algorithms, such as in [22].

A more sophisticated approach is a master-slave scheme

developed to distribute the computation of the Sampling-

based Roadmap of Trees (SRT) algorithm [23]. In a first

step, several trees, which can be RRTs or Expansive Space

Trees (ESTs), are computed in parallel by all processes. In a

second step, several master processes cooperate to distribute

the computation of edges linking these trees, evenly among

their respective slave processes.

An approach based on growing several independent trees

can lead to a straightforward parallelization. This is the case

for RRTLocTrees [24] and for the Rapidly exploring Random

Forest of Trees (RRFT) [7], [8]. However, the focus of this

paper lies elsewhere, our aim being to provide a parallel

version of the basic (single-tree) RRT algorithm.

B. Parallel RRT

There is relatively little work related to parallelizing RRT

[14]–[17]. The first one [14] applies the simple OR parallel

and embarrassingly parallel paradigms, and a combination

of both. To benefit from the simplicity of the shared-memory

case, the embarrassingly parallel algorithm is run on a single

SMP (symmetrical multiprocessor) node of a multi-nodes

parallel computer. The only communication involved is a

termination message that is broadcast when a solution is

reached, but some coordination is required to avoid concur-

rent modifications of the tree. This scheme does not make

use of the full computational power of the parallel platform,

contrary to the OR parallel algorithm, which is run on all

processors of all nodes. The same paradigms are also applied

on a dual-core CPU in [15], where they are renamed OR

and AND implementations. In the Open Motion Planning

Library1 (OMPL) of the ROS framework, the AND paradigm

is implemented via multi-threading, thus for shared memory.

In [16], the OR paradigm is used on shared memory.

To the best of our knowledge, there has been only one

attempt to develop a parallel version of RRT on a distributed-

memory architecture. In [17], the construction of the tree

is distributed among several autonomous agents, using a

message passing model. However, no explanation is given

on how the computation is distributed, and how the tree is

reconstructed from the parts built by the agents.

III. PARALLELIZING RRT

For scalability purposes, we will parallelize RRT on a

distributed-memory architecture, using the message-passing

paradigm: one of the most widespread approaches for pro-

gramming parallel computers. Since this paradigm imposes

no requirement on the underlying hardware and requires

an explicit parallelization of the algorithms, it enables a

wide portability. Any algorithm developed following this

approach can also be run on a shared-memory architecture,

even though this would mean not making an optimal use

of this architecture. Besides, scalable distributed-memory

architectures are rather commonly available, in the form of

networks of personal computers, clustered workstations or

grid computers. To develop our parallel algorithms, we have

chosen to comply to the standard and widely-used Message

Passing Interface2 (MPI). Its logical view of the hardware

architecture consists of p processes, each with its own exclu-

sive address space. Our message-passing programs are based

on the Single Program Multiple Data (SPMD) paradigm and

follow a loosely synchronous approach: all processes execute

the same code, containing mainly asynchronous tasks, but

also a few tasks that synchronize to perform interactions.

A. OR Parallel RRT

The simplest way to parallelize RRT is to apply the

OR parallel paradigm. Algorithm 1 presents our version of

an OR parallel RRT, which is similar to the one in [14].

1http://www.ros.org/doc/api/ompl/html
2http://www.mpi-forum.org

Algorithm 1: OR parallel RRT

input : the configuration space C, the root qinit

output: the tree T
1 T ← initTree(qinit)
2 while not stopCondition(T) or received(endMsg) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findBestNeighbor(T , qrand)
5 qnew ← extend(qnear , qrand)

6 if not tooSimilar(qnear , qnew)3 then
7 addNewNodeAndEdge(T , qnear , qnew)

8 if stopCondition(T) then
9 broadcast(endMsg)

Each process computes its own RRT (lines 1-7) and the

first to reach a stopping condition broadcasts a termination

message (lines 8-9). This broadcast operation cannot actu-

ally be implemented as a regular MPI Broadcast routine,

as this collective operation would require all processes to

synchronize. Rather, the first process to finish sends a ter-

mination message to all others, using MPI Send routines,

matched with MPI Receive routines. As we do not know

beforehand when these interactions should happen, a non-

blocking receiving operation that will “catch” the termina-

tion message is initiated before entering the while loop.

