
HAL Id: hal-00872201
https://hal.science/hal-00872201

Submitted on 11 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Studying the factors influencing automatic user task
detection on the computer desktop

Andreas S. Rath, Didier Devaurs, Stefanie N. Lindstaedt

To cite this version:
Andreas S. Rath, Didier Devaurs, Stefanie N. Lindstaedt. Studying the factors influencing automatic
user task detection on the computer desktop. European Conference on Technology Enhanced Learning
(EC-TEL 2010), Sep 2010, Barcelona, Spain. pp. 292-307. �hal-00872201�

https://hal.science/hal-00872201
https://hal.archives-ouvertes.fr


Studying the Factors Influencing Automatic User Task

Detection on the Computer Desktop

Andreas S. Rath1, Didier Devaurs2, and Stefanie N. Lindstaedt1,3

1 Know-Center GmbH., Inffeldgasse 21A, 8010 Graz

{arath,slind}@know-center.at
http://www.know-center.at

2 CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France and

Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

devaurs@laas.fr

http://www.laas.fr
3 Knowledge Management Institute,

Graz University of Technology, Inffeldgasse 21A, 8010 Graz

http://www.kmi.tugraz.at.at

Abstract. Supporting learning activities during work has gained momentum for

organizations since work-integrated learning (WIL) has been shown to increase

productivity of knowledge workers. WIL aims at fostering learning at the work-

place, during work, for enhancing task performance. A key challenge for enabling

task-specific, contextualized, personalized learning and work support is to auto-

matically detect the user’s task. In this paper we utilize our ontology-based user

task detection approach for studying the factors influencing task detection per-

formance. We describe three laboratory experiments we have performed in two

domains including over 40 users and more than 500 recorded task executions.

The insights gained from our evaluation are: (i) the J48 decision tree and Naı̈ve

Bayes classifiers perform best, (ii) six features can be isolated, which provide

good classification accuracy, (iii) knowledge-intensive tasks can be classified as

well as routine tasks and (iv) a classifier trained by experts on standardized tasks

can be used to classify users’ personal tasks.

1 Introduction

Learning activities frequently occur within work processes [5]. The work-integrated

learning (WIL) paradigm [14, 23] takes these observations seriously and sees learning

as a dimension of work. One goal of WIL is to foster learning during work in order to

enhance task performance. For assisting the learner in this kind of learning situation her

user profile [6, 25], her interests [7], her competencies [11], and her user context [12,

19, 27] are utilized to improve the quality of support mechanisms. If her current task is

automatically detected, the user can be supported with task specific learning and work

material such as the retrieval of learning objects [4] or suggestions on course material,

links, documents, or topical experts [12]. Hence it is important to know and understand

what the user is working on or is trying to achieve. The user context includes all infor-

mation that can be used to characterize the user’s current situation [2] which also in-

cludes the user’s current task. Automatic user task detection is an important challenge in



2

the area of user context detection [18]. The classical approach is to model task detection

as a machine learning problem. However, the main focus has been so far on using only

text-based features and switching sequences [3, 8, 9, 15, 16, 21, 22], which do not rely

on ontology-based user context models. A recent exception is our ontology-based user

task detection approach [18] for which we have already shown that it improves the task

detection accuracy compared to the existing task detection approaches SWISH [16],

Dyonipos [8] and TaskPredictor 1 [22].

In this paper, we utilize our ontology-based user task detection approach in order

to unveil which features and classifiers are showing a high automatic task detection

performance across three independent datasets. More specifically, our main objective is

to study the factors influencing the performance of task detection: (i) the used learning

algorithm, (ii) the features chosen for constructing the training instances, (iii) the kind

of tasks to be classified and (iv) the method chosen for training the learning algorithms.

Confronted with the lack of standard datasets and of controlled user studies in the task

detection field, we have designed and run three laboratory experiments with multiple

users from two different domains, for collecting task detection datasets.

Studying the influence of the type of tasks to be classified is important for increas-

ing our understanding of the “task detection phenomenon” itself. Can any kind of task

be classified? Can we expect similar performance when classifying routine tasks and

knowledge-intensive tasks? Studying the influence of the training method on the per-

formance of classifiers can help to address the classical “cold start problem”. Can a

classifier, trained on standard tasks performed by experts, be used to classify users’ per-

sonal tasks? The importance of studying the influence of the learning algorithm and of

the chosen features lies in the fact that, in a productive scenario, it is not possible to use

all available algorithms and features, because of the resulting computational cost. Our

goal is to find a combination of features and classifiers that achieves good results on a

standard desktop computer.

The rest of the paper is organized as follows. First, we outline our approach for

recording and modeling the user context, based on our user interaction context on-

tology. Second, we present our ontology-based user task detection approach and our

methodology for evaluating its performance. Third, we describe our three experiments

and the gathered datasets. Fourth, we detail the results of our evaluation, based on the

influencing factors previously mentioned. Finally, we draw our conclusions and present

some future work.

2 User Interaction Context Detection

Our view of the “user context” goes along with Dey’s definition that context is “any

information that can be used to characterize the situation of entities that are consid-

ered relevant to the interaction between a user and an application, including the user

and the application themselves” [2]. We refine Dey’s perspective by focusing on the

user interaction context that we define as “all interactions of the user with resources,

applications and the operating system on the computer desktop” [18].

A model is needed for storing the user context data in a machine processable form.

