
HAL Id: hal-00872209
https://hal.science/hal-00872209v2

Submitted on 11 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An ontology-based approach for detecting knowledge
intensive tasks

Andreas S. Rath, Didier Devaurs, Stefanie N. Lindstaedt

To cite this version:
Andreas S. Rath, Didier Devaurs, Stefanie N. Lindstaedt. An ontology-based approach for detecting
knowledge intensive tasks. Journal of Digital Information Management, 2011, 9 (1), pp.9-18. �hal-
00872209v2�

https://hal.science/hal-00872209v2
https://hal.archives-ouvertes.fr

An Ontology-Based Approach for Detecting Knowledge Intensive Tasks

Andreas S. Rath

Know-Center GmbH., Inffeldgasse 21a/II, 8010 Graz, Austria

arath@know-center.at

Didier Devaurs

CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4,

France and Université de Toulouse ; UPS, INSA, INP, ISAE;

UT1, UTM, LAAS ; F-31077 Toulouse Cedex 4, France

devaurs@laas.fr

Stefanie N. Lindstaedt

Know-Center GmbH., Inffeldgasse 21a/II, 8010 Graz, Austria &

Graz University of Technology, Graz, Austria

slind@know-center.at

Abstract— In the context detection field, an important
challenge is automatically detecting the user’s task, for
providing contextualized and personalized user support.
Several approaches have been proposed to perform task
classification, all advocating the window title as the best
discriminative feature. In this paper we present a new
ontology-based task detection approach, and evaluate it
against previous work. We show that knowledge intensive
tasks cannot be accurately classified using only the window
title. We argue that our approach allows classifying such tasks
better, by providing feature combinations that can adapt to
the domain and the degree of freedom in task execution.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems - Human
information processing; I.5.2 [Pattern Recognition]: Design
Methodology - Classifier design and evaluation

Keywords: user context detection, context-awareness, user
context ontology, task detection, classification

I. INTRODUCTION

“Understanding context is vital” [1] and “context is key”

[2] signal the growing interest in the context detection field.

Context is everywhere. In the information retrieval area

context is exploited for personalizing search [3], [4]. In

personal information management the user context is related

to projects [5], tasks [6], processes [7], topics[8] and notes

[9]. Context is also used in task and process management

for discovering tasks [10], [11], [12] and process flows

[13]. In technology-enhanced learning, context is exploited

to provide appropriate learning material [14].

Automatic user task detection is an important challenge

in the area of context detection [2], [15]: if her current task

is detected automatically the user can be supported with

relevant information (such as learning and work resources) or

task guidance. A classical approach is to model task detection

as a machine learning problem, specifically a classification

problem: while the user is performing an unknown task on

her computer desktop, some contextual data is captured by

software sensors. Based on this captured sensor data a repre-

sentation of the task is constructed in form of different types

of features. These features are used as input to classification

algorithms that provide as output a label for the task.

Several approaches have been proposed, that successfully

perform task detection from recorded user contextual data

[16], [17], [18], [19], [11], [12]. Besides, it has been shown

that, among the recorded data, the window title feature

presents a very good discriminative power for task classifi-

cation [17], [19], [11], [20]. If this was generally confirmed,

this would imply that there is no need in recording sophis-

ticated contextual data to perform task detection: keeping

track of the window title alone would be sufficient. However,

we identified that the success of this feature was due to the

fact that the inherent goals of the tasks investigated in other

research work were associated with a specific resource or

with an application that could be identified in the content of

the window title.

In this paper we present three main contributions in the

area of user context detection and task detection. First we

present our user interaction context ontology (UICO) for

user context modeling, capturing and analysis in Section III.

We developed our UICO following a bottom-up approach,

starting from the user interaction context data provided by

the software sensors we implemented [21].

As a second contribution we introduce our ontology-based

task detection approach (UICO approach) which is based on

our previous work [17]. The ontology-based conceptualiza-

tion of the user interaction context enabled us to derive a set

of 50 features covering all aspects of the available contextual

data. The features engineered from the UICO are used to

create task instances for classification purposes. This ap-

proach is different from our previous work which only used

text-based features for task detection without an underlying

2

ontology. We do not necessarily promote the use of all 50

features together, as this could prove computationally costly.

Rather, we see our approach as being adaptable, in the sense

that different small-sized feature combinations could provide

good classification accuracy, depending on the domain in

which task detection is performed.

As a third contribution we show that, when considering

tasks involving a great amount of freedom in their execution

or in the produced result, the window title alone does not

achieve good accuracy results during task classification, and

that more sophisticated feature combinations are needed to

achieve a high task detection accuracy.

The paper is organized as follows: first, we present

the related work and the investigated datasets in the task

detection area. Section III gives the details of our UICO

task detection approach. In Section IV, we describe the

methodology we followed to analyze our task detection

results. In Section V our first laboratory experiment including

the resulting dataset is described for evaluating our UICO

approach on tasks similar to those already investigated in task

detection research in terms of achieved accuracy. In Section

VI we elaborate on our second laboratory experiment and the

performed evaluations. Furthermore we discuss the limits of

the window title feature and present a feature combination

achieving better results. Finally, we draw some conclusions

and present our future work.

II. RELATED WORK & DATASETS

By task detection we mean task class detection also

referred to as task classification, as opposed to task switch

detection. Task switch detection involves predicting when

the user switches from one task to another [11], [12]. Task

classification deals with the challenge of classifying usage

data from user task execution into task classes or task types.

Automatic task detection is classically modeled as a machine

learning problem, and more precisely a classification prob-

lem. This method is used to recognize Web based tasks [18],

tasks within emails [16], [20] or tasks from the complete

user’s computer desktop [17], [19], [11], [20], [12].

Usually, solving this classification problem is based on

the following steps: (i) The user context data is captured

by system and application sensors. (ii) Features, i.e. parts of

this data, are chosen to build classification training instances,

which is done at the task level. (iii) To obtain valid inputs

for machine learning algorithms, these features are first

transformed into attributes [22]. This transformation may

include data preprocessing operations, such as removing

stopwords [17], [19] and application specific terms [11], or

constructing word vectors. (iv) Attribute selection [17], [20]

(optional step) is performed to select the best discriminative

attributes. (v) Finally, classification/learning algorithms are

trained and tested.

