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1Aix-Marseille Université, CNRS, PIIM, UMR 7345,
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The derivation of Debye shielding and Landau damping from the N -body description

of plasmas requires many pages of heavy kinetic calculations in classical textbooks and is

done in distinct, unrelated chapters. Using Newton’s second law for the N -body system, we

perform this derivation in a few steps with elementary calculations using standard tools of

calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered on the

way to Landau damping. The theory is extended to accommodate a correct description of

trapping or chaos due to Langmuir waves, and to avoid the small amplitude assumption for

the electrostatic potential. Using the shielded potential, collisional transport is computed

for the first time by a convergent expression including the correct calculation of deflections

for all impact parameters. Shielding and collisional transport are found to be two related

aspects of the repulsive deflections of electrons.
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I. MOTIVATION

“Don’t model bulldozers with quarks”. This motto by Goldenfeld and Kadanoff [18] illustrates

the classical wisdom that one should give up the most fundamental descriptions of physics, and use

more synthetic models, when dealing with complex systems. For macroscopic classical systems, the

N -body description by classical mechanics was deemed impossible. This led to the development

of thermodynamics, of fluid mechanics, and of kinetic equations to describe various macroscopic

systems made up of particles like electrons, gas atoms or molecules, stars, or microorganisms.

When plasma physicists had to address the microscopic description of their state(s) of matter,

they did not consider the N -body description by classical mechanics, but directly derived kinetic

analogues of the Boltzmann equation, in particular the Vlasov equation. This trend has been the

dominant one till nowadays.

However, for plasmas where transport due to short range interactions is weak, N -body classical

mechanics yields useful results. As will be recalled in section V, it already enabled a description

of wave-particle interaction making it more intuitive, incorporating modern chaotic dynamics, and

unifying particle and wave evolutions, as well as collective and finite-N physics [2, 10, 11, 15]. The

present paper makes an even more thorough use of N -body mechanics by working directly with

Newton’s second law for this system. It shows, in particular, that basic phenomena like Debye

shielding and Landau damping can be more easily derived by avoiding kinetic and statistical

calculations altogether. In particular, the new derivation of Landau damping goes first through

Debye shielding, a totally unexpected fact, as classical textbooks present these concepts in different

and unrelated chapters. Furthermore, N -body dynamics provides an intuitive explanation of Debye

shielding, showing how each particle can be shielded by all other ones, while all the plasma particles

are in uninterrupted motion : this turns out to be a mere consequence of the almost independent

deflections of particles due to the Coulomb force. Finally, by using the shielded potential, the

present paper provides the first calculation of collisional transport without any ad hoc cutoff,

and covering all relevant scales : the Debye length, the inter-particle distance, and the distance

of minimum approach of two electrons in a Rutherford collision. It is worth noting that the

mathematical tools for the present theory were essentially available more than one century ago.

“[The] very wealth of applicability [of plasma physics] has sometimes obscured the structure

and intrinsic content of the field as a physics discipline. To put the matter a little too strongly,

what sometimes emerges from plasma introductory literature is the impression of a collection of

recipes.” This statement by Hazeltine and Waelbroeck in the preface of their book [19] may be
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substantiated in various ways. Here are some elements in this line, motivating the present paper.

• First, the derivation of the Vlasov equation from first principles is painstaking (see e.g. [25]

and chapter 5 of [32]), and most textbooks prefer to introduce it with qualitative intuitive

arguments only. Its mathematical derivation for particles interacting through the (divergent)

Coulomb force is still an open problem [21]. This equation is hard to grasp for students, and

is an obstacle for non-experts interested in kinetic aspects of plasmas.

• The Vlasovian derivations of Landau damping do not provide the description of the corre-

sponding evolution of particles. This description is provided in textbooks by complementary

approximate mechanical models. It is worth recalling that, because of the lack of intu-

itive contents of Vlasovian derivations, the reality of Landau damping was fully recognized

only after its experimental observation in 1964 by Malmberg and Wharton [22], almost two

decades after its prediction.

