
HAL Id: hal-00872185
https://hal.science/hal-00872185

Submitted on 11 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introducing the Web-of-Things in Building Automation:
A Gateway for KNX installations

Gérôme Bovet, Jean Hennebert

To cite this version:
Gérôme Bovet, Jean Hennebert. Introducing the Web-of-Things in Building Automation: A Gateway
for KNX installations. 10th international Conference on Informatics in Control, Automation and
Robotics (ICINCO 2013), Jul 2013, Reykjavik, Iceland. �hal-00872185�

https://hal.science/hal-00872185
https://hal.archives-ouvertes.fr

Introducing the Web-of-Things in Building Automation: A Gateway for
KNX installations

Gérôme Bovet12 and Jean Hennebert23

1LTCI, Telecom ParisTech, Paris, France
2CoSI, University of Applied Sciences of Western Switzerland, Fribourg, Switzerland

3DIUF, University of Fribourg, Fribourg, Switzerland
{gerome.bovet, jean.hennebert}@hefr.ch

Keywords: Smart Buildings, Web-of-Things, RESTful, KNX, Building Automation, Gateway

Abstract: Due to increasing energy costs and the importance of the comfort, smart buildings tend to democratize both
in new and renovated constructions, based on management systems relying on dedicated networks. Network
heterogeneity leads to complex building management systems having to implement all the protocols of the
building networks, resulting in low system integration and heavy maintenance efforts. Those building net-
works offer no common standardized application layer to build applications. To remedy this, we propose in
this paper to leverage on the Web-of-Things (WoT) framework, using well-known technologies like HTTP
and RESTful APIs. We outline the implementation of a gateway using the principles of the WoT to expose
capabilities of the KNX building network as Web services, allowing a fast integration in management systems.

1 INTRODUCTION

In recent years, building management systems (BMS)
have become very common in various types of build-
ings, such as offices, as manufactures or even pri-
vate households. They rely on a variety of sensors
and actuators composing together a whole dedicated
building network. At origin, the heating control of a
building was very simple, only composed of global
thermostats, or distributed in every room, targeting
a threshold temperature value. Motivated by raising
energy costs and by the importance of the comfort,
more complicated strategies have since then been de-
veloped. Modern BMS include many kinds of sens-
ing and actuating devices, managing the HVAC (Heat-
ing, Ventilation and Air Conditioning), the lighting,
the open and closing of doors, windows and blinds
control, and security access systems. Buildings have
become ”smart” and are now real information sys-
tems using dedicated building management networks
for communication, as for example KNX, BACnet, or
LonWorks. KNX is actually the most used network
in Europe. One can find almost every kind of de-
vice compatible with this network that offers differ-
ent types of physical connections like Ethernet, RF,
power line, or more widespread the twisted pair (Kon-
nexAssociation, 2004).

Unfortunately, such building management net-

works do not offer a standardised way to interact with
devices connected to them from an application point
of view. Due to this, it becomes difficult to build
BMS combining multiple networks. This situation
can be found in buildings where the network should
evolve with new devices that are not compatible with
the actual one, or where extending the wiring is not
feasible because of physical constraints (Bovet and
Hennebert, 2012). This is leading to heterogeneous
building management networks as visible in figure 1.
While it exists gateways encapsulating the specific
telegrams of the building management network in IP
packets, there is actually no standard at the applica-
tion level, resulting in the BMS having to understand
and to implement every network protocol.

Figure 1: Network heterogeneity in smart buildings

Web services are nowadays widespread in hetero-
geneous information systems (IS). They benefit from
the facts of being platform independent, and of using

well-known standards for data exchange that ensure
the interoperability, as it is the case for SOAP. Un-
fortunately the SOAP protocol is not well suited for
accessing sensors and actuators considered as things,
because of the large overhead of XML and the com-
plexity of the service description language WSDL. On
the other hand, the emerging Web-of-Things frame-
work (WoT), offers new ways for accessing things in a
resource oriented architecture (ROA) (Guinard et al.,
2011), which are more suited for BMS.