In SWISH [11] about four hours of real usage data

observed from a single user was recorded, which gave five

different tasks (one instance per class) such as “Harry Potter

book” or “Expedia flight trip” for example. In Dyonipos

[17] three datasets were studied (Dyo1, Dyo2, Dyo3) as

Data f l t g a p r

Dyo1 A C W NB 5 300 83.5% 0.95 0.85
Dyo2 W KNN 5 156 73.6% 0.91 0.75
Dyo3 W KNN 4 188 76.4% 0.90 0.74

Swish W PLSI 5 - 70% 0.49 0.72

TP1a W P U N+S 96 200 - 0.8 -
TP1b W P U N+S 81 200 - 0.8 -

Apo C P W SVM 5 200 85% - -

TABLE I

OVERVIEW OF THE PARAMETERS AND PERFORMANCE ACHIEVED BY

PREVIOUS APPROACHES. DATA: DATASET USED FOR THE EVALUATION

(DYO1, DYO2 AND DYO3 COME FROM DYONIPOS [17]; SWISH CAN BE

FOUND IN [11]; TP1A AND TP1B COME FROM TASKPREDICTOR1 [20];

APO COMES FROM APOSDLE [19]). f : USED FEATURES (A:

APPLICATION, C: CONTENT OF DOCUMENT, W: WINDOW TITLE, P:

FILE PATH, U: WEB PAGE URL). l: USED LEARNER/CLASSIFIER (NB:

NAÏVE BAYES, KNN: k-NEAREST NEIGHBOR, PLSI: SPECIAL VERSION

OF LATENT SEMANTIC INDEXING, SVM: LINEAR SUPPORT VECTOR

MACHINE, N+S: COMBINATION OF NB AND SVM). t: NUMBER OF TASK

CLASSES. g: NUMBER OF ATTRIBUTES. a: ACCURACY. p: MICRO

PRECISION. r: MICRO RECALL.

shown in Table I. Dyo1 contains 218 task instances collected

from 14 participants, and distributed among the following

task classes: “filling the official journey form”, “filling the

official cost recompense form for the official journey”,

“creating an application for leave”, “planning an official

journey” and “organizing a project meeting”. Dyo2 and

Dyo3 contain the same 140 task instances, collected from

one user, but are based on different task classes. In Dyo2

the classes are: “email reading/writing”, “paper writing”,

“search”, “documentation writing” and “collecting informa-

tion”. In Dyo3 the classes are: “email communication”, “or-

ganizational/administrative task”, “writing a document” and

“read”. The two datasets used for evaluating TaskPredictor 1

[20] contain 96 and 81 tasks respectively (one instance per

class), performed by two users. In APOSDLE [19] a single

user recorded several instances of the following task classes:

“market analysis”, “product design and specification”, “find

and contact suppliers”, “contract placement” and “triggering

production”.

Table I presents an overview of the classification con-

figuration leading to the best results achieved by those

approaches. All of them involve the window title feature,

which proved to be very efficient based on the obtained

accuracy and/or precision. It shows that no classifier clearly

stands up as an obvious best choice. In terms of number of

attributes used for building the training instances, it seems

that about 200-300 are sufficient to achieve good results.

III. USER INTERACTION CONTEXT

A. Recording and Modeling the User Context

Our view of the “user context” goes along with Dey’s

definition that context is “any information that can be used

3

Fig. 1. The concepts of the user interaction context ontology (UICO) visualized in the Protégé tool. This figure shows in the left area the action dimension,
in the right area the resource dimension, and in the bottom area the user dimension.

to characterize the situation of entities that are considered

relevant to the interaction between a user and an application,

including the user and the application themselves” [15]. We

refine Dey’s perspective by focusing on the user interaction

context that we define as “all interactions of the user with

resources, applications and the operating system on the

computer desktop”.

The conceptual representation we propose for the user

interaction context is the semantic pyramid [17]. At the

bottom of the pyramid are events that result from the user’s

interactions with the computer desktop. Above are event-

blocks, which are sequences of events that belong logically

together, each event-block connecting the user’s actions

associated with a specific resource acted upon. At the top are

tasks, which are grouping of event-blocks representing well-

defined steps of a process, that cannot be divided into sub-

tasks, and in which only one person is involved. The layers

of the semantic pyramid represent the different aggregation

levels of the user’s actions.

Context observation mechanisms are used to capture the

behavior of the user while working on her computer desktop.

Low-level operating system and application events initiated

by the user are recorded by context observers. This is similar

to the approach followed in the contextual attention metadata

area [23] and in context observation research in general

[10], [19], [11], [12]. We have implemented multiple context

sensors for the Microsoft Windows operating system and

standard applications used by knowledge workers. For more

details the interested reader is referred to [21].

B. User Interaction Context Ontology (UICO)

A context model is needed for storing the user context

data in a machine processable form. Various context model

approaches have been proposed, such as key-value models,

markup scheme models, graphical models, object oriented

models, logic-based models, or ontology-based models [24].

However, the ontology-based approach has been advocated

as being the most promising one [25], [24] mainly because

of its dynamicity, expressiveness and extensibility.

We have defined a User Interaction Context Ontology

(UICO) containing 107 concepts (classes) and 281 proper-

ties, divided into 224 datatype properties and 57 objecttype

properties. The UICO is modeled following a bottom up

approach: its concepts and properties represent the user

interaction context derived from the data captured by the

context sensors and from the results of the algorithms an-

alyzing this data. Our ontology is modeled in OWL-DL1,

using the Protégé tool2. The ontology web language (OWL)

is a W3C standard widely accepted in the Semantic Web

community for modeling ontologies. A visualization of the

UICO concept hierarchy (sub-class relation) in Protégé is

given in Figure 1. Four dimensions can be identified in the

UICO:

• The action dimension consists of concepts representing

user actions, task states and models:

– The Action concept is refined by the sub-

concepts Event, EventBlock and Task. Ex-

1http://www.w3.org/2004/OWL/
2http://protege.stanford.edu

4

amples of user Event sub-concepts are Print,

Close, Save, Copy, Paste, Cut, Post,

Reply, Forward and WebSearch.