The received(endMsg) operation is implemented as an

MPI Test routine checking the status (completed or pending)

of the request generated by the non-blocking receiving

operation. Finally, in case of several processes reaching a

solution at the same time, the program ends with a collective

operation for these processes to synchronize and agree on

which one should report its solution.

B. Collaborative Building of a Single RRT

Instead of constructing several RRTs concurrently, another

possibility is to have all processes working collaboratively

on building a single RRT. Parallelization is then achieved

by partitioning the task of building an RRT into sub-tasks,

assigned to the various processes. We propose two ways

of doing so, based on different decomposition techniques.

(1) Since constructing an RRT consists in exploring a search

space, we can use an exploratory decomposition [25]. Each

process performs its own sampling of the search space4 and

maintains its own copy of the tree, exchanging with the

others the newly constructed nodes. This leads to a dis-

tributed (or decentralized) scheme where no task scheduling

is required, aside from a termination detection mechanism.

(2) Another classical approach is to perform a functional

decomposition of the task [26]. In the RRT algorithm, two

kinds of sub-tasks can be distinguished: the ones that require

knowledge of the tree (initializing it, adding new nodes and

edges, finding the best neighbor of qrand, and evaluating

the stopping conditions) and those that do not (sampling a

random configuration and performing the extension step).

3Two configurations are deemed too similar if the distance between them
is less than the minimum validation step-size along the path.

4Note that space partitioning would be possible here, but is not required.

Algorithm 2: Distributed RRT

input : the configuration space C, the root qinit

output: the tree T
1 T ← initTree(qinit)
2 while not stopCondition(T) or received(endMsg) do
3 while received(nodeData(qnew, qnear)) do
4 addNewNodeAndEdge(T , qnear , qnew)

5 qrand ← sampleRandomConfiguration(C)
6 qnear ← findBestNeighbor(T , qrand)
7 qnew ← extend(qnear , qrand)
8 if not tooSimilar(qnear , qnew) then
9 addNewNodeAndEdge(T , qnear , qnew)

10 broadcast(nodeData(qnew, qnear))

11 if stopCondition(T) then
12 broadcast(endMsg)

This leads to the choice of a manager-worker (or master-

slave) scheme as the dynamic and centralized task-scheduling

strategy, the manager being in charge of maintaining the tree,

and the workers having no knowledge of it. We now present

both schemes in greater details.

1) Distributed RRT: Our version of a Distributed RRT is

given by Algorithm 2. In each iteration of the tree construc-

tion loop (lines 2-10), each process first checks whether it

has received new nodes from other processes (line 3). If this

is the case, the process adds them to its local copy of the

tree (line 4). Then, it performs its own expansion attempt

(lines 5-10). If it is successful (line 8), the process adds the

new node to its local copy of the tree (line 9) and broadcasts

it (line 10). Adding all the received nodes before attempting

an expansion, ensures that every process works with the most

up-to-date state of the tree. At the end, the first process to

reach a stopping condition broadcasts a termination message

(lines 11-12). This broadcast operation is implemented in

the same way as for the OR parallel RRT. Similarly, the

broadcast of new nodes (line 10) is not implemented as

a regular MPI Broadcast routine, which would cause all

processes to wait for each other. As a classical way to overlap

computation with interactions, we again use MPI Send rou-

tines matched with non-blocking MPI Receive routines. That

way, the received(nodeData) test (line 3) is performed

by checking the status of the request associated with a non-

blocking receiving operation initiated beforehand, the first

one being triggered before entering the while loop, and the

subsequent ones being triggered each time a new node is

received and processed. Note also that a Universally Unique

Identifier (UUID) is associated with each node, in order to

provide processes with a homogeneous way of referring to

the nodes. Finally, the case of several processes reaching a

solution at the same time has to be dealt with.