Various context model approaches have been proposed, such as key-value models,



3

markup scheme models, graphical models, object oriented models, logic-based mod-

els, or ontology-based models [24]. However, the ontology-based approach has been

advocated as being the most promising one [1, 24] mainly because of its dynamicity,

expressiveness and extensibility. We have defined a user interaction context ontology

(UICO) [18] which represents the user interaction context through 88 concepts, 215

datatype and 57 objecttype properties. It is modeled in the ontology web language

(OWL)4, a W3C standard for modeling ontologies widely accepted in the Semantic

Web community. The majority of concepts represents the types of user interactions and

the types of resources. The high number of datatype properties represent data and meta-

data about resources and application user interface elements the user interacted with.

The objecttype properties relate (i) the user interactions with resources, (ii) resources

with other resources or parts of resources and (iii) user interactions with themselves for

modeling the aggregation of user interactions. The highly connected UICO is therefore

naturally enabling both: (i) a variety of context-aware applications and (ii) “mining”

activities for in-depth analyzes of user characteristics, actions, preferences, interests,

goals, etc. For a detailed description of the UICO we refer to [17, 18].

2.1 Automatic Population of the User Interaction Context Ontology

Context observation mechanisms are used to capture the behavior of the user while

working on her computer desktop, i.e. performing tasks. Low-level operating system

and application events initiated by the user while interacting with her desktop, are

recorded by context observers. The data about the occurred events is then sent as an

XML stream to the context capturing framework for discovering resources and for ag-

gregating events (single user interactions) to event blocks (continuous sequence of user

interactions on the same resource). This is similar to the contextual attention metadata

approach [27] and to context observation in general [15, 18, 21, 22].

Context observers, also referred to as context sensors, are programs, macros and

plug-ins that record the user’s interactions on the computer desktop. We developed a

broad range of context sensors for standard office applications and the operating system

Microsoft Windows (XP, Vista and 7). A complete list of sensors is given in [17]. The

sensed contextual data sent by the context sensors is used as a basis for automatically

populating the UICO. Automatic population here means an autonomous instantiation

of concepts and creation of properties between concept instances of the UICO based

on the observed and the automatically inferred user interaction context. The automatic

population exploits the structure of user interface elements of standard office applica-

tions and preserves data types and relationships through a combination of rule-based,

information extraction and supervised learning techniques. We also use our knowledge

discovery framework, the KnowMiner [10] to perform named entity recognition of per-

sons, locations and organizations as well as for extracting data and metadata of various

resource types. Hence, the UICO is a much richer representation of the user interac-

tion context than is typically stored in attention metadata sensor streams [27] since it

preserves relationships that otherwise are lost.

4 http://www.w3.org/2004/OWL/



4

This rich representation of the user interaction context is exploited for machine-

learning based task detection as described in the next section. At this point we would

like to note that a rule-based aggregation of user actions into tasks might be a reasonable

approach for highly-structured tasks, such as administrative or routine tasks, but this is

obviously not appropriate for tasks that involve a certain freedom and creativity in their

execution, e.g. for knowledge-intensive tasks such as “Planning a journey” or “Writing

a research paper”. To handle such unstructured tasks the idea is to automatically extract

a task from the information available in the ontology by means of machine learning

techniques. Once detected, these tasks will also populate the ontology.

3 User Task Detection

Here, by task detection we mean task class detection also referred to as task classifi-

cation, as opposed to task switch detection. Task switch detection involves predicting

when the user switches from one task to another [16, 21]. Task classification deals with

the challenge of classifying usage data from user task execution into task classes or

task types. Automatic task detection is classically modeled as a machine learning prob-

lem, and more precisely a classification problem. This method is used to recognize Web

based tasks [9], tasks within emails [3, 22] or tasks from the complete user’s computer

desktop [8, 15, 16, 21, 22].

Classically, solving this classification problem is based on the following steps: (i)

The user context data is captured by system and application sensors. (ii) Features, i.e.

parts of this data, are chosen to build classification training instances, which is done at

the task level. (iii) To obtain valid inputs for machine learning algorithms, these features

are first transformed into attributes [26]. This transformation may include data prepro-

cessing operations, such as removing stopwords [8, 15] and application specific terms

[16], or constructing word vectors. (iv) Attribute selection [8, 22] (optional step) is per-

formed to select the best discriminative attributes. (v) Finally, classification/learning

algorithms are trained and tested.

Beyond this well-accepted procedure, two major limitations within the user task

detection field still have to be addressed. First, the focus of the previously mentioned

approaches so far has been on using only text-based features and switching sequences,

which do not rely on sophisticated models. Second, standard datasets for the evaluation

of task detection approaches are still missing, as well as a representative number of

controlled user studies. We address this point in the next section. Regarding the first

limitation, it has been recently shown that using an ontology-based context model can

increase the performance of automatic task detection [18]. This new approach has been

named ontology-based user task detection. We extend this work, and study in detail the

influence of using an ontology-based user interaction context model on task detection.

3.1 Ontology-Based User Task Detection

As mentioned previously, performing task detection consists in training machine learn-

ing algorithms on classes corresponding to task models. This means that each train-

ing instance presented to the machine learning algorithms represents a task that has to



5

Fig. 1. Overview of all features (and their respective feature categories) engineered from our User

Interaction Context Ontology (UICO).

be “labeled”. Thus, training instances have to be built from features and feature com-

binations derived from the user context data at the task level. In our ontology-based

approach, this means deriving features from the data associated with a Task concept.