– The different types of task states are bor-

rowed from the Nepomuk Task Management

Model [26]. In this model, a task can be

New, Running, Suspended, Completed,

Terminated, Finalized or Archived.

– The only model available at the moment is the

TaskModel which is used to categorize a task.

• The resource dimension contains concepts used

for representing resources available on the computer

desktop. Examples of possible Resource are

File, TextDocument, Presentation,

Spreadsheet, OnlineResource, E-Mail,

Folder, Organization, Location, and

Person. Relations can be defined between concepts

of the resource dimension and of the action dimension

for modeling on which resources what kind of user

actions are executed, via the objecttype property

isActionOn.

• The application dimension is a “hidden” dimension

in the sense that it is not modeled as concepts in the

UICO. However, each user interaction happens within

the focus of a certain application, and thus the Event

concept holds information about the user interaction

with an application through the datatype properties

hasApplicationName and hasProcessId. Stan-

dard applications that run on the Microsoft Windows

desktop usually consist of graphical user interface (GUI)

elements. Console applications also have GUI elements

such as the window itself, scroll bar(s) and buttons

for minimizing, maximizing and closing the applica-

tion. Most of the GUI elements have an associated

accessibility object which can be accessed by context

sensors. Datatype properties of the Event concept hold

information about the interactions with GUI elements.

In the sequel we show that these accessibility objects

play an important role in automatic task detection.

A resource being normally accessed and manipulated

by the user within an application, there is a relation

between the resource dimension and the application

dimension, which is indirectly captured through the re-

lations the action dimension has with both the resource

and application dimensions.

• The user dimension contains only the User and

Session concepts. It is related to the action dimension

in the sense that each Action is associated with

a User via the objecttype relation hasUser. The

Session concept represents session and user login

information.

C. Automatic Population of the Context Ontology

The contextual information sent by the context sensors

is used as a basis for populating the context ontology, i.e.

instantiating its concepts. The whole user interaction context

detection pipeline is visualized in Figure 2. The Event

Fig. 2. Overview of the user interaction context detection pipeline, from
(1) the context sensors that capture the user interaction context, to (3)
the populated user interaction context model, via (2) automatic model
population mechanisms (event creation and aggregation, resource discovery,
etc.).

concept can be directly instantiated by the sensor data. In

order to instantiate the EventBlock concept, events have

first to be aggregated, using application-specific as well as

generic static rules and heuristics. A Task concept is related

to all concepts instantiated during the execution of a task, and

can be labelled once the task has been classified.

As an event-block represents a sequence of events asso-

ciated with the same resource, its creation heavily relies

on the resource discovery process. We use three different

techniques for discovering resources. (i) The regular ex-

pression approach identifies resources in the sensor data

based on specific character sequences predefined as regular

expressions. This is used to identify files, folders, web links

and email addresses for example. (ii) The information ex-

traction approach extracts person, location and organization

entities in text-based elements of the sensor data, using

the KnowMiner framework [27]. (iii) The direct resource

identification approach finds data about a potential resource

directly in the sensor data, and build the resource by directly

mapping certain fields of the sensor data to properties of the

Resource concept.

These three techniques produce what we call used re-

sources, in the sense that the user has interacted with them.

We are also interested in unveiling relations between these

used resources, and with other resources. We say that a

resource is an included resource if its content is part of

the content of another resource. A resource is a referenced

resource if it is mentioned and identified in the content

of another resource (e.g. names of persons, locations and

organizations, paths of folders and files, URLs of web pages

and email addresses).

D. Task Classification

Performing task detection classically consists in training

classification/learning algorithms on classes corresponding to

task models. This means that each training instance presented

to the machine learning algorithms represents a task that has

to be “labelled”. Thus, training instances have to be built

from features and feature combinations derived from the user

context data at the task level. In the case of our ontology-

based approach, this means deriving features from the data

5

Fig. 3. Overview of the task detection pipeline: (1) the models populated
with user context data, namely the semantic pyramid populated with a task
(T) and its associated event-blocks (EB) and events (E), and below the
corresponding part of the populated UICO, namely a Task concept and its
associated concepts (actions, resources, etc.) as well as the relations between
them; (2) the construction of features representing a task instance and their
transformation into attributes (referred to as feature engineering); (3) the
classification of the task instance.

associated with a Task concept. An overview of the task

detection pipeline is shown in Figure 3.

Based on our UICO, we have engineered 50 features

for constructing the training instances (see Figure 4). They

are grouped in six categories: (i) action, (ii) application,

(iii) content, (iv) ontology structure, (v) resource and (vi)

switching sequences. The action category represents the user

interactions and contains features about the interactions with

applications [17], resources types, resources, key input types

(navigational keys, letters, numbers), the number of events

and event blocks, the duration of the event blocks, and

the time intervals between event blocks. The application

category contains the classical window title feature [17],

[19], [11], [12], the application name feature [17] and the

newly introduced accessibility objects features. The content

category consists of features representing the content of task-

related resources, the content in focus and the text input of

the user. The ontology structure category contains features

representing the number of instances of concepts and the

number of datatype and objecttype relations used per task.

The resource category includes the complete contents and

URIs [20] of the used, referenced and included resources,

as well as a feature that combines all the metadata about

the used resources in a ‘bag of words’. The switching se-

quence category comprises features about switches between

applications, resources, event types and resource types.

We use the machine learning toolkit Weka [22] for parts

of the feature engineering and classification processes. The

following steps are performed to preprocess the content of

text-based features (in this sequence): (i) remove end of line

characters, (ii) remove markups, e.g. \&lg and ![CDATA,

(iii) remove all characters but letters, (iv) remove German

and English stopwords, (v) remove words shorter than three

characters. We transform text-based features into attributes

with the StringToWordVector function of Weka, and

for numeric features we apply the Weka PKIDiscretize

filter.

IV. VALIDATING THE UICO APPROACH

For validating our UICO approach we designed two inde-

pendent experiments. The first one involved tasks similar to

those studied in previous datasets, as elaborated in Section V.