2) Manager-Worker RRT: Algorithm 3 presents our ver-

sion of a Manager-worker RRT. The program contains the

code executed by the manager (lines 2-10) and the workers

(lines 12-16). The manager is the only process having access

to the tree. It performs the operations related to its construc-

tion, and delegates the expansion attempts to workers. In

Algorithm 3: Manager-worker RRT

input : the configuration space C, the root qinit

output: the tree T
1 if processID = mgr then
2 T ← initTree(qinit)
3 while not stopCondition(T) do
4 while received(nodeData(qnew, qnear)) do
5 addNewNodeAndEdge(T , qnear , qnew)

6 qrand ← sampleRandomConfiguration(C)
7 qnear ← findBestNeighbor(T , qrand)
8 w ← chooseWorker()
9 send(expansionData(qrand, qnear), w)

10 broadcast(endMsg)
11 else
12 while not received(endMsg) do
13 receive(expansionData(qrand, qnear), mgr)
14 qnew ← extend(qnear , qrand)
15 if not tooSimilar(qnear , qnew) then
16 send(nodeData(qnew, qnear), mgr)

general, the expansion is the most computationally expensive

stage in the RRT construction, since it involves motion

simulation and validation. The manager could also delegate

the sampling step, but this would not be worthwhile because

of the low computational cost of this operation in our settings

(i.e. in the standard case of a uniform random sampling

in the whole search space): the communication cost would

then outweigh any potential benefit. At each iteration of the

tree building (lines 3-9) the manager first checks whether

it has received new nodes from workers (line 4). If so, it

adds them to the tree (line 5). Then, it samples a random

configuration (line 6) and identifies its best neighbor in the

tree (line 7). Next, it looks for an idle worker (line 8), which

means potentially going through a waiting phase, and sends it

the data necessary to perform an expansion attempt (line 9).

Finally, when a stopping condition is reached, it broadcasts

a termination message (line 10). On the other hand, workers

are active as long as they have not received this message

(line 12), though they can go through waiting phases. During

each computing phase, a worker receives some data from

the manager (line 13) and performs an expansion attempt

(line 14). If it is successful (line 15), it sends the newly

constructed node to the manager (line 16).

Contrary to the previous algorithms, this one does not

require non-blocking receiving operations for broadcasting

the termination message. Workers being idle if they re-

ceive no data, there is no need to overlap computation

with interactions. Before entering a computing phase, a

worker waits on a blocking MPI Receive routine implement-

ing both the receive(expansionData) operation and the

received(endMsg) test. The type of message received de-

termines its next action: stopping or attempting an expansion.

On the manager side, blocking MPI Send routines implement

the broadcast(endMsg) and send(expansionData) op-

erations. The remaining question about the latter is to which

worker should the data be sent. An important task of

the manager is to perform load-balancing among workers,

through the chooseWorker() function. For that, it keeps

track of the status (busy or idle) of all workers and sends

one sub-task at a time to an idle worker, choosing it in a

round robin fashion. If all workers are busy, the manager

waits until it receives a message from one of them, which

then becomes idle. This has two consequences. First, on

the worker side, the send(nodeData) operation covers

two MPI Send routines: one invoked to send the new node

when the expansion attempt is successful, and the other

containing no data used otherwise. Second, on the manager

side, two matching receiving operations are implemented via

non-blocking MPI Receive routines, allowing for the use of

MPI Wait routines if necessary. This also enables to im-

plement the received(nodeData) test with an MPI Test

routine. These non-blocking receiving operations are initiated

before entering the while loop, and re-initiated each time the

manager receives and processes a message. Finally, to reduce

the communication costs of the send(nodeData) operation,

workers do not send back the configuration qnear . Rather,

the manager keeps track of the data it sends to each worker,

which also releases us from having to use UUIDs.

C. Implementation Framework

Among the various implementations of MPI, we have

chosen OpenMPI5. Since the sequential implementation of

RRT we wanted to parallelize was written in C++, and MPI

being primarily targeted at C and Fortran, we had to use

a C++ binding of MPI. We were also confronted with the

low-level way in which MPI deals with communications,

requiring the programmer to explicitly specify the size of

each message. In our application, messages were to contain

instances of high-level classes, whose attributes were often

pointers or STL containers. Thus, we have decided to exploit

the higher-level abstraction provided by the C++ library

Boost.MPI6. Coupled with the Boost.Serialization library7,

Boost.MPI enables processes to exchange instances of high-

level classes in a straightforward manner, making the tasks

of gathering, packing and unpacking the underlying data

transparent to the programmer. Finally, we have used Qt’s

implementation of UUIDs8.