• In principle, Vlasov equation may also be applied to velocity distributions which are positive

measures (see ch. 5 of [32]). This makes it applicable to non-smooth distributions (for

instance two-stream ones), but textbooks generally prefer dealing with such cases by using

a fluid description of the plasma, at the cost of a conceptual zigzag.

• The complete traditional derivation of Debye shielding involves the equilibrium pair cor-

relation function which is computed after deriving the first two equations of the BBGKY

hierarchy and truncating the cluster expansion to order 2 (see e.g. ch. 12 of [7]). However,

most textbooks prefer to introduce this shielding by adding a test particle to a Vlasovian

plasma or to a fluid one with Boltzmannian electrons. These recipes, though efficient, are

conceptual zigzags, since they introduce a particle in descriptions resulting from the previous

smoothing of plasma graininess. The Vlasovian calculation does not reveal how all particles

shield the other ones and are also shielded by them at the same time. The fluid calculation

of shielding appeals to the ability of particles to move and neutralize any region of excess

space charge, which makes sense if there is a macroscopic polarized Langmuir probe, but

not for uniform plasmas. Furthermore, as shown by the first two approaches, in reality the

shielding of a particle depends on its velocity, and in general the Yukawa-type contribution

must be complemented with a 1/r3 contribution [8, 23].

• Collisional transport is described in textbooks with two opposite points of view : the two-

body Rutherford collision picture and a mean-field approach. The two-body Rutherford



4

collision picture describes correctly collisions for impact parameters b ≪ d, the interparticle

distance. However, transport coefficients are then computed by an ad hoc extension of

the integrals over b up to about the Debye length λD ≫ d, which involves the Coulomb

logarithm as a factor with some uncertainty. The mean-field approach is based on the

Balescu-Lenard equation, and describes correctly collisions for b ≫ d. However, transport

coefficients are then computed by an ad hoc extension of the integrals over b down to λma,

the classical distance of minimum approach (much smaller than d), which involves again

the Coulomb logarithm as a factor with some uncertainty. The agreement between the two

recipes gives confidence in their result, but till now no description of collisional transport

has been describing correctly the scales about d.

Therefore, to an outsider, the derivations in plasma introductory literature lack unity, and do

not look as following strictly rules of inference from first principles, as do many fields of physics. The

present paper contributes to following these rules and to unifying basic plasma physics. It provides

new foundations for this physics, and endows it with a special status. Indeed, an old dream comes

true : classical mechanics can genuinely describe non trivial aspects of the macroscopic dynamics

of a many-body system.

II. MAIN RESULTS AND PAPER OUTLINE

Here are the main results of this paper and its organization :

1. In section III, by using the Fourier and Laplace transforms in a way similar to that of the

Vlasovian derivation of Landau damping, a rigorous equation (Eq. (13)) is derived for a

linearized version of the electrostatic potential of an infinite plasma made up of the periodic

replication of N electrons coupled by Coulomb forces in a volume L3 with a neutralizing

ionic background (One Component Plasma (OCP) model [1, 4, 30]). This equation is of the

type Eϕ̂ = S, where E is a linear operator, acting on the infinite dimensional array ϕ̂ whose

components are all the Doppler shifted Fourier-Laplace components of the potential. Both

E and the source term S are sums over the N particles. Appendix B yields a rigorous fully

nonlinear version of Eq. (13) : Eq. (B9).

2. In section IVA, the discrete sums in E are substituted with integrals over a smooth dis-

tribution function f(r,v) close to a uniform one. Then E becomes diagonal, and the new

approximate potential turns out to be the sum of the shielded Coulomb potentials of the
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individual particles (Eq. (19)). Such potentials were first computed by a kinetic approach in

section II.A of Ref. [17] and later on in [3, 29]. Therefore, Debye shielding is computed for

a single mechanical realization of the plasma.