By similar we mean that, the objectives of the tasks were

also dependent on applications and resources. For the second

experiment described in Section VI we removed this depen-

dency by designing tasks with a great amount of freedom.

In both experiments we asked computer science students

from Graz University of Technology to perform the tasks.

They allowed the observation of their user interaction context

during their task executions and made it freely available

for the evaluations described in this paper. We considered

these students as being experts of the investigated domain:

“tasks of computer science students at Graz University of

Technology”

Four laboratory notebooks were prepared for the

experiments. We installed the operating system Microsoft

Windows (XP or Vista), and the following software packages

commonly used by computer science students during their

curriculum: Microsoft Office, Internet Explorer, integrated

development environments (Eclipse 3.x, MS Visual Studio

2008, NetBeans 6.x), editors (Emacs, JEdit++, Notepad++,

Vim, Microsoft Notepad) compilers (C, C++, C#, Java,

Python, Perl, Ruby) and our user interaction context

observation prototype 3 [28].

Methodology for Task Detection Analysis

In our task detection experiments, we use classic machine

learning algorithms from text classification. Besides, we

assess their performance with the same evaluation methodol-

ogy, to ensure results comparability. The following parame-

ters are varied in order to evaluate their influence on the task

detection performance: (i) the learning algorithm, (ii) the set

of used features and (iii) the number of attributes generated

from the features. Furthermore, the set of used features is

varied by including (i) each feature individually, (ii) each

feature category individually, (iii) all feature categories or

(iv) the Top k best performing single features, with k ∈
{2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20}.

The evaluated learning algorithms are: Naı̈ve Bayes (NB),

Linear Support Vector Machine (SVM) with cost param-

eter c ∈ {2−5, 2−3, 2−1, 20, 21, 23, 25, 28, 210}, J48 deci-

sion tree (J48), and k-Nearest Neighbor (KNN) with k ∈
{1, 5, 10, 35}. The different values for the number of neigh-

bors k are introduced in order to explore the task detection

performance with different decision boundaries. The values

of the cost parameter for the SVM are borrowed from the

libSVM practical guide4. The Weka machine learning library

[22] and the Weka integration of the libSVM5 provide the

necessary tool set to evaluate these algorithms.

3A demo storyboard of the prototype is available at http://purl.
oclc.org/NET/knowse/ectel2009demo

4http://www.csie.ntu.edu.tw/~cjlin/libsvm/
5http://www.cs.iastate.edu/~yasser/wlsvm/

6

Fig. 4. Overview of all features (and their respective feature categories) engineered from our User Interaction Context Ontology (UICO).

For each learning algorithm l, each feature category φ

and each feature f , the g attributes having the highest

Information Gain value (IG) are selected. Information gain

attribute selection is used because (i) it is one of the

fastest and most popular algorithms in the text classification

field, and (ii) “pre-evaluations” with more advanced attribute

selection methods showed little improvement. As values for

g, 50 different measure points are used. Half of them are

equally distributed over the available number of attributes

with an upper bound of 5000. The other half is defined by

G = {3, 5, 10, 25, 50, 75, 100, 125, 150, 175, 200, 250, 300,
500, 750, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 5000,

7500, 10000}, the upper bound being 10000 or the maxi-

mum number of attributes available, whichever is less. The

choice of these specific measuring points is motivated by

two reasons. First, previous evaluations of task detection

performance reported that good results were achieved with

a low number of attributes (about 200-300) [17], [19], [20],

and hence we put a special focus on similar numbers of

attributes. Second, we also want to investigate the influence

of using higher numbers of attributes on task classification.

The method used for evaluating the learning algorithms is

stratified 10-fold cross-validation. We computed statistical

values for each fold as well as the mean and standard

deviation of each value across the folds. The training set

and test set instances are strictly parted (i.e. constructed and

preprocessed independently) to avoid any bias. Each learning

algorithm is then trained on the training set and evaluated

on the test set for each fold. For each task we build a

training/test instance.

Comparing our UICO approach to the TaskPredictor 1,

SWISH and Dyonipos approaches cannot be done directly,

for the construction of the training instances differs in term of

granularity. In SWISH window switching algorithms deter-

mine the boundaries of a training instance. In TaskPredictor

Window-Document Segments (WDSs) are built to make a

prediction. In Dyonipos one training instance per event block

is constructed. In our approach, we construct one training

instance for each task. Since the number of training instances

per class has an influence on the classification accuracy,

we focus the comparison of the different approaches on the

feature engineering part. We borrow the context features used

by the mentioned approaches, and apply the same feature

preprocessing techniques as published in [11] for SWISH,

[20] for TaskPredictor and [17] for Dyonipos.

V. EXPERIMENT 1: COMPARING THE UICO APPROACH

WITH PREVIOUS WORK

A. Experiment Design

The goal of our first laboratory experiment was to analyze

the capabilities of automatic task detection for computer

science tasks in a controlled setting with tasks similar to

those already studied in related datasets (see Section II). We

first interviewed computer science students in order to gather

typical tasks they perform during their university curriculum.

Then, during our first workshop, four selected computer

science students discussed these tasks and chose eight of

them as being the most representative. During our second

workshop, the same students performed the tasks, to estimate

their duration. We discarded the longest knowledge intensive

task in order to not exceed 90 minutes per recording session

. Thus seven task classes were studied: four were considered

as routine tasks (Task 1: Register for an examination, Task

2: Finding course dates, Task 3: Reserve a book in the

university library, Task 4: Course registration) and three as

knowledge intensive tasks (Task 5: Algorithm programming,

Task 6: Prepare a scientific talk, Task 7: Plan a study trip).

Ten computer science students participated in the experiment.

Each subject executed each task twice (in a different order),

but six task instances were lost, due to a software failure.

7

The final dataset thus contains 134 tasks (see Table II for

the exact distribution of the task instances).

Task Class Task Instances

1 Register for an examination 19
2 Finding course dates 20
3 Reserve a book in the university library 20
4 Course registration 17
5 Algorithm programming 20
6 Prepare a scientific talk 19
7 Plan a study trip 19

Dataset 134

TABLE II

TASK INSTANCE DISTRIBUTION IN EXPERIMENT 1.

