
HAL Id: hal-00872187
https://hal.science/hal-00872187

Submitted on 11 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web-of-Things Gateways for KNX and EnOcean
Networks

Gérôme Bovet, Jean Hennebert

To cite this version:
Gérôme Bovet, Jean Hennebert. Web-of-Things Gateways for KNX and EnOcean Networks. Inter-
national Conference on Cleantech for Smart Cities & Buildings from Nano to Urban Scale (CISBAT
2013), Sep 2013, Lausanne, Switzerland. �hal-00872187�

https://hal.science/hal-00872187
https://hal.archives-ouvertes.fr

WEB-OF-THINGS GATEWAYS FOR KNX AND ENOCEAN
NETWORKS

Gérôme Bovet1,2; Jean Hennebert2,3

1LTCI, Telecom ParisTech, 46 rue Barrault, 75013 Paris, France
2CoSI, HES-SO//Fribourg, Bd. de Pérolles 80, 1700 Fribourg, Switzerland
3DIUF, University of Fribourg, Bd. de Pérolles 90, 1700 Fribourg, Switzerland

ABSTRACT

Smart buildings tend to democratize both in new and renovated constructions aiming
at minimizing energy consumption and maximizing comfort. They rely on dedicated
networks of sensors and actuators orchestrated by management systems. Those systems
tend to migrate from simple reactive control to complex predictive systems using self-
learning algorithms requiring access to history data. The underlying building networks
are often heterogeneous, leading to complex software systems having to implement all
the available protocols and resulting in low system integration and heavy maintenance
efforts. Typical building networks offer no common standardized application layer for
building applications. This is not only true for data access but also for functionality
discovery. They base on specific protocols for each technology, that are requiring expert
knowledge when building software applications on top of them. The emerging Web-of-
Things (WoT) framework, using well-known technologies like HTTP and RESTful APIs
to offer a simple and homogeneous application layer must be considered as a strong
candidate for standardization purposes. In this work, we defend the position that the
WoT framework is an excellent candidate to elaborate next generation BMS systems,
mainly due to the simplicity and universality of the telecommunication and application
protocols. Further to this, we investigate the possibility to implement a gateway allowing
access to devices connected to KNX and EnOcean networks in a Web-of-Things manner.
By taking advantage of the bests practices of the WoT, we show the possibility of a
fast integration of KNX in every control system. The elaboration of WoT gateways for
EnOcean network presents further challenges that are described in the paper, essentially
due to optimization of the underlying communication protocol.

Keywords: Smart Buildings, Web-of-Things, RESTful, KNX, EnOcean, Gateways

INTRODUCTION

In recent years, building management systems (BMS) have become very common in var-
ious types of buildings, such as offices, manufactures or even private households. Moti-
vated by raising energy costs and by the importance of the comfort, complex management
strategies have been developed. Modern BMS include many kinds of sensing and actuating
devices, managing the HVAC (Heating, Ventilation and Air Conditioning), the lightening,
doors opening, windows and blinds control, and also security access systems. Buildings
have become ”smart” and are now including complete information systems using dedi-
cated building management networks for communication, as for example KNX, BACnet,
or LonWorks. KNX is actually the most used network in Europe. Another emerging
standard for interconnecting sensors and actuators in buildings is EnOcean, principally

based on energy harvesting wireless technologies. Unfortunately, such building manage-
ment networks do not offer a standardised way to interact with devices connected to them
from an application point of view. Due to this, it becomes difficult to build BMS com-
bining multiple networks. This situation can be found in buildings where the network
should evolve with new devices that are not compatible with the actual one, or where
extending the wiring is not feasible because of physical constraints [1]. This is leading
to heterogeneous building management networks. While it exists gateways encapsulating
the specific telegrams of the building management network in IP packets, there is actually
no standard at the application level, resulting in the BMS having to understand and to
implement every network protocol.