Based on our UICO, we have engineered 50 features for constructing the training

instances (see Figure 1). They are grouped in six categories: (i) action, (ii) application,

(iii) content, (iv) ontology structure, (v) resource and (vi) switching sequences. The

action category represents the user interactions and contains features about the inter-

actions with applications [8], resources types, resources, key input types (navigational

keys, letters, numbers), the number of events (E) and event blocks (EB), the duration

of the event blocks, and the time intervals between event blocks. The application cat-

egory contains the classical window title feature [8, 15, 16, 21], the application name

feature [8] and the newly introduced accessibility objects features. The content cate-

gory consists of features representing the content of task-related resources, the content

in focus and the text input of the user. The ontology structure category contains features

representing the number of instances of concepts and the number of datatype and ob-

jecttype relations used per task. The resource category includes the complete contents

and URIs [22] of the used, referenced and included resources, as well as a feature that

combines all the metadata about the used resources in a ‘bag of words’. The switching

sequences category comprises features about switches between applications, resources,

event types and resource types.

We use the machine learning toolkit Weka [26] for parts of the feature engineer-

ing and classification processes. The following steps are performed to preprocess the

content of text-based features (in this sequence): (i) remove end of line characters, (ii)

remove markups, e.g. \&lg and ![CDATA, (iii) remove all characters but letters, (iv)

remove German and English stopwords, (v) remove words shorter than three characters.

For numeric features, we apply the Weka PKIDiscretize filter to replace discrete



6

values by intervals. We transform text-based features into vectors of words with the

StringToWordVector function of Weka.

3.2 Methodology for Performance Evaluation

In all our task detection experiments, we use learning algorithms considered as classi-

cal in the text classification area. Besides, we study their performance with the same

evaluation methodology, to ensure the comparability of results across the different ex-

periment’s datasets. In all our experiments, the following parameters are varied in order

to evaluate their influence on the task detection performance: (i) the learning algorithm,

(ii) the set of used features and (iii) the number of attributes generated from the features.

Furthermore, the set of used features is varied by including (i) each feature individually,

(ii) each feature category individually, (iii) all feature categories or (iv) the Top k best

performing single features, with k ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20}.

The evaluated learning algorithms are: Naı̈ve Bayes (NB), Linear Support Vector

Machine (SVM) with cost parameter c ∈ {2−5, 2−3, 2−1, 20, 21, 23, 25, 28, 210}, J48

decision tree (J48), and k-Nearest Neighbor (KNN-k) with k ∈ {1, 5, 10, 35}. The dif-

ferent values for the number of neighbors k are introduced in order to explore the task

detection performance with different decision boundaries. The values of the cost param-

eter for the SVM are borrowed from the libSVM practical guide5. The Weka machine

learning library [26] and the Weka integration of the libSVM6 provide the necessary

tool set to evaluate these algorithms based on standard classification evaluation mea-

sures [26], such as accuracy, precision, recall and f1-measure.

For each learning algorithm l ∈ L, each feature category φ ∈ Φ and each fea-

ture f ∈ F , the g attributes having the highest Information Gain value (IG) are se-

lected. Information gain attribute selection is used because (i) it is one of the fastest

and most popular algorithms in the text classification field, and (ii) “pre-evaluations”

with more advanced attribute selection methods showed little improvement. As values

for g, 50 different measure points are used for analyzing the required number of at-

tributes for high task detection accuracy values. Half of them are equally distributed

over the available number of attributes with an upper bound of 5000. The other half is

defined by G = {3, 5, 10, 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 500, 750, 1000,
1500, 2000, 2500, 3000, 3500, 4000, 5000, 7500, 10000}, the upper bound being 10000

or the maximum number of attributes available, whichever is less. The choice of these

specific measuring points is motivated by two reasons. First, previous evaluations of

task detection performance reported that good results were achieved with a low number

of attributes (about 200-300) [8, 15, 22], and hence we put a special focus on similar

numbers of attributes. Second, we also want to investigate the influence of using higher

numbers of attributes on task classification.

Two methods are used for evaluating the learning algorithms. First, a stratified 10-

fold cross-validation is performed: statistical values for each fold are computed, as well

as the mean and standard deviation of each value across the folds. Second, a training

and test set evaluation is performed. The training and test sets are constructed based on

5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
6 http://www.cs.iastate.edu/~yasser/wlsvm/



7

the specific research question investigated in each experiment (see next section). The

training set and test set instances are strictly parted (i.e. constructed and preprocessed

independently) to avoid any bias. Each learning algorithm is then trained on the training

set and evaluated on the test set.

We use two different techniques for isolating the best features or feature combi-

nations, as well as the best classifiers: (i) dominance matrices and (ii) paired t-tests.

Similar cross-datasets comparison methods have been proposed for evaluating learning

algorithms on text categorization [28] and for evaluating hierarchical clustering algo-

rithms on multiple document datasets [29]. The feature (resp. classifier) dominance

matrix computes how often a feature or feature combination (resp. a classifier) outper-

forms another one. We say that a feature/feature combination (resp. classifier) outper-

forms another one if one of the following conditions (tested in this order) is satisfied: (i)

higher accuracy (ii) higher micro precision, (iii) higher micro recall, (iv) lower number

of attributes. We perform paired t-tests to study the statistic significance of the results

achieved by the classifiers, based on: (i) their accuracy and (ii) the micro f-measures.

We perform the paired t-tests at three different significance levels (α = 0.005, α = 0.01

and α = 0.5) using the Apache Commons Mathematics Library7.