3. In section IVB, the discrete sums over particles of their shielded potentials are substituted

with integrals over f(r,v). This yields Eqs (16) and (20) enabling the calculation of Lang-

muir waves excited by a small initial perturbation in plasmas with a possibly non-smooth

f(v) (for instance a two-stream one). For a smooth f , one recovers the classical Vlasovian ex-

pression including initial conditions in Landau contour calculations of Langmuir wave growth

or damping, obtained by linearizing Vlasov equation and using Fourier-Laplace transform, as

described in many textbooks (see for instance Refs [7, 19, 25]). Therefore, in these calcula-

tions, the electrostatic potential turns out to be the smoothed version of the actual shielded

potential in the plasma. Sections III to IVB provide the explicit, yet very compact derivation

of formulas requiring at least twenty pages in classical textbooks proceeding also explicitly

from the N -body description. This occurs thanks to a considerable simplification of the

mathematical framework with respect to textbooks, in particular because no probabilistic

argument and no partial differential equation are used.

4. In section IVC, Picard iteration technique (one of the standard methods to prove the ex-

istence and uniqueness of solutions to first-order equations with given initial conditions) is

applied to the equation of motion of a particle P due to the Coulomb forces of all other ones.

It stresses now that a part of the effect on particle P of another particle P ′ is mediated by

all other particles (Eq. (24)). Indeed particle P ′ modifies the motion of all other particles,

implying that the action of the latter ones on particle P is modified by particle P ′.

5. This calculation yields the following interpretation of shielding. At t = 0 consider a set

of (uniformly, independently) randomly distributed particles, and especially particle P . At

a later time t, the latter has deflected all particles which made a closest approach to it

with a typical impact parameter b <
∼ vtht where vth is the thermal velocity. This part of

their global deflection due to particle P reduces the number of particles inside the sphere

S(t) of radius vtht about it. Therefore, according to Gauss’ theorem, the effective charge of

particle P as seen out of S(t) is reduced : the charge of particle P is shielded due to these

deflections. This shielding effect increases with t, and thus with the distance to particle P . It

becomes complete at a distance on the order of λD. As a result, when starting from random
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particle positions, the typical time-scale for shielding to set in is the time for a thermal

particle to cross a Debye sphere, i.e. ω−1
p , where ωp is the plasma frequency. Furthermore,

shielding, though very fast a process, is a cooperative dynamical one, not a collective one :

it results from the accumulation of almost independent repulsive deflections with the same

qualitative impact on the effective electric field of particle P (if point-like ions were present,

the attractive deflection of charges with opposite signs would have the same effect). So,

shielding and collisional transport are two aspects of the same two-body repulsive process.

6. In section V, in the spirit of Refs [2, 10, 26, 27], to accommodate a correct description of

trapping or chaos due to Langmuir waves, the set of particles is split into bulk and tail, where

the bulk is the set of particles which cannot resonate with Langmuir waves. Repeating for

the bulk particles the analysis leading to Eq. (13), the same equation is recovered with an

additional source term due to the tail particles (Eq. (28)).

7. Using the fact that the number of tail particles is small with respect to the bulk one, and

a technique introduced in Refs [26, 27], an amplitude equation is derived for any Fourier

component of the potential where tail particles provide a source term (Eq. (32)).

8. This equation, together with the equation of motion of the tail particles, enables to show

that, in the linear regime, the amplitude of a Langmuir wave is ruled by Landau growth or

damping, and by spontaneous emission (Eq. (34)), a generalization to 3 dimensions of the

one-dimensional result of Refs [10, 15].

9. In section VI, by using the shielded potential, the trace TD of the diffusion tensor of a given

particle is computed by a convergent expression including the particle deflections for all

impact parameters. These deflections are computed by first order perturbation theory in

the total electric field, except for those due to close encounters. The contribution to TD of

the former ones is matched with that of the latter ones provided by Ref. [28]. The detailed

matching procedure includes the scale of the inter-particle distance, and is reminiscent of

that in Ref. [20], without invoking the cancellation of three infinite integrals. TD has the

same expression as that in Ref. [28], except for the Coulomb logarithm which is modified by

a velocity dependent quantity of order 1.