In this paper, we present the implementation of
a gateway allowing access to devices connected to a
KNX network in a Web-of-Things manner. By tak-
ing advantage of the bests practices of the WoT, we
guarantee a fast integration of KNX in every control
system. In addition to this, we put importance on the
fact that our gateway must be simple to use, low-cost
and easily integrable in an existing environment.

This paper is organised as follows. The next sec-
tion refers and summarizes related work. In Sect.
3, we provide an overview of the Web-of-Things
paradigm. Its application to the KNX network is dis-
cussed in Sect. 4. Sect. 5 describes the implementa-
tion of the gateway. Performance tests in a real build-
ing are shown in Sect. 6. Sect. 7 concludes our paper
and provides insights on further research.

2 RELATED WORK

One of the early projects considering people, places
and things as Web resources is Cooltown (Kindberg
and al., 2002). This project introduced a new inter-
action approach by using HTTP GET and POST re-
quests to manipulate things. Then, with the progress
made in embedded systems by offering more comput-
ing power on smaller devices, it was possible to inte-
grate Web servers on sensors and actuators. So-called
mashups were introduced in the WebPlug framework
relying on the Web-of-Things paradigm, where sen-
sors and actuators play a central role (Ostermaier
et al., 2010).

Problems related to performance and memory
usage on things leveraging on Web services were
quickly discovered. Although the SOAP protocol
contributing in a standardization aspect between Web
services and being largely adopted on the Web, it is
not suited for constrained environments (Groba and
Clarke, 2011). More adapted to things, RESTful
APIs represent a clear alternative to this drawback,
with an increased adoption by many IS, particularly
in the fields of Internet-of-Things (IoT) and WoT (Ai-
jaz et al., 2009) (Hamad et al., 2010).

Trying to ease the development of applications

using KNX devices has been explored in different
works. A first attempt was realized with the BCU
SDK (Kastner et al., 2005), which consists of a script
generating C++ classes representing devices capabil-
ities. A more Web oriented approach has been real-
ized in (Neugschwandtner et al., 2007). It exposes
KNX functionalities as Web services by using the
oBIX (Open Building Information Exchange) stan-
dard, which is a special XML schema for representing
building data and operations. Unfortunately, oBIX is
not at all widespread over IS and BMS probably be-
cause of its complex XML schema. In addition to
this, the proposed implementation does not allow an
easy integration of the gateway in an existing environ-
ment, requiring a huge configuration effort for large
networks. Our approach tackles these limitations by
taking advantage of the WoT’s simplicity and by be-
ing highly integrable in existing KNX infrastructures.

3 THE WOT FRAMEWORK

The Web-of-Things based on well-accepted standards
of the Web, fills the gap left by the Internet-of-Things
regarding the application layer (Guinard, 2011). In-
deed, the IoT only touches on the IP connectivity
of everyday objects, resolving problems linked to
the Internet access and network topologies. In or-
der to homogenize the access on things representing
resources, the technologies of the Web as URL rep-
resentations for identifying resources, RESTful APIs
and the HTTP protocol represent a good approach
because of being strongly standardized and already
widespread. In this chapter we will provide insights
of the main concepts building the WoT.

3.1 Resource identification

In the WoT, every capability or property of a device is
considered as a resource. As for example, a temper-
ature sensor could return the measured value both in
Celsius and in Fahrenheit. This would give us two
resources that can be read. More precisely, some
resources can allow multiple operations as read and
write. So, we first need to be able to identify and ad-
dress those resources in a simple way before we can
interact with them. This is realized by using URLs in
the same way as for identifying Web pages on servers.
An advantage of this approach is in its hierarchi-
cal way to organize resources reflecting the physical
world. This principle is shown in figure 2. For access-
ing the Celsius temperature value, one would use fol-
lowing URL: http://<DOMAIN>:<PORT>/generic-
nodes/1/sensors/temperature/celsius.