4 Experiments

4.1 Related Work and Datasets

In SWISH [16] about four hours of real usage data observed from a single user was

recorded, which gave five different tasks. In Dyonipos [8] about 140 tasks were col-

lected from one user. The dataset used for evaluating TaskPredictor 1 [22] contains 177

tasks performed by two users, and the one used for evaluating TaskPredictor 2 [21]

contains 304 tasks performed by two users (user 1: 299 tasks, user 2: 5 tasks). These

datasets show several limitations for studying task detection and drawing conclusions

about the performance of classifiers and features. Besides the small number of users,

and the fact that each dataset relates to only one domain, a more critical issue is that no

task classes were defined prior to the data collection and that the gathered tasks were

labeled only afterwards and not by the user. An exception is an experiment performed

in the APOSDLE project [15], in which business task classes such as market analysis,

product design and specification, find and contact suppliers, contract placement and

triggering production were predefined. But again this experiment was limited to one

user and one domain. This is because of the poorness of these datasets that we decided

to perform several experiments in laboratory settings, with multiple users from different

domains, and with several predefined task classes. The experiments are only briefly de-

scribed here because of space limitations. Further details about the design and settings

of the experiments can be found in [17].

4.2 First Laboratory Study

The initial objective of Task Experiment 1 was to study the influence on task detection

of the computer environment in which tasks were performed. Users had to execute sim-

7 http://commons.apache.org/math/



8

ilar tasks both in a controlled environment, namely on a single laboratory computer, and

on their personal workstations. 14 probands, within the working domain of the Know-

Center GmbH, participated in the experiment, which produced 218 tasks. Additional

tasks were performed by one of the users, who was playing the role of the expert, which

increased the total number of tasks to 271. The idea was to also evaluate the perfor-

mance of a classifier trained only on tasks performed by the expert. The experiment

was exploratory, the comparison was within subjects and the manipulations were tar-

geting (i) the computer environment, (ii) the type of task (standard vs. personal and

routine vs. knowledge-intensive) and (iii) the task class.

The first manipulation was achieved by varying the work environment, i.e. the com-

puter desktop environment in which the participants performed their tasks. The first

environment was a laboratory computer on which a set of standard software used in

the company was installed. The second one was the company’s personal workstations

of the users, with their personal desktop settings and with access to their personal files,

folders, bookmarks, emails, etc. All participants performed the same set of tasks in both

environments, but half of them started on the laboratory computer, and the others started

on their personal workstations. All assignments of the users were randomized.

The second manipulation was based on the task type. The two dichotomies we in-

troduced between task types were: (i) routine task vs. knowledge-intensive task and (ii)

standard task vs. personal task. A “standard task” is a task executed by the user on be-

half of a persona (i.e. an artificial person) that we named “Bill Adams”, as opposed to

a “personal task” which is performed by the user for herself. All participants performed

each task both in a standard and in a personal way, and the fact of starting with the

standard or the personal task was randomly chosen.

The third manipulation resulted from the choice of studying five task classes, cho-

sen by the users as being typical of their domain. Three of them were considered as

routine tasks (Filling in the official journey form (55 tasks), Filling in the cost recom-

pense form (45 tasks), Creating an application for leave (51 tasks)) and the other two

as knowledge-intensive tasks (Planning an official journey (52 tasks), Organizing a

project meeting (15 tasks)). The figures in the brackets represent the number of task

executions for each task recorded in the experiment. The order in which the users had

to execute the tasks was randomly generated.

4.3 Second Laboratory Study

Task Experiment 2 was designed similarly to Task Experiment 1, but was performed in

another domain and with different task classes. 10 probands from the Computer Science

Department of the Graz University of Technology participated in the experiment, which

produced 134 tasks. Seven task classes were studied which resulted in the following

recorded dataset: four were considered as routine tasks (Registering for an exam (19

tasks), Finding course dates (20 tasks), Reserving a book from the university library (20

tasks), Registering for a course (17 tasks)) and the other three as knowledge-intensive

tasks (Programming an algorithm (20 tasks), Preparing a scientific talk (19 tasks),

Planning a study trip (19 tasks)).



9

4.4 Third Laboratory Study

Task Experiment 3 was designed to study the possibility of classifying knowledge-

intensive tasks and to evaluate the influence of the task type (analytic or synthetic)

on task detection. The task classes we used were borrowed from the CommonKADS

knowledge-intensive task classification [20]. 18 probands from the Computer Science

Department of the Graz University of Technology participated in the experiment, which

produced 132 tasks. The experiment was within subjects. The first manipulation was

achieved by varying the type of the knowledge-intensive task, namely analytic task or

synthetic task, as defined by the CommonKADS task classification. The second manip-

ulation was performed by varying the subtypes of analytic and synthetic task classes.

Recording the user interaction context for these task classes led to the following dataset:

Analytic tasks: Classification: “Classify a list of computer science terms to hard-

ware and software” (17 tasks), Diagnosis: “Find the origin of a malfunction in a com-

puter program” (15 tasks), Assessment: “Assess whether a student has to pay tuition

fees based on her/his application” (19 tasks), Prediction: “Predict the questions of an

exam based on historical data” (16 tasks).

Synthetic tasks: Design: “Create a simple conceptual design for the software of

an elevator system” (18 tasks), Assignment: “Assign students to study groups led by

study assistants” (16 tasks), Planning: “Plan a software project for the development of

a document management system” (16 tasks), Scheduling: “Create a schedule for the

design and development of an electronic library book lending system” (15 tasks).