B. Evaluating Task Detection Performance

Table III presents the task detection performance results

of the UICO and the related approaches. The best accuracy

values were approximately between 90% and 95% for the

various feature categories, single best features, top k feature

combinations, as well as for the related approaches. These

results confirm that task detection can be performed with

high accuracy via machine learning algorithms, and that

the window title has a high discriminative power (as shown

previously by the SWISH, Dyonipos and TaskPredictor 1 ap-

proaches). Using this feature alone, it was possible to achieve

an accuracy of 88.13%. We can also confirm that a small

portion of the whole attribute set associated with a feature

combination is sufficient for obtaining a good classification.

For example, considering the top six features, using 100

attributes (compared to the 7970 attributes available) resulted

in an accuracy of 94%. More generally, the range of 200-

300 attributes suggested by the Dyonipos and TaskPredictor

1 approaches (see Table I) seems a good choice.

We also evaluated the task detection performance resulting

from classifying routine task instances (among four task

classes) and knowledge intensive task instances (among three

task classes) independently, by splitting the dataset. The

accuracy achieved was 94.64% for routine tasks and 100%

for knowledge intensive tasks. However this last result is

not well supported, for two reasons: (i) this was only a

three-class classification problem, and (ii) the task classes

involved were too different, such that it was too easy for the

classifiers to find distinguishing attributes to train on. Even

though the accuracy value itself is controversial, this result

shows that knowledge intensive tasks could be detected as

well as routine tasks.

A deeper analysis of the attributes involved in the classifi-

cation models unveil three interesting peculiarities. First, the

most discriminative attributes originating from the window

title feature belong to the university information system

that was used to perform Tasks 1-4: these attributes trans-

lates in English into “registration”, “course” and “library”.

Second, regarding Tasks 5-7, the application name feature

discriminates easily between them, since each task involves

a different kind of application: an integrated development

environment or the command line for Task 5, Microsoft

PowerPoint for Task 6, and Microsoft Internet Explorer for

Task 7. Third, five of the top ten features are related to the

resources involved during task executions, and the Resource

Category (encompassing all resource-related features) shows

an accuracy of 87.91%. This suggests that resources play

an important role in classifying tasks, which was already

recognized by the Task Predictor 1 approach in its use of

the file path feature.

Since specific applications and resources seem to play a

major role in classifying tasks, we wanted to study whether

this was also the case for tasks involving a high degree of

freedom, i.e. tasks that do not rely on the use of certain

applications or specific resources to be completed.

VI. EXPERIMENT 2: DETECTING KNOWLEDGE

INTENSIVE TASKS

A. Experiment Design

Our second laboratory experiment was performed similarly

to the first one (see Section V), in the same domain, but

focused on investigating automatic task detection applied to

usage data observed during the execution of knowledge in-

tensive tasks only. The CommonKADS knowledge intensive

task classification [29] was used to define the task classes.

Eight task classes were chosen, instantiating eight categories

of the CommonKADS classification: Classification: “Classify

a list of computer science terms to hardware and software”,

Diagnosis: “Find the origin of a malfunction in a computer

program”, Assessment: “Assess whether a student has to

pay tuition fees based on her/his application”, Prediction:

“Predict the questions of an exam based on historical data”,

Design: “Create a simple conceptual design for the software

of an elevator system”, Assignment: “Assign students to study

groups lead by study assistants”, Planning: “Plan a software

project for the development of a document management

system”, Scheduling: “Create a schedule for the design and

development of an electronic library book lending system”.

Eighteen computer science students participated in the

experiment. Before performing the tasks, they had to confirm

they understood the task instructions. As they had to work

on a laboratory computer, they were given ten minutes to get

familiar with its capabilities and the installed programs. They

were especially instructed to use the computer as much as

possible, and not to use any other resource, such as pen and

paper. Each subject executed each task once (within subjects

experiment design) in a specific order generated randomly,

but some of them forgot to perform a task. Besides, due

to an operating system failure, some of the tasks were lost.

The final dataset contains 132 tasks (see Table IV for the

distribution of the task instances).

B. Evaluating Task Detection Performance

Table V presents the task detection performance results of

the UICO and the related approaches. The highest accuracy

(86.43%) was achieved by combining the Top 6 features.

The Top 6 features were the following: (i) accessibility

8

RS f l g a p r RG

Feature Categories

1 All Categories NB 2500 94.84 0.99 0.95 2
2 Application Category NB 500 93.30 0.99 0.94 6
3 Resource Category J48 200 87.91 0.97 0.87 12
4 Ontology Structure Category J48 359 81.59 0.96 0.82 14
5 Action Category NB 250 80.49 0.96 0.81 15
6 Switching Sequence Category NB 100 73.85 0.94 0.73 21
7 Content Category J48 75 50.88 0.85 0.49 23

Single Features

1 used resource metadata J48 300 90.33 0.98 0.91 8
2 accessibility object name NB 50 88.79 0.98 0.89 10
3 window title J48 75 88.13 0.98 0.89 11
4 datatype properties J48 221 82.14 0.96 0.83 13
5 resource type interactions J48 27 79.07 0.95 0.79 16
6 accessibility object value KNN 75 78.35 0.95 0.79 17
7 resource interactions NB 50 76.15 0.95 0.75 18
8 used resource interactions NB 50 75.49 0.94 0.76 19
9 used resource URI NB 125 74.73 0.94 0.74 20

10 application interactions J48 65 72.31 0.93 0.71 22

Top k Features
1 Top 6 J48 100 94.07 0.99 0.94 3
2 Top 15 NB 4000 94.01 0.99 0.94 4
3 Top 5 NB 175 93.35 0.99 0.94 5

Dyonipos 1 content of document + window title NB 125 95.49 0.99 0.96 1
TaskPredictor 1 2 file path + web page URL + window title NB 300 93.24 0.99 0.92 7
Swish 3 window title J48 50 88.90 0.98 0.89 9

TABLE III

OVERVIEW OF THE BEST TASK DETECTION RESULTS FOR THE FIRST LABORATORY EXPERIMENT (7 TASK CLASSES), EVALUATED BY STRATIFIED

10-FOLD CROSS-VALIDATION FOR EACH FEATURE CATEGORY, FOR EACH SINGLE FEATURE, FOR THE k TOP PERFORMING FEATURES COMBINED, AND

FOR THE RELATED APPROACHES. THE LEARNING ALGORITHM (l), THE NUMBER OF ATTRIBUTES (g), THE ACCURACY (a), THE MICRO PRECISION (p),

THE MICRO RECALL (r), THE RANKING IN THE CORRESPONDING SECTION (RS) AND ACROSS SECTIONS (RG) ARE ALSO GIVEN.