/genericNodes

/{genericNodes-n}

/sensors /actuators

/temperature /light /sensor ... /leds /actuator ...

/a /b/farhrenheit /celsius

Figure 2: Resource hierarchy example of an abstract node

The domain part of the URL also allows to be hier-
archically structured to match a virtual abstract struc-
ture or a real physical organization. URLs can give
insights on the location of devices inside a building
organization by decomposing it in sub-domains ac-
cording to buildings, floors and rooms.

3.2 RESTful APIs

RESTful APIs are really the communication and ap-
plication layers in the WoT by leveraging the HTTP
protocol. Unlike SOAP, HTTP is used as applica-
tion protocol and not only for transport. REST has
several advantages over SOAP by having less over-
head and being resource oriented, which fits naturally
with physical objects. With the WoT paradigm, ev-
ery object or thing is embedding a Web server ex-
posing an API for acting with its sensing, actuating
and configuration capabilities. Those services are lo-
cated through the URLs as explained previously. The
interaction with the resources is achieved by send-
ing HTTP requests containing a so-called HTTP verb
that can be one as follows: GET, POST, PUT and
DELETE. These verbs reflect actions that can be per-
formed on resources. The GET is for retrieving in-
formation, POST to modify information, PUT to add
information, and DELETE for removing information
on a resource. The GET and POST verbs are in the
context of WoT the most used ones. For example, one
will use the GET verb to read a sensor’s value, and
the POST one for actuating a relay.

A HTTP communication always consists of a re-
quest to a specific resource and a response, this for
any kind of operation. HTTP responses contain in
the header a code value expressing errors, exceptions
and successes. Each code has a well-known meaning
listed in the HTTP 1.1 specifications.

3.3 Events notifications

In many scenarios some systems want to be informed
as soon as something happen on a monitored resource.
Instead of using a polling technique that is resource
consuming, the WoT relies on callbacks. In an event-
based system, the first step is the registration of the
consumer at the producer. Working with things em-
bedding a REST Web server, we can expand the API
with methods dedicated to registration. A system in-
terested to be notified about a change of state on a re-
source will announce itself by providing the callback,
an URL representing a REST service on the consumer
side. We demonstrate this mechanism with a simple
example involving a BMS and a motion detector as
illustrated in figure 3.

Motion sensorBMS

1

2

3

1

POST /register HTTP/1.1
Host:
motion.room5.office
Content-Length: 24
Content-Type: text/plain

http://bms.office/notify

2

Wait for motion

3

POST /notify HTTP/1.1
Host: bms.office
Content-Length: 4
Content-Type: text/plain
Referer: motion.room5.office

true

Figure 3: Event notification mechanism with (1) consumer
registration step with callback notification, (2) producer
value monitoring, (3) producer notification to the consumer.

1 - The BMS will register at the motion sensor in
order to be notified when someone enters or leaves a
room. This is achieved by the BMS sending a HTTP
POST request to http://motion.room5.office/register
containing the callback URL. 2 - The producer will
then internally watch its resource. 3 - Every time
the value changes the motion sensor will do a HTTP
POST request to the callback URL.

The steps 2 and 3 are repeated until the consumer
unregisters.

4 FROM KNX TO RESTFUL APIS

As previously outlined with WoT paradigms, every
object is expected to embed a REST server offering
an API located through URLs for interaction. Un-
fortunately this approach can not be applied as such
to a KNX network. Devices connected to the KNX
network have no IP address and therefore will not be
accessible by using URLs. In addition to this, KNX

devices are very constrained and task oriented, which
makes it impossible for them to embed a Web server.

A way of filling this gap is by proposing a gateway
exposing devices functionalities in the form of REST-
ful APIs. The gateway will hide the complexity of the
KNX network and allow clients to interact with KNX
devices in a Web-of-Things manner. So, the devices
will appear to other participants of the WoT as they
would be embedding the API on themselves. Clients
will therefore be able to retrieve information from a
KNX network (e.g. to read a temperature value) or to
interact with the environment (e.g. to move blinds).

