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Abstract 19 

It is increasingly recognized that populations of marine organisms with potential for large-scale 20 

dispersal may exhibit fine-scale genetic structure. The Gulf of Gdañsk (Poland) is an interesting 21 

setting to study fine-grained population structure in marine organisms as it is characterized by chronic 22 

anthropogenic pollution and strong salinity gradients. We investigated, at two nested spatial scales (35 23 

and 7 km), genetic structure among populations of the infaunal tellinid bivalve Macoma balthica. The 24 

COI mitochondrial marker revealed a likely mix of evolutionary lineages in the Gulf, with no 25 

detectable spatial structure. Seven microsatellite markers detected weak population structure, 26 

separating deep and shallow populations within short distances (7 km) and assignment tests suggested 27 

asymmetric gene flow among these populations, with no shallow recruits being detected in deep 28 

waters. Given the specific environmental conditions encountered at deeper depths in the Gulf 29 

(increased salinity, lower temperatures, oxygen depletion, hydrogen sulfide pollution), we suggest that 30 

deeper populations may be subjected to local adaptation.  31 

 32 
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Introduction 37 

Many marine species are characterized by a high fecundity, large population sizes, long 38 

distance dispersal via a planktonic larval stage, and, very often, low geographic differentiation. As a 39 

consequence, the extent of small-scale genetic structure has long been neglected for marine organisms. 40 

However, many studies have shown that marine populations may exhibit strong genetic structure due 41 

to limited gene flow, genetic drift and unequal dispersion, caused by cryptic barriers or local 42 

adaptation in a heterogeneous environment (Koehn et al., 1980, Mitton, 1997, Powers & Schulte, 43 

1998, Schmidt & Rand, 2001, Riginos et al., 2002).  44 

The Baltic Sea is a noteworthy system to study the impact of high environmental patchiness 45 

on the genetic structure of marine organisms. It is characterized by restricted water exchanges with 46 

other oceanic basins, shallow waters, and low salinities (3 to 7 PSU). Temperature and salinity are 47 

strongly stratified by depth, water below 20-50 m being colder and saltier (Rheinheimer, 1995). 48 

Moreover, oxygen concentration is often reduced, particularly in the bottom zone, due to an 49 

eutrophication-induced increase in primary production (Cederwall & Elmgren, 1980) and total 50 

particulate matter content (Maksymowska et al., 1997) along with a high sedimentation rate (of up to 51 

1-2 mm yr
-1

; Witkowski & Pempkowiak, 1995). In addition, the Baltic Sea suffers from chronic 52 

anthropogenic pollution. Southern waters are impacted by a constant input of heavy metals from the 53 

Vistula river (Gulf of Gdañsk, Sokolowski et al., 1998, 2002, 2007), which carries pollutant runoff 54 

from the industrial cities of Katowice, Kracow or Warsaw (Rainbow et al., 2004, Szefer, 2002). 55 

 The infaunal bivalve, Macoma balthica is a dominant species of the benthic macrofauna in 56 

the Baltic Sea (Rumohr et al., 1996), being present from the sub-littoral to the aphotic zone (Väinölä 57 

& Varvio, 1989). Populations from the Baltic Sea are genetically distinct from those of the Atlantic 58 

and the North Sea, resulting from a mixture of Atlantic and Pacific parental lineages that are 59 

maintained by a strong barrier to gene flow in the Kattegat straight (Nikula et al., 2008). Local genetic 60 

differentiation can be strong in this species, as evidenced by the sharp differences in allele frequencies 61 

recorded along a 60 m-long temperature gradient in the White Sea (allozymic locus Idh; Hummel et 62 

al., 1998). The contrasted environmental conditions in the Gulf of Gdañsk represent an ideal place to 63 
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study fine-scale genetic structure among M. balthica subpopulations. In this work, we therefore used 64 

one mitochondrial and seven microsatellite markers (Becquet et al., 2009) to determine whether local 65 

genetic structure could be detected in these southern Baltic populations. We aimed at identifying 66 

putative barriers to gene flow at two nested geographic scales: a regional one (the Gulf of Gdañsk) and 67 

a local one (along a depth gradient, away from the mouth of the Vistula River).   68 