5 Evaluation of Task Detection Performance

Globally over the three datasets, the different task instances could be classified with

a high accuracy, by using the stratified 10-fold cross-validation method. The levels of

accuracy achieved were 88.55% for Dataset 1, 94.84% for Dataset 2 and 86.43% for

Dataset 3 (see Table 1). However it is important to note that these high accuracy levels

were reached by finding, for each dataset, the best task detection setting among all pos-

sible settings, obtained by varying the classifier, the set of used features and the number

of attributes. Even though the best results were generally achieved by considering the

set of all 50 features or a combination of the best performing features, there was not

one setting that could perform best across experiments. Exploring all possible settings

for reaching high accuracy levels is obviously not realistic within a productive scenario.

Thus, with the idea of trying to reduce the space of possible task detection settings in

mind, we will now analyze individually each factor that can have an influence on task

detection.

5.1 Influence of the Task Type

Standard Tasks vs. Personal Tasks A “standard task” is a task executed by the user

on behalf of a persona, as opposed to a “personal task” which is performed by the

user for herself. By having several users executing the same standard task, very similar

task instances were expected, all those instances having a common specific goal (e.g.



10

Table 1. Overview of all task detection performance results of the three laboratory experiments.

Evaluations Exp. 1 Exp. 2 Exp. 3

Stratified 10-Fold Cross-Validation

Detection of the Task Model (5/7/8 Classes) 88.55% 94.84% 86.43%

Routine vs. Knowledge-Intensive Tasks (2 Classes) 94.94% 100.00% -

Routine Tasks (4 Classes) - 94.64% -

Knowledge-Intensive Tasks (3 Classes) - 100.00% -

Standard Tasks (5/7 Classes) 88.41% 98.57% -

Personal Tasks (5/7 Classes) 86.00% 94.05% -

Analytic vs. Synthetic Tasks (2 Classes) - - 94.73%

Analytic Tasks (4 Classes) - - 97.14%

Synthetic (4 Classes) - - 85.24%

Train/Test Set Evaluation

Personal Tasks based on Standard Task (5/7 Classes) 77.14% 92.42% -

“Planning the trip of Bill Adams to EC-TEL 2010”) contrary to personal tasks. Thus, it

could seem easier to detect standard tasks than personal tasks. We evaluated this in Task

Experiments 1 and 2, by trying to classify standard task instances (among 5 task classes)

or personal task instances (among 7 task classes) independently, using the stratified 10-

fold cross-validation method. We found only a small difference in the achieved accuracy

values, of about 3.5% in favor of standard tasks.

In Task Experiments 1 and 2, we also evaluated the performance of task detection

while training the classifiers on standard task instances and testing them on personal

task instances. We obtained the accuracy values of 77.14% and 92.42% respectively,

with 5 and 7 task classes respectively involved. These results suggest that training on

task instances sharing a common specific goal is sufficient for classifying personal task

instances. These results are also strongly supported by the facts that (i) the datasets of

Tasks Experiments 1 and 2 included 218 task instances (113 standard / 105 personal)

and 134 task instances (68 standard / 66 personal) respectively, (ii) Tasks Experiments 1

and 2 involved 14 and 10 users respectively and (iii) these experiments were performed

in two different domains. The conclusion we can draw from this result is that a classifier

trained by a group of experts on standard tasks performs well while classifying personal

tasks performed by users.

Routine Tasks vs. Knowledge-Intensive Tasks In Experiments 1 and 2, we investi-

gated the possibility of distinguishing routine tasks from knowledge-intensive tasks. We

evaluated our learning algorithms on this two-class classification problem, by using the

stratified 10-fold cross-validation method. We reached the accuracy levels of 94.94%

and 100% for Tasks Experiments 1 and 2 respectively. This shows that task instances

could easily be classified between routine tasks and knowledge-intensive tasks.

It could seem easier to detect routine tasks than knowledge-intensive tasks, since

the latter involve more freedom and should produce very different task instances. We



11

evaluated this in Task Experiment 2, by trying to classify routine task instances (among

4 task classes) or knowledge-intensive task instances (among 3 task classes) indepen-

dently, using the stratified 10-fold cross-validation method. The accuracy achieved was

of 94.64% for routine tasks and 100% for knowledge-intensive tasks. However this last

result is not well supported for two reasons: (i) this was only a three-class classification

problem and (ii) the task classes involved were too different such that it was too easy

for the classifiers to find distinguishing features to train on. Even though the accuracy

value itself is controversial, this result shows that knowledge-intensive tasks could be

detected as well as routine tasks.

Analytic Tasks vs. Synthetic Tasks Task Experiment 3 was designed to understand

better what kinds of knowledge-intensive tasks could be detected. We used the di-

chotomy between analytic and synthetic tasks, as defined in the CommonKADS classi-

fication for knowledge-intensive tasks [20]. We first studied the two-class classification

problem consisting in distinguishing analytic tasks from synthetic tasks, by using the

stratified 10-fold cross-validation method. We obtained an accuracy of 94.73%, show-

ing that these two classes could easily be distinguished.

We also studied the detectability of various task classes of each type (analytic vs.

synthetic), by trying to classify analytic task instances (among 4 task classes) or syn-

thetic task instances (among 4 task classes) independently, using the stratified 10-fold

cross-validation method. The accuracy achieved was 97.14% for analytic tasks and

85.24% for synthetic tasks. Again this shows that knowledge-intensive tasks can be

well classified by our approach.