This chapter describes how devices functionalities
are mapped to URLs and RESTful services. Also,
we outline our discovery approach allowing clients to
identify which devices are accessible by using REST-
ful services and what are their capabilities.

4.1 KNX application layer

The KNX application layer, also known as KNX in-
terworking was thought to ensure interoperability be-
tween devices of various manufacturers. It standard-
izes the way how payload data inside telegrams have
to be structured and interpreted.

Like many systems dedicated to automation, the
interworking is based on so-called functional blocks
to describe system functionality (KNX, 2012). Logi-
cal parts of a device, such as a specific function are
symbolized by those functional blocks (FBs). We
can illustrate this principle with an example of a light
switch FB that is a logical function of a four channels
relay. A functional block is always attached only to
one device.

Functional
block

Light switch

OutputsInputs

Parameters

I1

I2

P1

O1
DPT I1

DPT I2

DPT P1

DPT O1

Datapoint type

Data type Size

Format Coding Value range Unit

Figure 4: Functional block structure and datapoint type
composition

As visible in the upper part of figure 4, FBs are

composed of a set of datapoints (DPs). Those data-
points are communication endpoints of devices allow-
ing access to the functions of a block (Neugschwandt-
ner et al., 2007). KNX administrators simply link
outputs and inputs together for associating devices.
Datapoints are also standardized in terms of syntax
and semantics as visible in the lower part of figure 4,
and also organized in several categories depending on
their FBs purposes. For example, our light switch pro-
vides the DP ”switch on off” allowing to turn the light
on or off. By knowing the datapoint type, one can
find in the KNX specification all information regard-
ing the datapoint, including the format, coding, value
range and unit.

The KNX protocol identifies two categories of
DPs: group objects (GOs) and interface object prop-
erties (IOPs). The GOs are endpoints involved in
group communications between producers and con-
sumers basing on a multicast approach. This type of
DP is used by sensors, actuators and control devices
for exchanging information. On the other hand, IOPs
are only for configuration and management purposes.
One can address an IOP only with the physical ad-
dress of the device.

4.2 ETS export archive

The KNX association has developed the ETS (En-
gineering Tool Software) software for configuring a
KNX infrastructure. With this software, administra-
tors and engineers have the possibility to create the
building hierarchy, the network topology, and finally
to create group objects that will represent functional-
ities between devices. At this time, no other compa-
rable software exists, so that every KNX installation
must be configured with ETS. ETS exports projects in
an archive composed of multiple XML files, as shown
in figure 5. The knx master.xml contains the descrip-
tion of all the datapoint types. The network topol-
ogy, building organization and group addresses are
stored in the 0.xml file. Finally, there is a folder for
every manufacturer, containing a XML file for each
device type composing the network. The device file
informs about the available datapoints on the device.
This archive, being zipped without security, contain-
ing XML files easily understandable allows to import
all the network knowledge into other applications. By
applying a XSL transformation to the XML files in-
side the archive, we are able to centralize all informa-
tion necessary for our gateway into one single XML
file.

Figure 5: ETS project archive structure

4.3 Datapoints to REST

As previously explained, access to functionalities in
a KNX network is done via group objects, which
are compositions of datapoints and a group address.
In the elaboration of the gateway, we need to match
group objects to REST services for allowing in-
teraction with KNX devices. For doing this, we
make use of the XSLT output as visible in listing 1.
By taking into consideration some fields of the
XML, we are able to compose an URL identifying
a specific group object. For example, the datapoint
shown in listing 1 would result in following URL:
http://heating.office005.ground.leso.epfl.ch/dpt switch.
The domain part is composed of the physical lo-
cation of the device inside the building, completed
by the domain name of the organization. The
last part of the URL that represents the action to
perform is the datapoint type name. We can now
easily link group objects to URLs by following this
rule: http://<GROUP NAME>.<LOCATION>.
<ORGANIZATION DOMAIN>/<DATAPOINT>.