Looking now at Internet and Web technologies, so called Web services are nowadays
widespread, able to make heterogeneous information systems (IS) interoperable. They
are platform independent and use well-known standards for structured data exchange.
The Simple Object Access Protocol (SOAP) is an example of Web service protocol speci-
fication relying on Extensible Markup Language (XML) for its message format and Hyper-
text Transfer Protocol (HTTP) for message negotiation and transmission. Unfortunately
SOAP is not well suited for accessing sensors and actuators that present severe constraints
in terms of memory and computing capacities. On the other hands, so-called Internet Of
Things (IoT) paradigms are now emerging to qualify small IP based communicating de-
vices. The latest development of IoT includes applications layers defining somehow how
programming interfaces can be elaborated on top of the HTTP protocol. This extension
of IoT principles is called Web-of-Things (WoT), offering new ways for accessing things
in a resource-oriented architecture (ROA) [3].

Trying to ease the development of applications using KNX devices has been explored in
different works. A first attempt was realized with the BCU SDK [4], which consists of
a script generating C++ classes representing devices capabilities. A more Web oriented
approach has been realized in [5]. The principle was to expose KNX functionalities as Web
services by using the oBIX (Open Building Information Exchange) standard, which is a
special XML schema for representing building data and operations. Unfortunately, oBIX
is not at all widespread in BMS, probably because of its relatively complex XML schema.
In addition to this, the proposed implementation does not allow an easy integration of
the gateway in an existing environment, requiring an important configuration effort for
large networks.

THE WEB-OF-THINGS

The Web-of-Things framework fills the gap left by the Internet-of-Things regarding the
application layer [2]. It is leveraging on well-accepted standards of the Web to build Appli-
cation Programming Interfaces (APIs) to things. In this framework, things are represent-
ing resources identified by URLs and manageable using the verbs of the HTTP protocol
to form the so-called RESTful APIs. In the WoT, every capability or property of a device
is considered as a resource. For example, a temperature sensor could return the measured
value both in Celsius and in Fahrenheit. More precisely, some resources can allow multiple
operations as read and write. So, we first need to be able to identify and address those re-
sources in a simple way before we can interact with them. This is realized by using URLs
in the same way as for retrieving Web pages on servers. An advantage of this approach is
in its hierarchical way to organize resources reflecting the physical world. This principle is

shown in figure 1. For accessing the Celsius temperature value, one would use the following
URL: http://<DOMAIN>:<PORT>/generic-nodes/1/sensors/temperature/celsius.

/genericNodes

/{genericNodes-n}

/sensors /actuators

/temperature /sensor ...

/celsius /fahrenheit

/leds /speakers /actuator ...

/volume/a /b

Figure 1: Resource hierarchy example of an abstract node

The domain part of the URL also allows to be hierarchically structured to match a
virtual abstract structure or a real physical organization. In the case of buildings, URLs
can give insights on the location of devices inside the organization by decomposing it
into sub-domains according to buildings, floors and rooms. For communicating with
endpoints, RESTful APIs are really the communication and application layers in the
WoT by leveraging the HTTP protocol. Unlike SOAP, HTTP is used as application
protocol and not only for transport. REST has several advantages over SOAP by having
less overhead and being resource oriented, which fits naturally with physical objects. With
the WoT paradigm, every object or thing is embedding a Web server exposing an API
for acting with its sensing, actuating and configuration capabilities. Those services are
located through the URLs as explained previously. The interaction with the resources
is achieved by sending HTTP requests containing a so-called HTTP verb that can be
one as follows: GET, POST, PUT and DELETE. These verbs reflect actions that can
be performed on resources. The GET is for retrieving information (e.g. read a sensor’s
value) and POST to modify information (e.g. actuating a relay) on a resource. They are
in the context of WoT the most used ones.

MAPPINGS TO RESTFUL APIS

As previously outlined with WoT paradigms, every object is expected to embed a REST
server offering an API located through URLs for interaction. Unfortunately this approach
can not be applied as such to most building networks. Devices connected to KNX or
EnOcean network have no IP address and therefore will not be accessible by using URLs.
A way of filling this gap is to propose a gateway exposing devices functionalities in the
form of RESTful APIs. The gateway will hide the complexity of the building networks and
allow clients to interact with attached devices in a Web-of-Things manner. In other words,
the devices will appear to other participants of the WoT as they would be embedding the
API on themselves.