5.2 Influence of Context Features and Feature Categories

Based on the evaluations performed on our three datasets, we can study the stability of

the performance achieved by each feature and each feature category (see Table 1). By

computing a dominance matrix for each experiment (based on how often a feature/fea-

ture category outperforms the others) a ranking of the features/feature categories can

be obtained. An overview of the results, for the top 22 features/feature categories is

presented in Table 2. Those are the features/feature categories that appear in the top 15

ranking produced by at least one dataset.

Several interesting insights are provided by Table 2. First, the good representation

of features and feature categories engineered based on our ontology clearly signals the

positive influence on the task detection performance of adopting our UICO approach.

Second, the best results are achieved by the Application Category and by the combina-

tion of all 50 features (All Categories). The fact that the Application Category performs

slightly better also shows that it is not true that: “The more features are considered, the

better the achieved classification accuracy is”. Third, the single features achieving the

best results are the accessibility object name and the window title. Besides, the standard

deviation of the accessibility object name feature is one of the lowest, which indicates

the good stability of its performance across datasets. The fact that the accessibility ob-

ject name feature, which is specific to our UICO approach, performs slightly better than

the well-known window title feature also signals the benefits of making use of the fea-

tures derived from the accessibility objects. Accessibility objects are associated with



12

Table 2. Computation of the ranking of the features and feature categories. The global ranking

RG is given by the average µR of the rankings of the features/feature categories for all the task

detection evaluations shown in Table 1 based on the three datasets (R1, R2 and R3) and by the

standard deviation δR in case of a draw.

RG Feature / Feature Category R1 R2 R3 µR δ2R δR

1 Application Category 1 2 2 1.67 0.33 0.58

2 All Categories 3 1 1 1.67 1.33 1.15

3 accessibility object name 4 4 3 3.67 0.33 0.58

4 window title 2 3 6 3.67 4.33 2.08

5 Resource Category 6 7 4 5.67 2.33 1.53

6 used resource metadata 9 6 5 6.67 4.33 2.08

7 accessibility object value 5 12 8 8.33 12.33 3.51

8 Action Category 13 5 7 8.33 17.33 4.16

9 datatype properties 8 9 10 9.00 1.00 1.00

10 Ontology Structure Category 10 8 11 9.67 2.33 1.53

11 Switching Sequences Category 20 11 9 13.33 34.33 5.86

12 accessibility object role 15 15 15 15.00 0.00 0.00

13 resource type interactions 19 10 16 15.00 21.00 4.58

14 Content Category 7 27 12 15.33 108.33 10.41

15 application interactions 21 16 13 16.67 16.33 4.04

16 concept instances 22 14 14 16.67 21.33 4.62

17 resource interaction 31 13 15 19.67 97.33 9.87

18 content of EB 11 28 21 20.00 73.00 8.54

19 content in focus 12 30 18 20.00 84.00 9.17

20 accessibility object role description 14 25 30 23.00 67.00 8.19

21 used resource interaction 32 15 22 23.00 73.00 8.54

22 resource content 15 35 23 24.33 101.33 10.07

graphical user interface elements of applications, such as application windows and con-

trols8. For example the acc.object.name value of the close button of a Microsoft

Windows command window is “Close” and the acc.obj.description is “Closes

the window”. Fourth, if we reduce this table by considering only the features that appear

in the top 15 rankings produced by the three datasets, we can isolate what we consider

as being the best performing features: the accessibility object name feature, the window

title feature, the used resource metadata feature, the accessibility object value feature,

the datatype properties feature and the accessibility object role feature. Because of the

low standard deviation values associated with them, the performance of these six fea-

tures also proves to be stable across datasets. It is again worth noting that four of these

features are new and specific to our UICO approach.

5.3 Influence of the Classifier

By using all the evaluations performed on our three datasets, we can analyze the stabil-

ity of the performance achieved by each classifier (Naı̈ve Bayes, Linear Support Vector

Machine, J48 decision tree and k-Nearest Neighbor). By computing a dominance matrix

8 http://msdn.microsoft.com/accessibility



13

Table 3. Computation of the ranking of the classifiers. The global ranking RG is given by the

average µR of the classifier performances for all the task detection evaluations shown in Table 1

based on the three datasets (R1, R2 and R3). The standard deviation δR is also given.

RG Classifier R1 R2 R3 µR δ2R δR

1 J48 2 2 1 1.67 0.33 0.51

2 NB 1 1 5 2.33 5.33 2.04

3 KNN-5 4 5 2 3.67 2.33 1.5

4 KNN-35 6 4 3 4.33 2.33 0.69

5 KNN-1 5 6 4 5.00 1.00 1.00

6 KNN-10 7 3 6 5.33 4.33 1.58

7 SVM 3 7 7 5.67 5.33 0.77

for each experiment (based on how often a classifier outperforms the others) a ranking

of the classifiers can be obtained. An overview of the results is presented in Table 3. The

J48 classifier obtains the first rank and the lowest standard deviation. This indicates that

it is the most stable across datasets. The Naı̈ve Bayes algorithm performs best on the

first two datasets, but poorly on the third one, involving only knowledge-intensive tasks.

It seems that Naı̈ve Bayes cannot deal with the creative freedom inherent to knowledge-

intensive tasks. The Linear Support Vector Machine classifier performs rather well on

the first dataset, but is the worst on the two other datasets. The k-Nearest Neighbor al-

gorithm shows rather constant results, but performs slightly better on the third dataset.