Listing 1: Datapoint XML representation after XSL trans-
formation

<d a t a p o i n t s t a t e B a s e d =” t r u e ”
name=” H e a t i n g ” desc =” S t a t u s ”
mainNumber=” 1 ”
p r i o r i t y =”Low” act ionName=” DPT Switch ”
a c t i o n D e s c =” on / o f f ” dp tDesc =”1− b i t ”
d p t B i t s S i z e =” 1 ”
l o c a t i o n =” O f f i c e 0 0 5 . ground . LESO”>

<knxAddress t y p e =” group ”>
6195

< / knxAddress>
< / d a t a p o i n t>

Our objective is here to allow the BMS to pull
state values and to perform actions on the KNX net-
work by sending HTTP requests to the gateway. A
HTTP GET request will result in the HTTP response
containing the actual value of the group object inside
the payload data. For changing a state, one will send a
HTTP POST request containing the new value inside
the payload data.

Representing the structural organization of the
building inside the domain part of the URL opens a
new dimension. By acting this way, we can hide the
fact that the device is actually in a KNX network and
not directly connected to an IP network. For users
of the system, the device seems to be an IP one with
its own DNS entry directly pointing to it. However,
this brings a certain complexity for the DNS sys-
tem as it musts contain entries matching with KNX
groups. For example, the DNS equivalence of the
group heating located in room office005 of the ground
floor in the leso building, giving the DNS entry heat-
ing.office005.ground.leso has to redirect to the gate-
way.

4.4 Events

To avoid control systems being forced to imple-
ment a polling strategy for observing changes of
states, our gateway offers a notification mechanism
allowing to observe every group object. Here, the
events notifications principle of the Web-of-Things
is applied. Every URL identifying a group ob-
ject is extended with two sub-resources for regis-
tration and unregistration. The register and un-
register key-words are placed after the datapoint
type as sub-resource. In our previous example, the
URLs for registration and unregistration will be as
follows: http://heating.office005.ground.leso.epfl.ch/
dpt switch/[un]register. The gateway holds internally
a list of all the consumers registered for every group
object. For every change of state of a group object,
the gateway checks its list of listeners, and will then
perform the notification through the callback of the
consumers.

4.5 Discovery

Before communicating with KNX devices, a sys-
tem has first to discover what group objects are
available on the gateway. A very simple manner
would be to provide a single list informing about
all group objects. Such an approach is obviously
not well adapted due to its poor structure and the
need to transmit the whole list for every discovery
request. Here, we expand our concept of building-
composition structured DNS. In addition of keeping
entries for groups, it does also have entries for the
sub-domains composing the URLs. For example, it
will store entries like ground.leso.epfl.ch. By call-
ing http://ground.leso.epfl.ch, the DNS server redi-
rects the request to the gateway. The gateway will
perform a lookup in the XML file to find all children
and will respond with a JSON structured message.

Once a group has been located, the available dat-
apoints can be known by adding the placeholder
* instead of the datapoint identifier. The gateway
will answer with a JSON payload describing the
datapoints one can interact with, as visible in list-
ing 2. The resulting URL structure is as follows:
http://<GROUP NAME>.<LOCATION>. <OR-
GANIZATION DOMAIN>/*.

Listing 2: JSON message structure ex-
ample of a datapoint description for
http://heating.office005.ground.leso.epfl.ch/*

{” d a t a p o i n t i n f o ” : ”1− b i t ” ,
” d a t a p o i n t t y p e ” : ” DPT Switch ” ,
” d e s c r i p t i o n ” : ” on / o f f ” ,
” b i t s s i z e ” : 1 ,
” d a t a p o i n t n u m b e r ” : ” 1 .001 ” ,
” u r l ” : ” h t t p : / / h e a t i n g . o f f i c e 0 0 5 .
ground . l e s o . e p f l . ch / d p t s w i t c h ”}

5 IMPLEMENTATION

We provide here more details on a practical imple-
mentation of the gateway according to the principles
exposed in Section 4. We voluntary restricted the im-
plementation to only state based group objects which
are used by BMS.