 69 

Materials and methods  70 

Adult specimens of M. balthica were collected between 1997 and 1999 at 11 locations 71 

with various environmental conditions (Fig. 1 and Table 1). Puck lagoon (MW30) is characterized by 72 

strong eutrophication and anoxia. Three populations were sampled in the lee of the Hel Peninsula at 45 73 

m (HEL45), 60 m (HEL60) and 85 m (HEL85) depth. GN40 was sampled in the main seaway between 74 

the ports of Gdynia and Gdañsk. Finally, 6 populations were sampled at the mouth of the Vistula, 75 

along a gradient of increasing depth and various pollutant concentrations (SW5 to SW60). Specimens 76 

were stored in 95% ethanol until DNA extraction. Total DNA was purified from <15 mg of muscle 77 

using the Dneasy
TM

 Tissue Kit (Qiagen, Germany).  78 

Multiple mitochondrial lineages with distinct colonization histories can co-occur in the 79 

Baltic Sea (Luttikhuisen et al., 2003; Nikula et al., 2007, 2008). If specimens from multiple lineages 80 

are indiscriminately used, an older historical signal may mask a younger and weaker geographical 81 

signal. We therefore first tested for the presence of multiple mitochondrial lineages in our collection. 82 

313 bp of the COI gene were successfully sequenced for 232 individuals, as in Becquet et al. (2012). 83 

In addition to the mitochondrial data, seven microsatellite loci (Mb-mac4, Mb-mac19, Mb-mac10, 84 

Mb-mac17, Mb-mac40, Mb-mac84 and Mb-mac64) were genotyped for 165 individuals, according to 85 

Becquet et al. (2009). We have attempted to genotype all individuals for which a COI sequence was 86 

obtained. All individuals for whom more than 3 microsatellite loci failed to amplify were removed 87 

from the analysis (Table S1). 88 

Phylogenetic analyses were performed on mitochondrial sequences with the Network 89 

software v.4.0.0.0 (Bandelt et al., 1999) that builds haplotype networks based on the median-joining 90 
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algorithm (Cassens et al., 2003). Pairwise linkage disequilibrium between microsatellite loci was 91 

tested using GENEPOP version 4.0.10 (Rousset, 2008), and the significance of each test was 92 

evaluated using a Markov-chain randomization procedure (MCMC) with 1000 dememorization steps, 93 

100 batches and 1000 iterations per batch. The numbers of alleles per population and locus (Nall), and 94 

the observed (Ho) and expected (He) heterozygoties under Hardy-Weinberg equilibrium were 95 

calculated using Genetix 4.05.2. (Belkhir et al., 1996-2004!. Allelic richness (Rall) was computed 96 

using FSTAT 2.9.3.2 (Goudet, 2002) to account for differences in sampling sizes across populations. 97 

Fixation indices (FIS, FIT, FST) were calculated using Genetix 4.05.2 according to Weir & Cockerham 98 

(1984). The significance of pairwise population differentiation, as measured by FST, was estimated 99 

based on 1000 permutations. Population self-assignment tests were conducted using Geneclass v2.0 100 

(Piry et al., 2004), based on the Bayesian method of Rannala & Mountain (1997), and incorporating 101 

the exclusion-simulation significance test of Cornuet et al. (1999). The level of statistical significance 102 

was set to  = 0.05.  103 

Spatial population structure was further explored using bayesian clustering analyses. 104 

These analyses were performed using the BYM admixture model implemented in TESS v.2.3 (Durand 105 

et al., 2009), using 12,000 MCMC steps and a burnin period of 2,000 steps. Based on the results of 106 

preliminary test runs, the presence of two to 4 genetic clusters was evaluated, with 10 replicate runs of 107 

each Kmax (spatial interaction parameter set to 0.6, linear degree of trend). The most likely Kmax was 108 

selected based on the Deviance Information Criterion (DIC), by minimizing its value and its variance, 109 

and by examining plots of individual membership probabilities. The most likely run among 10 110 

replicates was then selected based on DIC. 111 

 112 

Results  113 

A total of 32 COI haplotypes were detected among 232 individuals, 6 of which being putatively 114 

endemic to the Baltic Sea. Three closely-related clades were observed: clade 3, clade 4 and clade 8, 115 

separated by 1 to 3 mutations along the 313 bp examined (Fig. 1 and Fig. 2). clade 4, characterized by 116 

12 haplotypes, was the most prevalent group, with 123 individuals. clade 3 (12 haplotypes) and clade 117 
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8 (6 haplotypes) group 35 and 70 individuals, respectively. There was no spatial or bathymetric trend 118 

in the distribution of haplotypes (Fig. 1 and Fig. 2).  119 

A multilocus nuclear genotype was obtained for 165 individuals collected at 11 sampling sites with 120 

seven microsatellite markers. No linkage disequilibrium was detected (p ≥ 0.2). Overall, the number of 121 

alleles (Nall) ranged from 2.5 (SW40) to 6.8 (HEL60 and MW30) with a total of 11.2 over the whole 122 

dataset (Table 2). There was little variation in allele number between populations (mean = 5.1 ± 1.7), 123 

as confirmed by the allelic richness analysis (Rall); Rall varied from 1.5 (SW40) to 1.6 (HEL45) even in 124 

the population with small number of individuals (HEL85, SW40, SW60, mean value = 1.6 ± 0.03). 125 