Task Class Task Instances

1 Classification 17
2 Diagnosis 15
3 Assessment 19
4 Prediction 16
5 Design 18
6 Assignment 16
7 Planning 16
8 Scheduling 15

Dataset 132

TABLE IV

TASK INSTANCE DISTRIBUTION IN EXPERIMENT 2.

object name, (ii) window title, (iii) used resource metadata,

(iv) accessibility object value, (v) application interactions

and (vi) concept instances. This was about 20% better than

the best results obtained with the Dyonipos and the Task

Predictor 1 approaches, and about 30% better than with

the SWISH approach that makes use of the window title

alone. It is important to note that, although the tasks had

a high degree of freedom and could be completed with

different kind of applications and resources, high accuracy

levels in detecting them were still possible. This confirms

the choice of utilizing machine learning algorithms for the

“task detection” problem.

C. Features Discriminating knowledge intensive Tasks

Even though the window title was the second best perform-

ing feature (cf. Table V) its performance in this experiment

was much lower than in the first one (cf. Table III). While

the precision was almost as high as in the first experiment,

the accuracy value was about 25% lower, and the recall

value was about 0.25 lower, in the second experiment. The

low recall value indicates that only a small number of the

task instances belonging to a given class were correctly

classified. As a result, the Dyonipos, TaskPredictor 1 and

SWISH approaches, that strongly focus on the window title,

did not perform as well in this experiment as in the first one.

The lower performance of the window title suggests that it

may not present a good discriminative power while analyzing

tasks involving a high degree of freedom.

In comparison to the window title feature, the accessibility

object name feature (which represents the number of inter-

actions of the user with the names of graphical user interface

elements of an application) shows a higher accuracy, a higher

precision and a higher recall. It seems from the results of

both experiments that the accessibility object name is highly

discriminative, for tasks with or without a high degree of

freedom.

The resource-specific features (resource type interactions,

resource interactions and used resource interactions) that

9

RS f l g a p r RG

Feature Categories

1 All Categories J48 10000 85.00 0.97 0.86 4
2 Application Category J48 500 80.38 0.96 0.81 5
3 Resource Category J48 1500 62.86 0.92 0.64 10
4 Action Category NB 250 60.71 0.90 0.60 12
5 Content Category J48 250 59.78 0.91 0.60 14
6 Switching Sequence Category NB 1173 54.51 0.88 0.52 17
7 Ontology Structure Category KNN 75 53.02 0.88 0.54 18

Single Features

1 accessibility object name J48 175 80.27 0.96 0.82 6
2 window title J48 250 63.57 0.91 0.64 9
3 used resource metadata J48 2000 61.43 0.91 0.60 11
4 accessibility object value J48 100 60.55 0.92 0.62 13
5 application interactions J48 50 54.67 0.89 0.58 16
6 concept instances KNN 10 52.09 0.86 0.51 19
7 content in focus J48 150 48.52 0.85 0.49 20
8 content of EB NB 712 47.91 0.86 0.51 21
9 datatype properties J48 221 47.69 0.85 0.48 22

10 used resource URI NB 150 46.21 0.83 0.45 23

Top k Features
1 Top 6 J48 1500 86.43 0.98 0.86 1
2 Top 20 J48 10000 85.66 0.97 0.84 2
3 Top 7 J48 2000 85.49 0.98 0.86 3

Dyonipos 1 content of document + window title SVM 500 66.04 0.93 0.66 7
TaskPredictor 1 2 file path + web page URL + window title J48 150 63.85 0.92 0.64 8
Swish 3 window title J48 414 56.76 0.91 0.61 15

TABLE V

OVERVIEW OF THE BEST TASK DETECTION RESULTS FOR THE SECOND LABORATORY EXPERIMENT (8 TASK CLASSES), EVALUATED BY STRATIFIED

10-FOLD CROSS-VALIDATION FOR EACH FEATURE CATEGORY, FOR EACH SINGLE FEATURE, FOR THE k TOP PERFORMING FEATURES COMBINED, AND

FOR THE RELATED APPROACHES. THE LEARNING ALGORITHM (l), THE NUMBER OF ATTRIBUTES (g), THE ACCURACY (a), THE MICRO PRECISION (p),

THE MICRO RECALL (r), THE RANKING IN THE CORRESPONDING SECTION (RS) AND ACROSS SECTIONS (RG) ARE ALSO GIVEN.

are part of the Top 10 features of Experiment 1, are not

among the Top 10 features of Experiment 2. This suggests

that taking away the resource dependency of the tasks,

i.e. allowing more freedom in the choice of the resources

used during task execution, results in a lower discriminative

power of resource-specific features. This is confirmed by

the fact that the used resource metadata feature (which is

built based on the metadata about the resources the user

has interacted with) shows a very good performance in

Experiment 1 (90.33% accuracy) but only a moderate one in

Experiment 2 (61.43% accuracy). Similarly to the window

title, its precision is high and its recall is low.

The following six features show a good performance for

both experiment datasets: accessibility object name, win-

dow title, used resource metadata, application interactions,

datatype properties and used resource URI.

D. Discussion

On our two datasets we analyzed the performance of four

different classifiers (Naı̈ve Bayes, Linear Support Vector

Machine, J48 decision tree and k-Nearest Neighbor) with

various parameter settings (see Section IV). As a result,

we observe that the Naı̈ve Bayes and the J48 decision tree

algorithms perform globally better than the Linear Support

Vector Machine and the k-Nearest Neighbor algorithms.