Knowing that both Naı̈ve Bayes and Linear Support Vector Machine are linear clas-

sifiers, the fact that they perform rather badly on the third dataset, contrary to J48 and

k-Nearest Neighbor, might indicate that the decision boundary is non-linear in this case.

From the paired t-tests computed based on the classifiers achieved accuracy, we

can derive partial orders of these classifiers, for each dataset. For Tasks Experiments

1, 2 and 3 the resulting partial orders are {J48, NB} ≫ {KNN-1, KNN-5, KNN-10,

KNN-35} ≫ {SVM}, {NB} ≫ {J48, KNN-1, KNN-5, KNN-10, KNN-35} ≫ {SVM}
and {J48} ≫ {NB, KNN-1, KNN-5, KNN-10, KNN-35} ≫ {SVM} with ≫ indicating

a statistical significance on a α = 0.005 level. The J48 decision tree and Naı̈ve Bayes

classifiers globally outperform the k-Nearest Neighbor and Linear Support Vector Ma-

chine learners, which supports the result given in Table 3. Furthermore, the paired t-tests

we computed based on the micro f-measures, and which we omit here because of space

limitations, are similar and confirm this result.

5.4 Comparison with Related Work

The most popular features identified for having a high discriminative power among

tasks are the window title feature [8, 16, 22], the file path/web page url

feature [22], and the content in focus feature [8]. In our findings we confirm

the feature choice of these approaches and compare them to novel context features and

feature categories introduced by our approach (see Figure 1).



14

In terms of attributes used for training the machine learning algorithms an interval of

200-300 attributes is suggested to be sufficient by [8, 22]. Our results confirm that only

a small ratio of attributes are required to successfully identify tasks. The best overall

accuracies were obtained on the interval between 100-500 attributes. The results that

led to this interval cannot be presented here because of space limitation.

In the task detection experiments reported in [15] the SVM learning algorithm was

mentioned as the one with the highest achieved accuracy. In [8] the good performance

of the SVM learning algorithm was confirmed and the high accuracy achieved by the

KNN learner highlighted. On our datasets the SVM showed the worst accuracy and

f-measures. The good performance of the KNN learner can be confirmed. In contrast

with [8] the Naı̈ve Bayes learner performed very well across our experiment’s datasets.

5.5 Discussion

The generalizability to other tasks and domains of the results obtained by this research

work is limited because (i) only two domains with (ii) selected tasks were studied and

(iii) only a sample of experts of the domain were involved in the experiments. However,

this research work successfully discovered novel features and feature categories as well

as classifiers that showed a stable and high task detection performance. Further experi-

ments in other domains with other tasks and users are required in order to generalize.

The method for finding the best possible detectability of tasks for the UICO ap-

proach, comprising the evaluation of the feature categories, single performing features

and Top k best performing single features, is limited from a theoretical point of view,

in the sense that not all combinations of the 50 features were studied. However, from

a practical point of view it is not reasonable to compute all possible feature combina-

tions of 50 features, which would represent 250 − 1 ≈ 1.13 ∗ 1015 combinations. In our

research we have reduced the number of possible combinations by suggesting a set of

six features. Finding a good combination of features for specific tasks of a domain is

what we consider as fine tuning task classification. Besides, we believe that there is no

unique feature combination performing well for all settings.

We have tested four types of classifiers: Naı̈ve Bayes, k-Nearest Neighbors, Linear

Support Vector Machines and J48 decision trees. However, there are many more clas-

sifiers in the area of machine learning that could prove to show a good applicability to

the task detection problem.

6 Conclusion and Future Work

We have performed three laboratory experiments for evaluating the influence on our

ontology-based user task detection approach of the following factors: (i) the used clas-

sifier, (ii) the selected features, (iii) the task type and (iv) the method chosen for training

the classifiers. We have gained several insights from our evaluation. First, the J48 deci-

sion tree and Naı̈ve Bayes classifiers provide a better classification accuracy than other

classifiers, in our three experiments. Second, we have isolated six features that present a

good discriminative power for classifying tasks, which is stable across datasets. Third,

even though it could seem easier to classify routine tasks, our experiments show that



15

knowledge intensive tasks can be classified as well as routine tasks. Fourth, we have

shown that a classifier trained by a group of experts on standardized tasks performs

well while classifying personal tasks performed by users.

Our goal is to find a combination of classifiers and features that achieves good re-

sults on a standard desktop computer. In future work we will investigate in combining

unsupervised learning mechanisms for identifying boundaries in the user interaction

context data based on the discovered context features and applying the J48 decision

tree and Naı̈ve Bayes learning algorithms for classifying these clusters to task classes.

Open questions we will address are (i) in which intervals should a clustering take place,

(ii) are the context features that worked well in supervised learning also applicable in

an unsupervised learning setting and (iii) develop a real-time task detection application

respecting the computational power available on standard desktop computers. Accurate

automatic task detection will allow a more reliable construction of fine-grained user

profiles about the user’s interests, competencies, learning goals and knowledge indicat-

ing events, extending what we have already shown in [13].

Acknowledgments

The Know-Center is funded within the Austrian COMET Program - Competence Cen-

ters for Excellent Technologies - under the auspices of the Austrian Federal Ministry

of Transport, Innovation and Technology, the Austrian Federal Ministry of Economy,

Family and Youth and by the State of Styria. COMET is managed by the Austrian Re-

search Promotion Agency FFG.