The observed heterozygosity (Ho) varied from 0.3 (SW5) to 0.5 (SW30) and the mean value obtained 126 

for the 11 populations was 0.4 (standard error = 0.1). The expected heterozygosity (He) showed little 127 

variation across the whole dataset (mean and standard deviation across the 11 populations equals 128 

0.538 ± 0.048) and the heterozygote deficiency was quite high for all populations (mean FIS value and 129 

standard deviation equals 0.334 ± 0.135).   130 

At the regional scale, the overall structure observed (FIT = 0.557) was essentially due to 131 

the high heterozygote deficiency within populations (FIS = 0.554) as genetic differentiation between 132 

populations was quite low (FST = 0.007, p = 0.27). Pairwise differentiation between populations was 133 

globally non significant (data not shown). Nevertheless, the SW60 population was significantly 134 

divergent from HEL60, SW5, SW10, SW20, SW30, GN40 and MW30 (0.094 < FST < 0.186). 135 

Bayesian assignment of individuals to populations highlighted a great rate of self-recruitment varying 136 

from 30% (MW30) to 87% (SW60) with a mean value of 57% (Fig. 3). Excluding HEL85 (50%), the 137 

self-recruitment rate was function of depth (Linear regression test between paired samples, R
2 
= 0.65, t 138 

= 2.45, df = 8, p = 0.039, Fig.4). This result was confirmed for the Vistula populations (SW5 to 139 

SW60) for which self-recruitment rate varied from 40% for SW5 to 87% for SW60 (Fig. 3 and Fig. 4). 140 

Furthermore, beyond 40 m depth, this rate was higher than 80% (40% < SW5-SW30 < 50% and 80% 141 

< SW40-SW60 < 87%). Thus, no individual from the shallowest sites were recruited in populations 142 

located between 30 and 60 m depth (Fig. 3).  143 

Bayesian clustering analyses suggested the presence of four clusters among 165 144 

individuals examined. No spatial or bathymetric trend could be detected among these clusters. 145 
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Mapping clades 3, 4 and 8 onto these clusters revealed no association between multi-locus genotypes 146 

and haplotypes, suggesting strong introgression (Fig. S1).  147 

 148 

 149 

Discussion 150 

 151 

1- Genetic structure at the regional scale: the Gulf of Gdañsk 152 

 153 

1-1 Large genetic diversity and depth stratification 154 

Populations in the Gulf of Gdañsk were characterized by a large gene diversity (0.440 < He < 0.591). 155 

These diversity levels were similar to that obtained by Becquet et al. (2012), who observed a mean He 156 

of 0.63 among 18 European populations sampled from France to Russia. As their European 157 

counterparts, Baltic populations were heterozygote deficient (FIS = 0.55), as currently observed in 158 

marine mollusks (Zouros & Foltz, 1984). However, populations were probably not subjected to 159 

inbreeding, given their high genetic diversity. In comparison with European populations (mean Rall =  160 

4.39), the allelic richness in the Gulf of Gdañsk was reduced (1.53 < Rall < 1.62).  This result might 161 

be due to the rarefaction method used to standardize allele counts (El Mousadik & Petit, 1996), which 162 

is known to underestimate the allelic richness especially when there is a large difference in the sample 163 

size among populations (5 < N < 30).  164 

No genetic structure was detected among shallow-water subpopulations. In addition to tests of 165 

significance on fixation statistics, TESS runs confirmed the absence of genetic structuring. This result 166 

was probably linked to the ability of M. balthica larvae to disperse over long distances (e.g. Günther et 167 

al.,  1998).  Private  alleles were not  correlated with  environmental  factors  (salinity,  pollution…), but 168 

gene flow was reduced between deep (40-50 m depth) and shallow stations. This pattern, concordant 169 

with previous results (Hummel et al., 2000), is probably linked to the thermo-haline stratification of 170 

water masses occurring in the Gulf of Gdañsk at around 40 meters (Cyberska et al., 1998, 171 

Rheinheimer, 1995, Rumhor et al., 1996). 172 

 173 
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1-2 Strong self-recruitment 174 

The assignment probability of individuals to each population highlights a great rate of self-recruitment 175 

(30 to 87%). It is now well accepted that panmixia is not the rule in the marine environment (Swearer 176 

et al., 2002, Hellberg et al., 2002). On the contrary, larvae may recruit locally, because (i) spatio-177 

temporals movements of water masses influence larval trajectories (Gaines et al., 2003, Siegel et al., 178 