5.1 Platform

We selected as hardware platform the Raspberry Pi
model B which is low-cost and offers enough comput-
ing power for running our gateway. This tiny micro-
computer (Ras, 2013) (85.6mm x 56mm x 21mm)
embeds an ARM1176JZFS CPU running at 700MHz
with 512MB of RAM. The model B offers an Ethernet
connectivity with an RJ45 port. It is composed of a
SD card reader, two USB ports, one HDMI video port
and a RCA video output. This module can be con-
sidered as low-power by consuming only about 4W,
powered at 5V over a micro USB port. The Raspberry
Pi can be operated by many Linux systems installed
on a SD card plugged into the device. Any kind of
software compatible with the ARM processor can be
installed on it, like Java, MySQL and many others.

5.2 Architecture

Our implementation relies on the Calimero 2.0 Java
library (Cal, 2013). This library provides Java classes
and methods for KNXnet/IP tunnel communications,
and datapoint object representation allowing develop-
ers to build applications dedicated to KNX infrastruc-

tures. The Web part of our implementation is com-
posed of a Java servlet running on a Jetty server (Jet,
2013). We opted for Jetty instead of other common
Java Web servers like Tomcat, Glassfish, JBoss or
Grizzly because of Jetty being easily embeddable on
low-resources hardware thanks to its lightweight im-
plementation. All components of the implementation
are open source and free.

As shown in figure 6, we base our implementation
on several logical modules shared in different scenar-
ios of use. The first one is the configuration of the
gateway, where the administrator will provide all nec-
essary information for proper running. Once the gate-
way being configured, it enters in its normal operation
where it can serve requests for manipulating group
objects. We here detail the role of every module.

The Datapoints file act as database even only con-
sisting of XML tags. This file is on the heart of the
application and holds all the mandatory information
for communication with the KNX devices. It con-
tains a description of every group object reachable on
the network, indicating the datapoint type, the group
address, and other informal data about the group ob-
ject. This file also stores configuration data provided
through the Web configuration page.

The Web server stands as entry point of the appli-
cation. It implements the doGet() and doPost() meth-
ods for handling the HTTP requests. The first step is
to decode the URL in order to identify which action is
requested on which group object, as it could be a di-
rect interaction or a notification registration message.
Once the operation being resolved, it acts as controller
and dispatches the request to the right modules. At the
end of processing, it will respond either with a value
corresponding to the GET read request, or only with
the HTTP response code in the case of a POST.

The XML generator processes the ETS project
archive for generating the XML datapoints file. It
first decompresses the archive and then applies the
XSL stylesheet to the project. All special characters
as accents are removed during this processing, as they
can not be present in URLs. At end, the XML file is
placed inside the resource directory of the Web server.

The DNS manager is responsible of adding DNS
record entries representing groups. This is performed
with the DNSJava library (DNS, 2013) offering meth-
ods for managing zones and records of a DNS server.

The Datapoint locator acts as query engine for
the datapoints file. It can lookup specific group ob-
jects according to the datapoint type, group name and
location, and then returns them in the Calimero data-
point object representation. It is also used for retriev-
ing all the possible domain names for accessing the
group objects, used by the DNS manager for adding