From KNX

KNX describes device capabilities in terms of datapoints (communication endpoints of
devices, standardized data type and size) that are located inside group objects involved
in group communications between producers and consumers, basing on a multicast ap-
proach. All this information is stored inside the ETS archive file coming from the ETS
configuration software. This archive contains several XML files describing the topology of
the network, device datapoints and all related group objects including addresses. In order
for the gateway to work with a more appropriate and smaller file, a XSL transformation is
performed when the archive is loaded to filter unnecessary information. From the resulting
XML file, we are now able to map KNX group endpoints to REST services. The URL of
each group object is composed as follows: http://<group name>.<location>. <or-
ganization domain>/<datapoint>. Here is an example when applying this scheme
for an archive file issuing from the KNX network of the EPFL’s LESO building for control-
ling lighting: http://light.office005.ground.leso/dpt switch. By emitting an HTTP GET
request, one will read the actual status of the light (on or off), while a HTTP POST will
allow to turn it on or off according to the payload data.

From EnOcean

Altough EnOcean is very easy to install and configure by simply pairing devices, the map-
ping to REST services is more complicated than KNX. This is due to the fact that the
EnOcean network is not configured or managed by a central application as ETS. The pair-
ing of devices to form groups is done by users putting actuators in a teach-in mode, while
triggering a learn telegram on sensors that have to drive the actuator. All the knowledge
is stored inside the devices and there exists no possibility to retrieve it from the devices.
As a consequence of this, it is not possible to automate the mapping of the EnOcean
network. The user has to reproduce the configuration inside the gateway through a Web
interface. However the gateway can automatically detect unknown sensors having sent a
learn telegram. The user can edit the related information, set the device type, add actu-
ators and eventually associate them together to build groups. At the time of writing this
paper, only the reading of values has been explored. Unlike KNX, EnOcean sensors are
not addressable so that it is not possible to read the actual value. To bypass this problem-
atic, the gateway will respond to a read request with the latest value sent by the sensor.
The URL for each sensor is composed as follows: http://<sensor name>.<location>.
<organization domain>/<shortcut>. The shortcut designates the data to read, as
EnOcean sensors can report various kind of data like temperature, humidity in one tele-
gram. Shortcuts are defined in the EnOcean Equipment Profile (EEP) specification. EEP
are similar to KNX endpoints. Here is an example of an URL mapping to a temperature
and humidity sensor: http://air.office005.ground.leso/tmp.

Common functionalities

For each gateway, the REST APIs are extended with common functionalities, especially
thought for reactive and proactive BMS. The first extension is the discovery of groups and
device capabilities. Clients can do GET request on URLs only pointing to a location. The
gateway will answer with all sub-locations or devices available in the specified location.
One can also ask about the available datapoints/shortcuts for a specific device by putting
the .../* placeholder at the end of the URL.

The notification paradigm is used to inform clients as soon as a value of a sensor changes.

This is achieved by a client registering on a resource and furnishing the callback that have
to be called by the gateway. One has to put the .../[un]register keyword at the end of an
URL pointing to an endpoint (e.g. http://air.office005.ground.leso/tmp/register).

At last, and specific for proactive BMS, clients can announce their need for storing history
data on the gateway, and retrieve it later. For doing this, a client will interact with the
.../storage sub-resource of an endpoint. It can then decide to add or remove the storage
by putting the add/remove keywords and indicating the history size in days in the payload
(e.g. http://air.office005.ground.leso/tmp/storage/add). Clients have then two ways for
retrieving the history data. The first is by indicating the number of days one wants to go
back in the history with the URL: .../storage?days=X. The second one is by specifying a
period of time with a start and end date as follows: .../storage?from=X&to=Y.

IMPLEMENTATION AND EVALUATION

We implemented both gateways on a Raspberry Pi Model B micro-controller with 512MB
of memory. This tiny computer offers several ports like RJ45, HDMI and two USB. For
the KNX gateway, our implementation relies on the Calimero 2.0 Java library, providing
classes and methods for KNXnet/IP tunnel communications, and datapoint object rep-
resentation. The Web part of our application is composed of a Java servlet running on
a Jetty server, known for being lightweight and optimized for constrained devices. The
database is running on MySQL. As shown in figure 2, we base our implementation for
KNX on several logical modules shared in different scenarios of use. The first one is the
configuration of the gateway, where the administrator will provide all the necessary infor-
mation for proper running. Once configured, the gateway enters in its normal operation
where it can serve requests for manipulating group objects. The architecture and working
of the EnOcean gateway is very similar as for KNX.