2003), (ii) survival conditions vary in space and time (Gaines & Bertness, 1992, Morgan et al., 2000, 179 

Ellien et al., 2004) and (iii) reproductive success is random (Hedgecock, 1994a, 1994b). The thermo-180 

halocline present in the Bay of Gdañsk might be a strong vertical barrier to larval exchange and might 181 

explain the different self-recruitment rate for populations living above or below this cline. The low 182 

self-recruitment rate recorded at HEL85 (50% compared to > 70% at other deep-water locations), does 183 

not contradict this hypothesis, and may be explained by the specific sea-floor morphological features 184 

found near the Hel Cape. Indeed, there is a relatively steep slope descending to a depth of 50+ m on 185 

the open-sea side of the cape (Rucinska-Zjadacz & Rudowski, 2009). Upwelling and downwelling 186 

events occur often in this region (Kowalewski & Ostrowski, 2005) and maybe responsible for cross-187 

slope larval transport.  188 

!189 

2-!Genetic structure at the local scale, among Vistula populations 190 

 191 

 2-1 Asymmetric gene flow 192 

Genetic connectivity among Vistula populations from different depths was asymmetric, as gene flow 193 

was stronger from deep to shallow stations (Fig. 3). Even if these populations are geographically close 194 

to each other (horizontal distance is about 7 km), they are located along a clear environmental gradient 195 

(Table 1). While shallower populations (SW5 and SW10) are directly impacted by the freshwater of 196 

the Vistula River, carrying heavy metal pollution (Sokolowski et al., 1998, 2002, 2007), deeper 197 

populations (> 20 m) are challenged by saltier waters from the open part of the Gulf of Gdañsk and 198 

impacted by the release of metallic elements from the upper sediment layer that might exert toxic 199 

effects on bivalves (Janas et al., 2004, Sokolowski et al., 2007). Moreover bivalves leaving in the 200 
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deeper parts of the Gulf of Gdañsk can be subjected to hypoxia or anoxia and even hydrogen sulphide 201 

(Janas et al., 2004), because of the strong eutrophication occurring in this zone (Laine, 2003).  202 

These heterogeneous environmental conditions might favor chaotic genetic patchiness (Johnson & 203 

Black, 1982). Indeed, we observed a greater genetic heterogeneity between close populations (e.g. 204 

Vistula populations), than between more distant populations (e.g at the scale of the entire Gulf of 205 

Gdañsk populations, Fig. 3). The asymmetric gene flow in the Gulf of Gdañsk might be the result of 206 

natural selection impacting larval and/or recruit survival induced by environmental conditions (e.g. 207 

Johnson & Black, 1982, 1984, Watts et al., 1990, Hedgecock, 1994a, Edmands et al., 1996, David et 208 

al., 1997).  209 

The gene flow from deep (30 to 60 m) to shallow populations is probably due to the specific water 210 

mass dynamics in the Vistula Estuary. In this salt wedge estuary, a sharp boundary exists between an 211 

upper layer of brackish water and an intruding wedge-shaped bottom layer of denser saltwater. Under 212 

the typical circulation for such estuary, low salinity surface water moves toward the open sea (flushing 213 

larvae away from the mouth of the estuary), whereas sea bottom water moves toward the land (and 214 

transporting larvae from deep to shallow). Moreover, the thermo-halocline may act as a physical 215 

barrier to larvae dispersal, leading to genetic differentiation at a microscale, as was already found in 216 

many marine organisms (e.g. Torrents et al., 2008, Bongaerts et al., 2010, Mokhtar-Jamai et al., 2011).  217 

Depth-dependent timing of gonadal development and reproductive period might also influence genetic 218 

differentiation. Between 0 and 25 m depth, spawning is regulated by the warming of surface waters 219 

following air temperatures changes (Wenne, 1985 and 1993), while at intermediate depths (25 – 35 m) 220 

the spawning period is extended because of the longer persistence of colder water temperatures. In the 221 

deeper waters (70 – 75 m), spawning is uncorrelated with surface water temperatures and often 222 

depends on food availability (Wenne, 1993 after PierĞcieniak et al., 2010).  223 

 224 

2-2 Are SW60 populations subjected to local adaptation? 225 

 226 

Microsatellite markers revealed a significant genetic differentiation between the deepest SW 227 

population (SW60) and others (except with SW40). Moreover, the SW60 population has the highest 228 
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self-recruitment rate (87%), which further supports the idea of genetic isolation between this 229 

population and shallower ones. The fact that SW60 is also characterized by a great genetic diversity 230 