HTTP
server

DNS server

KNXnet/IP Gateway
discovery

Calimero 2.0

DNS
manager

KNX
comm

http://knxgateway.epfl.ch

KNX - WoT Gateway

192.168.1.3

epfl.ch

192.168.1.212

C:\epfl.knxproj Load

Submit

Locate

root

DNS server IP

DNS main domain

DNS user

DNS password

KNXnet/IP GW IP

ETS archive

KNXnet/IP
Gateway

KNXnet/IP Tunneling
Datapoint object representation

Calimero 2.0

REST
client

HTTP
server

Datapoint
locator

datapoints.xml

KNX
comm

KNX Twisted Pair

KNXnet/IP
Gateway

HTTPDP

Gateway configuration Gateway WoT<->KNX

datapoints.xml

XML
generator

Events
manager

Figure 6: Overall KNX-WoT gateway architecture illustrating the logical modules for two scenarios: gateway configuration
(left part) and gateway normal operation (right part).

entries on the DNS server. In the case of a client will-
ing to discover the available datapoints, the Datapoint
locator can answer with all sub-domains or with all
datapoints descriptions of a group.

The KNX comm represents an interface to the
KNXnet/IP network. This module can discover
KNXnet/IP gateways by sending multicast messages,
thus avoiding administrators to look after the IP ad-
dress of the gateway, some times hard to find because
of being DHCP configured. Further to this, it then
handles the tunnel connection, allowing to talk with
the KNX network. By listening to the network, it will
notify the Events manager of incoming telegrams that
might concern some consumers. Activating a cache
feature can avoid to overload the KNX network due
to many clients reading the same group object.

For managing the notification paradigm, we in-
troduce an Events manager. This module stores
in an associative table the consumers registered on
group objects for notifications. Triggered by the KNX
comm module, it will lookup if consumers are regis-
tered for the group object having undergo a change of
state, and then launches the notification by calling all
related callbacks.

6 EVALUATION

We evaluated the capabilities and limitations of the
implemented gateway through several tests. In order
to have realistic feedbacks, we performed our tests on
a building already equipped with a KNX installation.
From the evaluation results, we also discuss some im-
provements of the gateway that would be beneficial
for BMS.

6.1 Performance

To establish the performances of our gateway, we de-
cided to measure various key-values such as: max-
imum number of requests per second, maximum si-
multaneous requests, notification reaction time (from
the action on the KNX device until producer notifica-
tion) and processing time of the ETS project archive
(during configuration). All our measurements are
done with an existing KNX installation of the 4 floors
office LESO building located on the EPFL campus in
Lausanne, Switzerland. The installation features 265
devices, distributed in 765 groups, with a total of 795
group objects and represents an average installation
that can be found in many buildings.

Measure type Result
ETS archive processing time 30 [min]
Maximum HTTP requests per second 45
Maximum simultaneous HTTP requests 620
Average event reaction time 33 [ms]

Table 1: Gateway performance measured on a real-life
KNX installation running 265 devices

6.2 Discussion

Table 1 summarises the performance of the gateway
implemented on a Raspberry Pi as described in Sec-
tion 5.1. The ETS archive processing time is quite
long, mainly due to the XSLT that is extremely re-
source consuming. However, as this operation has
only to be performed during the configuration of the
gateway, we can assume that it is not an important
issue. The maximum HTTP requests per seconds is
actually bottlenecked by the twisted pair of the KNX

network offering only 9600b/s. The maximum simul-
taneous HTTP requests is limited by the Raspberry
Pi. Nonetheless, we believe that the measured value
is largely sufficient for common BMS operation. Fi-
nally, we observed a fast event response time that
would typically allow a BMS to function in reactive
mode. We can see that all the results are suitable for
such an installation and that the Raspberry Pi has to be
considered as an alternative to classical PCs running
gateways or serving as middleware.

A potential limitation of our proposition lies in
the DNS approach which implies access to the DNS
server of the host IP network. Such access may be
restricted by security policies in which case a ded-
icated DNS server has to be made available for the
gateway. A second issue is related to the security of
our gateway where currently no authentication is im-
plemented. An authentication layer based on access
lists could be a solution to this.