IV. EXPERIMENTS

A. Performance Metrics

When evaluating a parallel algorithm on a given problem,

we want to know how much performance gain it achieves

over its sequential counterpart. Aimed at measuring so, the

speedup S of a parallel algorithm is defined as the ratio of

the runtime of its sequential counterpart to its own runtime:

S(p) = TS / TP (p) [25], [26]. In theory S(p) is bounded

by p, but in practice super-linear speedup (S(p) > p) can

be observed. The parallel runtime TP (p) is measured on

a parallel computer, using p processors, and the sequential

5http://www.open-mpi.org
6http://www.boost.org/doc/libs/1 43 0/doc/html/mpi.html
7http://www.boost.org/doc/libs/1 43 0/libs/serialization
8http://doc.trolltech.com/4.3/quuid.html

Problem name BCL CALB GAB

Problem type
TS (s) ͳǤͶ ά ͲǤͺͳ ͳͶͺ ά ͳʹͻ ͸ʹ ά ͳʹ

N Ͷ͸ ά ͳͻ ͳ͸ʹͻ ά ͳ͵͸ͷ ͸ͳͷ ά ͻͲ Sequen
tial RRT

E ͺʹͳ ά Ͷ͹Ͷ ͺͳͲʹ͵ ά ͸ͻͻͳ͹ ͹͹Ͳ ά ͳʹͳ
Fig. 1. Simplified schematic representation of the configuration spaces
of our three problems, and numerical results obtained with the sequential
RRT. Average values over 100 runs (and standard deviation) are given for
the sequential runtime TS (in seconds), the number of nodes in the final
tree, N , and the number of expansion attempts, E.

runtime TS is measured on one processor of the same

computer. We define TP (p) (resp. TS) as the mean time

needed to reach a solution, by averaging the runtime obtained

over 100 executions of a parallel (resp. sequential) algorithm.

We can then evaluate the scalability of a parallel algorithm,

i.e. study whether the speedup increases in proportion to the

number of processors. We can also measure the efficiency of

a parallel algorithm (E(p) = S(p) / p) which is a decreasing

function of p theoretically having values in [0, 1] [25], [26].

B. Parallel Computer Architecture

The numerical results presented in this section have been

obtained by running the algorithms on an HP cluster platform

composed of 24 HP ProLiant DL160 G5 servers connected

by a high-speed InfiniBandTM switch warranting 10 Gbit/s

of bandwidth. Each server includes two 64-bit quad-core

Intel R© Xeon R© E5430 processors at 2.66 GHz, with 12

MB of L2 cache, and sharing 7.79 GB of memory.

C. Motion Planning Problems Studied

We have evaluated the algorithms on three motion plan-

ning problems involving molecular models9. However, it is

important to note that our algorithms are not application-

specific and can be applied to any kind of motion planning

problem. The studied problems involve free-flying objects

(i.e. six degrees of freedom10) and are characterized by

different configuration-space topologies (cf. Fig. 1). BCL is

a protein-ligand exit problem, where a ligand exits the active

site of a protein through a pathway that is relatively short and

large but locally constrained by several side-chains. CALB

is a similar problem, but with a longer and very narrow exit

pathway, i.e. more geometrically constrained than BCL. In

GAB, a protein goes around another one in an empty space,

thus involving the weakest geometrical constraints, but the

longest distance to cover of all problems. Fig. 1 also presents

the numerical results obtained when solving these problems

with the sequential RRT.

9The application we have used is the molecular motion planning toolkit
we are currently developing [27].

10To facilitate the algorithms’ evaluation, we have chosen not to increase
dimensionality. Increasing it would mainly raise the computational cost of
the nearest neighbor search. Note that, however, the cost of this operation
becomes almost dimension-independent when using projections on a lower-
dimensional space, without a significant loss in accuracy [28].