(He = 0.52) suggests that this population is not declining, or suffering from source-sink dynamics or 231 

inbreeding.  232 

The challenging environmental conditions recorded at the SW60 site, associated with the high genetic 233 

polymorphism and reduced connectivity observed with other sites, may promote local adaptation via 234 

divergent natural selection within this population (Hasting, 1983). However, populations in this region 235 

deal with many natural (salinity, temperature) and/or anthropogenic stressors (eutrophication, heavy 236 

metals contamination) that may have synergistic effects on population structure. It was therefore 237 

difficult to distinguish which processes are directly implicated in structuring this deep population, and 238 

a more thorough sampling may address this issue in the future. Thus, given the observed variation in 239 

spawning time and the existence of physical barriers to gamete and larval dispersal (limited cross 240 

fertilization), SW populations may be far from panmixia. 241 

 242 

 243 

 244 
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 1 

Fig.1: Sampling locations and haplotype distribution in the Gulf of Gdañsk. HEL populations 1 

were collected close to the Hel Peninsula, MW30 in the Puck lagoon, GN40 in the main 2 

pathway of marine traffic and SW5 to SW60 in the Vistula mouth. Haplotype groups 3 

represents the most common haplotypes and their closest relatives (see haplotype network in 4 

Fig.2). Haplotypes H3 and H4 correspond to H3 and H4 of Becquet et al. 2012. 5 

 6 

 7 
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 2 

Fig.2: Minimum spanning network displaying mitochondrial variation along a 313 bp of the 9 

COI gene. Each circle represents a haplotype. Circle size is proportional to haplotype 10 

frequency (n = 30, 52, 106 for H8, H3, H4, respectively; rares haplotypes have a frequency 11 

between one and four). Each segment represents a single mutational event. H8 are 12 

characteristic of Baltic. 13 

14 



 3 

Fig.3: Assignment results. For each population, percentage of individuals was assigned to 15 

each potential source (Larval origin) and represented by a square. Square size is a function of 16 

a percentage of individuals.  17 

 18 

19 



 4 

Fig. 4: Relationship between sampling depth and the level of self-recruitment as estimated by 20 

GeneClass2. Top left corner: results of the linear regression analysis. R2 is adjusted for the 21 

number of variables used in the model. 22 

 23 
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 1 

Table 1: Physico-chemical characteristics of sampling locations in the Vistula river mouth. Data are presented as means. More detailed 1 

information about metallic contamination can be found in Sokolowski 1999. 2 

Population 

Code 

Depth 

(m) 

Salinity 

(PSU) 

Temperature 

(°C) 

Specific environmental features 

SW60 60 9.6 5.1 

Anoxia, hydrogen sulphide contamination, 

metallic pollutant release from sediments 

SW40 40 8.2 13 Thermo-halocline 

SW30 30 7.6 14.2 Intermediate zone 

SW20 20 7.3 14.2 Vistula inflow 

SW10 10 6.7 14.1 Vistula inflow 

SW5 5 6.7 14.4 Vistula inflow 

vcdng
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 2 

Table 2: Nuclear diversity for each sample site. Nnuc: number of individuals analyzed for 3 

microsatellite markers; Nall: allele number; Rall: allelic richness; Ho: observed heterozygoty; 4 

Hs: gene diversity; FIS: heterozygote deficiency. Nmito corresponds to the number of 5 

individuals for which a mitochondrial sequence was obtained. See also Table S1. 6 

 Nnuc Nmito Nall Rall Ho Hs FIS 

HEL85 8 5 4.33 1.58 0.405 0.511 0.328 

HEL60 26 28 6.83 1.59 0.408 0.578 0.315 

HEL45 17 29 6.16 1.62 0.394 0.591 0.373 

GN40 11 24 4.33 1.51 0.313 0.493 0.417 

MW30 21 20 6.83 1.61 0.410 0.588 0.382 

SW5 18 19 5.14 1.56 0.282 0.534 0.539 

SW10 18 20 5.83 1.60 0.461 0.586 0.255 

SW20 23 21 5.83 1.58 0.370 0.565 0.373 

SW30 10 25 3.83 1.58 0.535 0.519 0.049 

SW40 5 23 2.5 1.53 0.447 0.440 0.183 

SW60 8 18 4.16 1.55 0.317 0.520 0.464 

Total 165 232 11.16 1.61 0.281 0.600 0.558 

Mean 15.45 21.09 5.07 1.57 0.394 0.538 0.334 

(S.D.) 7.59 6.42 1.36 0.03 0.073 0.048 0.135 
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 8 