HTTP

server

DNS server

KNXnet/IP Gateway

discovery

Calimero 2.0

DNS

manager

KNX

comm

http://knxgateway.epfl.ch

KNX - WoT Gateway

192.168.1.3

epfl.ch

192.168.1.212

C:\epfl.knxproj Load

Submit

Locate

root

DNS server IP

DNS main domain

DNS user

DNS password

KNXnet/IP GW IP

ETS archive

KNXnet/IP

Gateway

KNXnet/IP Tunneling

Datapoint object

representation

Calimero 2.0

REST

client

HTTP

server

Datapoint

locator

datapoints.xml

KNX

comm

KNX Twisted Pair

KNXnet/IP

Gateway

HTTPDP

Gateway configuration Gateway WoT<->KNX

datapoints.xml

XML

generator

Notification

manager

Storage

manager

Figure 2: Overall KNX-WoT gateway architecture illustrating the logical modules for two
scenarios: gateway configuration (left part) and gateway normal operation (right part).

At the time of writing this paper, the EnOcean gateway not yet being terminated, only
the KNX one has been evaluated. We proceeded two categories of evaluations: relative to
performance and the usability of the gateway. We evaluated the performance of the KNX
gateway with the network of the LESO building composed of 265 devices distributed
in 765 groups. Table 1 shows the results we obtained, and that can be considered as

totally acceptable for such an installation. At last, three developers tested the ease of
integration of KNX using our gateway. Their feedback was very positive by admitting
that our gateway offering RESTful APIs allows to significantly reduce the development
time of an application as it would be the case if they would need to implement the KNX
protocol.

Measure type Result
Maximum HTTP requests per second 45
Maximum simultaneous HTTP requests 620
Average event reaction time 33 [ms]

Table 1: Gateway performance measured on a KNX installation running 265 devices

CONCLUSION

Inspired by Web-of-Things paradigms, we explored the feasibility and benefits of using
well-known web standards like HTTP and RESTful APIs to interface KNX/EnOcean net-
works and building management systems. We proposed an architecture for a KNX-WoT
gateway that has been validated through an implementation on a low-cost Raspberry Pi
and validated on a realistic KNX configuration. Positive feedbacks were also returned by
developers of building management systems thanks to the simplicity of use of WoT APIs.
Generally speaking, we believe that WoT approaches are good candidates to facilitate
the integration of heterogeneous networks. We also believe that building management
systems will have to dialogue with various networks in a near future as new technologies
are emerging, such as for example EnOcean. Our future works will cover security aspects
of the gateway through authentication and encryption of data to prevent misuse.

ACKNOWLEDGEMENTS

This work was supported by the research grant Green-Mod of the Hasler Foundation and
the research grant EE-WoT of the HES-SO.

REFERENCES

1. G. Bovet and J. Hennebert. The web-of-things conquering smart buildings. volume
10s/2012, pages 15–19. ElectroSuisse, 2012.

2. D. Guinard. A Web of Things Application Architecture – Integrating the Real-World
into the Web. PhD thesis, ETHZ, 2011.

3. D. Guinard, V. Trifa, F. Mattern, and E. Wilde. From the internet of things to the
web of things : Resource oriented architecture and best practices. In D. Uckelmann,
M. Harrison, and F. Michahelles, editors, Architecting the Internet of Things, pages
97–129. Springer Berlin Heidelberg, 2011.

4. W. Kastner, G. Neugschwandtner, and M. Kögler. An open approach to eib/knx
software development. In Fieldbus Systems and their Applications, pages 255–262,
2005.

5. M. Neugschwandtner, G. Neugschwandtner, and W. Kastner. Web services in building
automation: Mapping knx to obix. In Proc. of the 5th IEEE International Conference
on Industrial Informatics, volume 1, pages 87–92, 2007.