BCL

Ͳ
ʹ
Ͷ
͸
ͺ

ͳͲ
ͳʹ

Ͳ ͳͲ ʹͲ ͵Ͳ ͶͲ ͷͲ ͸Ͳ

S
p

e
e

d
u

p
 S

Or parallelDistributedManagerȀWorker CALB

Ͳ
ͷ

ͳͲ
ͳͷ
ʹͲ
ʹͷ
͵Ͳ

Ͳ ʹͲ ͶͲ ͸Ͳ ͺͲ ͳͲͲ ͳʹͲ ͳͶͲ
Number of processors p

Or parallelDistributedManagerȀWorker GAB

Ͳ
ͳ
ʹ
͵
Ͷ
ͷ
͸

Ͳ ͳͲ ʹͲ ͵Ͳ ͶͲ ͷͲ

Or parallelDistributedManagerȀWorker

p = 8

Ͳͳʹ
Ͷ͵ͷ
͸͹ͅ
ͻ

ͳ ͳͲ ͳͲͲ ͳͲͲͲ

S
p

e
e

d
u

p
 S

Or parallelDistributedManagerȀWorker p = 16

Ͳʹ
Ͷ͸ͅ

ͳͲͳʹͳͶͳ͸ͳͺʹͲ

ͳ ͳͲ ͳͲͲ ͳͲͲͲ
Number of iterations over the collision detection I

Or parallelDistributedManagerȀWorker p = 32

Ͳͷ
ͳͲͳͷʹͲʹͷ͵Ͳ͵ͷ

ͳ ͳͲ ͳͲͲ ͳͲͲͲ

Or parallelDistributedManagerȀWorker

Fig. 2. First row: scalability of our algorithms on the BCL, CALB and GAB problems. Second row: evolution of the algorithms’ speedup (and efficiency,
as they are proportional in that case) in relation to the expansion cost, while solving the BCL problem on 8, 16 and 32 processors.

D. Speedup Achieved by the Parallel Algorithms

The first row of Fig. 2 presents the scalability achieved

by the algorithms on each problem. Unsurprisingly, the

scalability of the OR parallel RRT is strongly correlated with

the variability of the computing time, measured by the ratio

of the standard deviation to the mean of the runtime TS

(cf. Fig. 1). This algorithm can achieve good results only

on problems where this variability is large, such as CALB.

When this variability is low, e.g. in GAB, it provides almost

no improvement over the sequential RRT. The Manager-

worker RRT shows a very poor speedup on all problems.

This is partly explained by the fact that it involves much

more communication than the other schemes. Each expansion

attempt is preceded and followed by a communication be-

tween the manager and a worker, contrary to the Distributed

RRT, in which communications between processes happen

only after a new node is built. In the Distributed scheme,

the total number of messages exchanged over the network

increases linearly with p, but at each processor’s level, the

number of messages is bounded by N . Thus, as long as the

network bandwidth can withstand the communication load,

the Distributed RRT can show a good scalability.

Although speedup curves of the Distributed RRT flatten

when p increases, we would have to use many more proces-

sors to see a decrease, contrary to other schemes. The best

speedup it achieves on BCL, CALB and GAB is 10, 25.3 and

5.3, which correspond to quite a low efficiency of 0.2, 0.2 and

0.1 respectively. The greatest number of processors for which

its efficiency is greater than 0.5 is 14, 10 and 3 respectively.

Several factors contribute to this low efficiency. (1) Runtime

is quite short on these problems, especially BCL. When

more and more processors are added, the communication

load increases significantly, thus outweighing the reduction in

computing time and leading to a smaller increase in speedup.

(2) When an RRT is built collaboratively, a side-effect of

adding more processors is to change the balance between

exploration and refinement (these terms being defined as

in [12]) in favor of more refinement. This translates into

generating larger trees (i.e. the number of nodes N increases

with p), thus reducing the increase in speedup, especially on

not very constrained problems, such as GAB.

Generally, efficiency improves as the problem difficulty in-

creases. In artificially increasing it, we will also show that the

Manager-worker RRT can perform better in some settings.

Intuitively, it is worth using this scheme when the manager

can delegate costly sub-tasks to its workers. However, in our

settings the cost of the expansion step is quite low, as qnew is

generated by a simple linear interpolation between qnear and

qrand, and motion validation is limited to collision detection.