Some developers have actually built small appli-
cations interacting with the KNX devices through our
gateway, this in various languages. Their feedback
were positive, showing the benefits of leveraging on
standardized and well-accepted protocols to reduce
the integration time of KNX devices on a BMS. Some
developers asked us to extend the event notification
system for recording on the gateway a series of val-
ues, and to be notified once the buffer being full or af-
ter a period of time elapses. This can be implemented
by adding a storage module to the gateway, based on
a small database such as SQLite or MySQL.

7 CONCLUSIONS

In this paper, we explored a new way allowing build-
ing management systems and information system to
interface KNX installations by leveraging on well-
known standards like HTTP and RESTful APIs. In-
stead of having to implement the KNX network proto-
col on the BMS, developers benefit from the simplic-
ity of use of the WoT, thus facilitate the integration of
heterogeneous networks. We believe that BMS will
have to dialogue with various networks in near future
because of new technologies appearing, like Enocean
and others. In addition to this, our results show that
the Raspberry Pi is enough powerful to run gateways.

Future works cover security aspects by adding an
authentication layer and optional encryption of data
to prevent misuse. A centralization of data on the
gateway will also be explored, allowing BMS to look
for past data used in many scenarios where user be-
haviour plays a primary key role. Finally, we will
investigate the feasibility of building a direct connec-

tion to the KNX twisted pair in the gateway to elimi-
nate the need of the KNXnet/IP module. The software
running on the gateway can be made available for any
scientific research project upon request to the authors.

REFERENCES

(2012). KNX Advanced Course Specification. KNX Asso-
ciation, february 2012 edition.

(2013). Calimero 2.0. http://calimero.sourceforge.
net/.

(2013). Dnsjava library. http://www.xbill.org/
dnsjava/.

(2013). Jetty server. http://jetty.codehaus.org/
jetty/.

(2013). Rapberry pi. http://www.raspberrypi.org/.
Aijaz, F., Chaudhary, M., and Walke, B. (2009). Perfor-

mance comparison of a soap and rest mobile web
server. In Proc. of the Third International Conference
on Open-Source Systems and Technologies (ICOSST
2009).

Bovet, G. and Hennebert, J. (2012). The web-of-things con-
quering smart buildings. volume 10s/2012, pages 15–
19. ElectroSuisse.

Groba, C. and Clarke, S. (2011). Web services on em-
bedded systems – a performance study. In 2010 8th
IEEE International Conference on Pervasive Comput-
ing and Communications Workshops PERCOM Work-
shops, volume 3, pages 726–731. IEEE.

Guinard, D. (2011). A Web of Things Application Architec-
ture – Integrating the Real-World into the Web. PhD
thesis, ETHZ.

Guinard, D., Trifa, V., Mattern, F., and Wilde, E. (2011).
From the internet of things to the web of things : Re-
source oriented architecture and best practices. In Flo-
rianEditors, editor, Architecting the Internet of Things,
pages 1–34.

Hamad, H., Saad, M., and Abed, R. (2010). Performance
evaluation of restful web services. In Computer Engi-
neering, volume 1, pages 72–78. Computer Engineer-
ing Department.

Kastner, W., Neugschwandtner, G., and Kögler, M. (2005).
An open approach to eib/knx software development.
In Fieldbus Systems and their Applications, pages
255–262.

Kindberg, T. and al. (2002). People, places, things: Web
presence for the real world. In Mobile Networks and
Applications, volume 7, pages 365–376. Building.

KonnexAssociation (2004). Knx specification.
Neugschwandtner, M., Neugschwandtner, G., and Kast-

ner, W. (2007). Web services in building automation:
Mapping knx to obix. In Proc. of the 5th IEEE In-
ternational Conference on Industrial Informatics, vol-
ume 1, pages 87–92.

Ostermaier, B., Schlup, F., and Römer, K. (2010). Web-
plug: A framework for the web of things. In Proc. of
the First IEEE International Workshop on the Web of
Things (WOT2010), Mannheim, Germany.