More precisely, on the first dataset the Naı̈ve Bayes algorithm

performed best with the features suggested by the Dyonipos

approach with an accuracy of 95.49%. The J48 decision tree

algorithm was second with an accuracy of 94.07% with the

“Top 6 features” combination of our approach. (cf. Table

III). On the second dataset the J48 decision tree algorithm

achieved the best results, far ahead of the other classifiers

(cf. Table V). We have then performed a more detailed

comparison of the four classifiers, on different fixed settings

applied to our two datasets (cf. Table VI). This comparison

confirms the superiority of Naı̈ve Bayes and J48 decision

tree.

In the first experiment, the number of attributes selected

for the best runs of the classifiers was generally below 500,

except for the feature combinations “All Categories” and

“Top 15 features” (cf. Table III). This is quite low, especially

compared to what was obtained in the second experiment,

where the best settings include numbers of attributes higher

than 500 (cf. Table V). A possible explanation for this

increase may be the higher degree of freedom involved in the

tasks performed: in order to handle this higher freedom the

classifier model requires more attributes for distinguishing

the tasks.

Our method for finding the best task detection setting in

the context of the UICO approach involved the evaluation

of all feature categories, all single features, and various

combinations of the best performing features, so-called Top

k features (with different values for k). We limited our

10

Feature(s) J48 KNN NB SVM

Experiment 1

UICO (All Categories) 91.15 (125) 89.62 (300) 94.84 (2500) 54.34 (3)
UICO (Top 6 features) 94.07 (100) 89.62 (200) 92.64 (500) 55.93 (3)
Dyonipos (C W) 89.56 (100) 93.96 (100) 95.49 (125) 93.30 (50)
SWISH (W) 88.90 (50) 83.85 (25) 83.52 (150) 62.03 (5)
TaskPredictor 1 (W P U) 88.96 (175) 86.65 (125) 93.24 (300) 53.79 (3)

Experiment 2

UICO (All Categories) 85.00 (10000) 61.32 (2500) 64.34 (10000) 51.37 (10)
UICO (Top 6 features) 86.43 (1500) 61.65 (2500) 59.12 (1500) 41.04 (5)
Dyonipos (C W) 62.31 (175) 61.37 (200) 63.02 (300) 66.04 (500)
SWISH (W) 56.76 (414) 51.70 (75) 49.45 (414) 36.32 (5)
TaskPredictor 1 (W P U) 63.85 (150) 52.97 (175) 56.10 (175) 27.25 (25)

TABLE VI

OVERVIEW OF THE ACCURACY VALUES OBTAINED BY THE DIFFERENT CLASSIFIERS (J48: J48 DECISION TREE, NB: NAÏVE BAYES, KNN:

k-NEAREST NEIGHBOR, SVM: LINEAR SUPPORT VECTOR MACHINE) IN DIFFERENT SETTINGS. FOR EACH SETTING, THE BEST ACCURACY IS

HIGHLIGHTED. THE NUMBER OF ATTRIBUTES IS GIVEN BETWEEN BRACKETS NEXT TO THE ACCURACY VALUE. THE ABBREVIATED FEATURES ARE:

W - WINDOW TITLE, C - CONTENT OF DOCUMENT, P - FILE PATH, U - WEB PAGE URL.

evaluation to these feature combinations because of time

constraints, since computing all combinations of the 50

available features is not reasonable with today’s computing

power. In this work, we have reduced the number of possible

combinations by suggesting a set of six features. We consider

finding a good combination of features for specific tasks of

a given domain as fine tuning task classification, and we

believe that there is not a unique feature combination that

would be the best one for all settings.

VII. CONCLUSION AND FUTURE WORK

We have presented here our ontology-based user task

detection approach. We have performed two large-scale

laboratory experiments for evaluating its performance and

for studying more thoroughly the problem of detecting

knowledge intensive tasks. Compared to previous work,

our approach achieved good accuracy levels. It specially

confirmed that the classical window title feature shows good

discriminative power for task classification. However, we

showed that this was valid mainly for simple tasks. When

more sophisticated knowledge intensive tasks are considered,

the window title shows its limitation, and feature combina-

tions with more features have to be considered in order to

achieve good classification results. Similarly, the number of

attributes used for constructing the training instances has to

be increased.

In our second experiment, we isolated a combination

of six features that present a good discriminative power.

However, we do not claim that this combination would

perform equally well on another dataset. Our message is

rather that, better results are not necessarily achieved with

feature combinations with a large number of features. We

argue that, from the set of features we have defined, small-

sized combinations showing a good discriminative power can

be identified. In that sense, we see our approach as being

adaptable, since it allows to tune the task detection settings

based on the studied domain.

We plan to run more task detection experiments

focused on knowledge intensive tasks in order to answer

the important research question: “Which tasks can be

automatically detected with a good accuracy?”. We are

interested in finding a combination of classifiers and

features that achieves good results on a standard desktop

computer, at a low computational cost. We also plan

to study whether a classifier trained on context data

recorded from a single “expert” could provide good

results while applied to task instances recorded from

several users. We will also investigate unsupervised

learning mechanisms for identifying boundaries in the user

interaction context data, in order to classify these clusters

into task classes. Our aim is to develop a real-time task

detection application respecting the computational power

available on standard desktop computers. We envision a

knowledge services framework6 that provides a variety of

intelligent and contextualized knowledge services [28], [30],

such as context-aware/task-based information retrieval, user

interruptibility, visual reflection, as well as personal and

organizational information and task management.

Acknowledgments

The Know-Center is funded within the Austrian COMET

Program - Competence Centers for Excellent Technologies

- under the auspices of the Austrian Ministry of Transport,

Innovation and Technology, the Austrian Ministry of Eco-

nomics and Labor and by the State of Styria. COMET is

managed by the Austrian Research Promotion Agency FFG.