Expansion could be much more expensive, e.g. if a dynamic

simulator was producing robot motions, or if some potential

energy was computed in the case of molecular models. To

test whether this could have an impact on the algorithms’

performance, we have run a controlled experiment in which

we have artificially increased the cost of the expansion step

to emulate different settings. To do so, during an expansion

attempt we repeat I times the collision detection routine

in the extend() function. Tests were performed on the

BCL problem, as it is characterized by a medium-level

difficulty in its configuration-space topology. The second row

of Fig. 2 shows the evolution of the algorithms’ speedup in

relation to I , on 8, 16 and 32 processors. As I goes up,

we observe first a dramatic increase in the speedup of the

Manager-worker RRT, followed by a slower decrease due to

the fact that the manager becomes a bottleneck waiting for

busy workers. This higher speedup is enabled by the growth

in computational load making the communication load not

significant anymore. The maximum speedup corresponds to

an optimal use of this scheme, which depends on p: when p
is increased, this maximum raises and is reached for higher

values of I . The best efficiency values obtained for p = 8,

16 and 32 are 1.1, 1.1 and 0.9 respectively. Similarly, though

not so dramatically, an increase in the expansion cost also

translates into a better use of the Distributed RRT, which

is more visible as p goes up. As expected, no benefit is

observed for the OR parallel RRT, whose optimal use relates

to variability in runtime and not to computational load.

V. CONCLUSION

We have proposed three parallel versions of the RRT algo-

rithm, designed for distributed-memory architectures using

message passing: OR parallel RRT, Distributed RRT and

Manager-worker RRT. Our OR parallel RRT is similar to the

one in [14] and to those developed for shared memory [15],

[16]. Our Distributed RRT and Manager-worker RRT are

the counterparts for distributed memory of the AND (or

embarrassingly parallel) RRT [14], [15]. None of these

algorithms can be held as the best parallelization of RRT: it

really depends on the studied problem. The Distributed RRT

shows the most consistent results across experiments, but its

efficiency does not scale well when the problem becomes

more difficult. It could also suffer from memory scalability

issues, since each process maintains its own tree. It is outper-

formed by the OR parallel RRT on problems yielding a great

variability in computing time. It is also outperformed by the

Manager-worker RRT in settings involving high expansion

costs. The Manager-worker RRT shows the best efficiency

scalability when the problem difficulty increases.

This paper was focused on a high-level parallelization of

RRT. It could be extended by parallelizing its sub-routines,

such as the nearest neighbor search. For that, we could use

data decomposition and evaluate the speedup achieved de-

pending on the search paradigm (brute force, kd-trees, etc.).

Algorithms involving the construction of several independent

RRTs can directly benefit from this work. For example, in the

simple variant of the bidirectional-RRT where both trees are

extended toward the same random configuration, processes

can be separated in two building groups getting random

configurations from an extra process. When the RRTs are not

independently built, specific algorithms have to be developed.

As part of our future work, we plan to investigate ap-

proaches combining the three paradigms. We are currently

extending our molecular motion planning application to

allow for potential energy computation, in order to pursue

our study started by artificially increasing the tree expansion

costs. We also plan to better exploit the architecture of our

cluster platform, by combining multi-threading and message

passing approaches. Allowing the eight processes sharing the

same memory to work on a common tree would mitigate the

memory scalability issue of the Distributed RRT.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,

Algorithms, and Implementations. MIT Press, 2005.
[2] S. M. LaValle, Planning Algorithms. Cambridge University Press,

2006.
[3] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:

progress and prospects,” in Algorithmic and Computational Robotics:

New Directions. A K Peters, 2001, pp. 293–308.
[4] ——, “Randomized kinodynamic planning,” Int. J. Robot. Research,

vol. 20, no. 5, 2001.
[5] J. Cortés and T. Siméon, “Sampling-based motion planning under

kinematic loop-closure constraints,” in Algorithmic Foundations of

Robotics VI. Springer-Verlag, 2005, pp. 75–90.
[6] M. S. Branicky, M. M. Curtiss, J. A. Levine, and S. B. Morgan, “RRTs

for nonlinear, discrete, and hybrid planning and control,” in Proc. IEEE

Conf. Decision Contr., 2003.
[7] J. M. Esposito, J. Kim, and V. Kumar, “Adaptive RRTs for validat-

ing hybrid robotic control systems,” in Algorithmic Foundations of

Robotics VI. Springer-Verlag, 2005, pp. 107–121.
[8] C. Belta, J. M. Esposito, J. Kim, and V. Kumar, “Computational

techniques for analysis of genetic network dynamics,” Int. J. Robot.