References

1. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. International

Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

2. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the

rapid prototyping of context-aware applications. Human Computer Interaction 16(2), 97–166

(2001)

3. Dredze, M., Lau, T., Kushmerick, N.: Automatically classifying emails into activities. In:

Proc. IUI ’06. pp. 70–77 (2006)

4. Duval, E., Hodgins, W.: A LOM research agenda. In: Proc. WWW ’03. pp. 1–9 (2003)

5. Eraut, M.: Informal learning in the workplace. Studies in Continuing Education 26(2), 247–

273 (2004)

6. Fischer, G.: User modeling in human-computer interaction. User Modeling and User-

Adapted Interaction 11(1-2), 65–86 (2001)

7. Goecks, J., Shavlik, J.: Learning users’ interests by unobtrusively observing their normal

behavior. In: Proc. IUI ’00. pp. 129–132 (2000)

8. Granitzer, M., Kröll, M., Seifert, C., Rath, A.S., Weber, N., Dietzel, O., Lindstaedt, S.N.:

Analysis of machine learning techniques for context extraction. In: Proc. ICDIM ’08. pp.

233–240 (2008)

9. Gutschmidt, A., Cap, C.H., Nerdinger, F.W.: Paving the path to automatic user task identifi-

cation. In: Workshop on Common Sense Knowledge and Goal-Oriented Interfaces, IUI ’08

(2008)



16

10. Klieber, W., Sabol, V., Muhr, M., Kern, R., Öttl, G., Granitzer, M.: Knowledge discovery

using the KnowMiner framework. In: Proc. IADIS ’09 (2009)

11. Ley, T., Ulbrich, A., Scheir, P., Lindstaedt, S.N., Kump, B., Albert, D.: Modelling compe-

tencies for supporting work-integrated learning in knowledge work. Journal of Knowledge

Management 12(6), 31–47 (2008)

12. Lindstaedt, S.N., Ley, T., Scheir, P., Ulbrich, A.: Applying scruffy methods to enable work-

integrated learning. European Journal of the Informatics Professional 9(3), 44–50 (2008)

13. Lindstaedt, S.N., Beham, G., Kump, B., Ley, T.: Getting to know your user - unobtrusive

user model maintenance within work-integrated learning environments. In: Proc. EC-TEL

’09. pp. 73–87 (2009)

14. Lindstaedt, S.N., Scheir, P., Lokaiczyk, R., Kump, B., Beham, G., Pammer, V.: Knowledge

services for work-integrated learning. In: Proc. EC-TEL ’08. pp. 234–244 (2008)

15. Lokaiczyk, R., Faatz, A., Beckhaus, A., Goertz, M.: Enhancing just-in-time e-learning

through machine learning on desktop context sensors. In: Proc. CONTEXT ’07. pp. 330–

341 (2007)

16. Oliver, N., Smith, G., Thakkar, C., Surendran, A.C.: SWISH: semantic analysis of window

titles and switching history. In: Proc. IUI ’06. pp. 194–201 (2006)

17. Rath, A.S.: User Interaction Context - Studying and Enhancing Automatic User Task Detec-

tion on the Computer Desktop via an Ontology-based User Interaction Context Model. Ph.D.

thesis, Graz University of Technology (2010)

18. Rath, A.S., Devaurs, D., Lindstaedt, S.N.: UICO: an ontology-based user interaction con-

text model for automatic task detection on the computer desktop. In: Workshop on Context,

Information and Ontologies, ESWC ’09 (2009)

19. Schmidt, A.: Impact of context-awareness on the architecture of e-learning solutions. In:

Architecture Solutions for E-Learning Systems, chap. 16, pp. 306–319. Information Science

Reference, IGI Publishing (2007)

20. Schreiber, G., Akkermans, H., Anjewierden, A., Dehoog, R., Shadbolt, N., Vandevelde, W.,

Wielinga, B.: Knowledge Engineering and Management: The CommonKADS Methodology.

The MIT Press, Cambridge, USA (1999)

21. Shen, J., Irvine, J., Bao, X., Goodman, M., Kolibaba, S., Tran, A., Carl, F., Kirschner, B.,

Stumpf, S., Dietterich, T.G.: Detecting and correcting user activity switches: algorithms and

interfaces. In: Proc. IUI ’09. pp. 117–126 (2009)

22. Shen, J., Li, L., Dietterich, T.G., Herlocker, J.L.: A hybrid learning system for recognizing

user tasks from desktop activities and email messages. In: Proc. IUI ’06. pp. 86–92 (2006)

23. Smith, P.J.: Workplace Learning and Flexible Delivery. Review of Educational Research

73(1), 53–88 (2003)

24. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Advanced

Context Modelling, Reasoning and Management, UbiComp ’04 (2004)

25. Ulbrich, A., Scheir, P., Lindstaedt, S.N., Görtz, M.: A context-model for supporting work-

integrated learning. In: Innovative Approaches for Learning and Knowledge Sharing. pp.

525–530. Springer (2006)

26. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques.

Morgan Kaufmann, San Francisco, USA, second edn. (2005)

27. Wolpers, M., Najjar, J., Verbert, K., Duval, E.: Actual usage: the attention metadata approach.

Educational Technology & Society 10(3), 106–121 (2007)

28. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proc. SIGIR ’99. pp.

42–49 (1999)

29. Zhao, Y., Karypis, G., Fayyad, U.: Hierarchical clustering algorithms for document datasets.

Data Mining and Knowledge Discovery 10(2), 141–168 (2005)