REFERENCES

[1] S. Greenberg, “Context as a dynamic construct,” Human-Computer

Interaction, vol. 16, no. 2, pp. 257–268, 2001.
[2] J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan, “Context is key,”

Communications of the ACM, vol. 48, no. 3, pp. 49–53, 2005.
[3] J. Callan, J. Allan, C. L. A. Clarke, S. Dumais, D. A. Evans,

M. Sanderson, and C. Zhai, “Meeting of the MINDS: an information
retrieval research agenda,” ACM SIGIR Forum, vol. 41, no. 2, pp. 25–
34, 2007.

6http://en.know-center.at/forschung/knowledge services

11

[4] J. C. Tang, J. Lin, J. Pierce, S. Whittaker, and C. Drews, “Recent
shortcuts: using recent interactions to support shared activities,” in
Proc. CHI ’07, 2007, pp. 1263–1272.

[5] W. Jones, P. Klasnja, A. Civan, and M. L. Adcock, “The personal
project planner: planning to organize personal information,” in Proc.

CHI ’08, 2008, pp. 681–684.
[6] T. Catarci, A. Dix, A. Katifori, G. Lepouras, and A. Poggi, “Task-

centered information management,” in Proc. DELOS ’07, 2007, pp.
253–263.

[7] K. D. Fenstermacher, “Revealed processes in knowledge manage-
ment,” in Proc. WM ’05, 2005, pp. 443–454.

[8] L. Sauermann, A. Bernardi, and A. Dengel, “Overview and outlook on
the semantic desktop,” in Workshop on the Semantic Desktop, ISWC

’05, 2005.
[9] M. Van Kleek, M. Bernstein, D. R. Karger, and M. Schraefel, “Gui –

phooey!: the case for text input,” in Proc. UIST ’07, 2007, pp. 193–
202.

[10] A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. McLaughlin, L. Li,
and J. L. Herlocker, “TaskTracer: a desktop environment to support
multi-tasking knowledge workers,” in Proc. IUI ’05, 2005, pp. 75–82.

[11] N. Oliver, G. Smith, C. Thakkar, and A. C. Surendran, “SWISH:
semantic analysis of window titles and switching history,” in Proc.

IUI ’06, 2006, pp. 194–201.
[12] J. Shen, J. Irvine, X. Bao, M. Goodman, S. Kolibaba, A. Tran,

F. Carl, B. Kirschner, S. Stumpf, and T. G. Dietterich, “Detecting
and correcting user activity switches: algorithms and interfaces,” in
Proc. IUI ’09, 2009, pp. 117–126.

[13] W. M. P. van der Aalst and A. J. M. M. Weijters, “Process mining: a
research agenda,” Computers and Industry, vol. 53, no. 3, pp. 231–244,
2004.

[14] A. Schmidt, “Bridging the gap between knowledge management and
e-learning with context-aware corporate learning solutions,” in Proc.

WM ’05, 2005, pp. 203–213.
[15] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual framework

and a toolkit for supporting the rapid prototyping of context-aware
applications,” Human Computer Interaction, vol. 16, no. 2, pp. 97–
166, 2001.

[16] M. Dredze, T. Lau, and N. Kushmerick, “Automatically classifying
emails into activities,” in Proc. IUI ’06, 2006, pp. 70–77.

[17] M. Granitzer, A. S. Rath, M. Kröll, C. Seifert, D. Ipsmiller, D. De-
vaurs, N. Weber, and S. Lindstaedt, “Machine learning based work task
classification,” Journal of Digital Information Management, vol. 7,
no. 5, pp. 306–314, 2009.

[18] A. Gutschmidt, C. H. Cap, and F. W. Nerdinger, “Paving the path to
automatic user task identification,” in Workshop on Common Sense

Knowledge and Goal-Oriented Interfaces, IUI ’08, 2008.
[19] R. Lokaiczyk, A. Faatz, A. Beckhaus, and M. Goertz, “Enhancing

just-in-time e-learning through machine learning on desktop context
sensors,” in Proc. CONTEXT ’07, 2007, pp. 330–341.

[20] J. Shen, L. Li, T. G. Dietterich, and J. L. Herlocker, “A hybrid learning
system for recognizing user tasks from desktop activities and email
messages,” in Proc. IUI ’06, 2006, pp. 86–92.

[21] A. S. Rath, N. Weber, M. Kröll, M. Granitzer, O. Dietzel, and
S. N. Lindstaedt, “Context-aware knowledge services,” in Workshop

on Personal Information Management, CHI ’08, 2008.
[22] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning

Tools and Techniques, 2nd ed. San Francisco, USA: Morgan
Kaufmann, 2005.

[23] M. Wolpers, J. Najjar, K. Verbert, and E. Duval, “Tracking actual
usage: the attention metadata approach,” Educational Technology &

Society, vol. 10, no. 3, pp. 106–121, 2007.
[24] T. Strang and C. Linnhoff-Popien, “A context modeling survey,” in

Workshop on Advanced Context Modelling, Reasoning and Manage-

ment, UbiComp ’04, 2004.
[25] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware

systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, no. 4, pp. 263–277, 2007.

[26] T. Groza, S. Handschuh, K. Möller, G. Grimnes, L. Sauermann,
E. Minack, C. Mesnage, M. Jazayeri, G. Reif, and R. Gudjónsdóttir,
“The NEPOMUK project - on the way to the social semantic desktop,”
in Proc. I-Semantics ’07, 2007, pp. 201–211.

[27] W. Klieber, V. Sabol, M. Muhr, R. Kern, G. Öttl, and M. Granitzer,
“Knowledge discovery using the KnowMiner framework,” in Proc.

IADIS ’09, 2009.
[28] A. S. Rath, D. Devaurs, and S. N. Lindstaedt, “Contextualized knowl-

edge services for personalized learner support,” in Proc. Demo. EC-

TEL ’09, 2009.

[29] G. Schreiber, H. Akkermans, A. Anjewierden, R. Dehoog, N. Shadbolt,
W. Vandevelde, and B. Wielinga, Knowledge Engineering and Man-

agement: The CommonKADS Methodology. The MIT Press, 1999.
[30] A. S. Rath, D. Devaurs, and S. N. Lindstaedt, “Knowse: Fostering user

interaction context awareness,” in Demo Proc. ECSCW ’09, 2009.