Research, vol. 24, no. 2-3, 2005.
[9] J. Cortés, L. Jaillet, and T. Siméon, “Molecular disassembly with RRT-

like algorithms,” in Proc. IEEE ICRA, 2007.
[10] J. Cortés, D. T. Le, R. Iehl, and T. Siméon, “Simulating ligand-induced

conformational changes in proteins using a mechanical disassembly
method,” Phys. Chem. Chem. Phys., vol. 12, no. 29, 2010.

[11] P. Cheng, E. Frazzoli, and S. M. LaValle, “Improving the performance
of sampling-based planners by using a symmetry-exploiting gap re-
duction algorithm,” in Proc. IEEE ICRA, 2004.

[12] L. Jaillet, A. Yershova, S. M. LaValle, and T. Siméon, “Adaptive
tuning of the sampling domain for dynamic-domain RRTs,” in Proc.

IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2005.
[13] A. Yershova and S. M. LaValle, “Improving motion planning algo-

rithms by efficient nearest-neighbor searching,” IEEE Trans. Robot.,
vol. 23, no. 1, 2007.

[14] S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,”
in Proc. Int. Conf. Italian Assoc. Artif. Intell., 2002.

[15] I. Aguinaga, D. Borro, and L. Matey, “Parallel RRT-based path
planning for selective disassembly planning,” Int. J. Adv. Manufact.

Technol., vol. 36, no. 11-12, 2008.
[16] S. Sengupta, “A parallel randomized path planner for robot naviga-

tion,” Int. J. Adv. Robot. Syst., vol. 3, no. 3, 2006.
[17] D. Devalarazu and D. W. Watson, “Path planning for altruistically

negotiating processes,” in Proc. Int. Symp. Collab. Technol. Syst., 2005.
[18] D. Henrich, “Fast motion planning by parallel processing - a review,”

J. Intell. Robot. Syst., vol. 20, no. 1, 1997.
[19] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning

by interior-exterior cell exploration,” in Algorithmic Foundations of

Robotics VIII. Springer-Verlag, 2010, pp. 449–464.
[20] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are

embarrassingly parallel,” in Proc. IEEE ICRA, 1999.
[21] D. Challou, D. Boley, M. Gini, V. Kumar, and C. Olson, “Parallel

search algorithms for robot motion planning,” in Practical Motion

Planning in Robotics: Current Approaches and Future Directions.
Wiley & Sons, 1998, pp. 115–131.

[22] S. Caselli and M. Reggiani, “ERPP: an Experience-based Randomized
Path Planner,” in Proc. IEEE ICRA, 2000.

[23] E. Plaku and L. E. Kavraki, “Distributed sampling-based roadmap of
trees for large-scale motion planning,” in Proc. IEEE ICRA, 2005.

[24] M. Strandberg, “Augmenting RRT-planners with local trees,” in Proc.

IEEE ICRA, 2004.
[25] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to

Parallel Computing, 2nd ed. Pearson Education, 2003.
[26] I. Foster, Designing and Building Parallel Programs: Concepts and

Tools for Parallel Software Engineering. Addison-Wesley, 1995.
[27] J. Cortés, T. Siméon, V. Ruiz de Angulo, D. Guieysse, M. Remaud-

Siméon, and V. Tran, “A path planning approach for computing large-
amplitude motions of flexible molecules,” Bioinformatics, vol. 21
(Suppl. 1), 2005.

[28] E. Plaku and L. E. Kavraki, “Quantitative analysis of nearest-neighbors
search in high-dimensional sampling-based motion planning,” in Al-

gorithmic Foundations of Robotics VII. Springer-Verlag, 2008, pp.
3–18.