10. Appendix A discusses the corrections to the ballistic approximation and the Coulomb po-

tential.
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11. Appendix B derives the fundamental nonlinear equation for the electric potential.

12. Appendix C discusses the smoothing procedure.

III. FUNDAMENTAL LINEAR EQUATION FOR THE POTENTIAL

This paper deals with the One Component Plasma (OCP) model [1, 4, 30], which considers

the plasma as infinite with spatial periodicity L in three orthogonal directions with coordinates

(x, y, z), and made up of N electrons in each elementary cube with volume L3. Ions are present

only as a uniform neutralizing background, enabling periodic boundary conditions. This choice is

made to simplify the analysis which focuses on ϕ(r), the potential created by the N particles at

any point where there is no particle. The discrete Fourier transform of ϕ, readily obtained from

the Poisson equation, is given by ϕ̃(0) = 0, and for m 6= 0 by

ϕ̃(m) = −
e

ǫ0k2m

∑

j∈S

exp(−ikm · rj), (1)

where −e is the electron charge, ǫ0 is the vacuum permittivity, rj is the position of particle j,

S = {1, . . . N}, ϕ̃(m) =
∫
ϕ(r) exp(−ikm · r) d3r, with m = (mx,my,mz) a vector with three

integer components running from −∞ to +∞, km = 2π
L m, and km = ‖km‖. Reciprocally,

ϕ(r) =
1

L3

∑

m

ϕ̃(m) exp(ikm · r). (2)

The dynamics of particle l follows Newton’s equation

r̈l =
e

me
∇ϕl(rl), (3)

with me the electron mass, and ϕl the electrostatic potential acting on particle l, i.e. the one

created by all other particles and by the background charge. Its Fourier transform is given by Eq.

(1) with the restriction j 6= l. Let

r
(0)
l = rl0 + vlt (4)

be a ballistic approximation to the motion of particle l, and let δrl = rl− r
(0)
l . In the following, we

consider two instances of the ballistic approximation : the one where rl0 and vl are respectively

the initial position and velocity of particle l, and the one where they are slightly shifted from

these values by low amplitude Langmuir waves. Until the end of section IV, we consider cases
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where all the δrl’s are small. So we approximate ϕ̃l(m) by its expansion to first order in the δrl’s

(Approximation 1, discussed in Appendix A)

φ̃l(m) =
∑

j∈S;j 6=l

δφ̃j(m), (5)

with the contribution of particle j to the potential reading

δφ̃j(m) = −
e

ǫ0k2m
exp(−ikm · r

(0)
j )(1− ikm · δrj). (6)

We further consider ϕ to be small, and the δrl’s to be of the order of ϕ (Approximation 2). At

lowest order, the particles dynamics defined by Eq. (3) is given by

δr̈l =
ie

L3me

∑

n

kn φ̃l(n) exp(ikn · r
(0)
l ). (7)

We denote with a caret the time Laplace transform which maps a function f(t) to f̂(ω) =
∫∞
0 f(t) exp(iωt)dt (with ω complex). In particular, we first define the ballistic approximation

̂̃
φ
(0)

l to the Laplace transform of φ̃l(m) : it is computed from Eqs (5) and (6) on setting δrj =

δrj(0) + δṙj(0)t for all j’s in the latter,

̂̃φ
(0)

l (m, ω) =
∑

j∈S;j 6=l

δ̂̃φ
(0)

j (m, ω), (8)

where

δ̂̃φ
(0)

j (m, ω) = −
ie

ǫ0k2m

exp[−ikm · (rj0 + δrj(0))]

ω − km · (vj + δṙj(0))
(9)

is the ballistic contribution of particle j to the total potential.

The Laplace transform of Eq. (7) is

ω2δr̂l(ω) = −
ie

L3me

∑

n

kn exp(ikn · rl0)
̂̃
φl(n, ω + ωn,l) + iωδrl(0) − δṙl(0), (10)

where ωn,l = kn · vl comes from the time dependence of r
(0)
l in the exponent of Eq. (7). The

Laplace transform of Eqs (5)-(6), with the actual δrj(t), then yields

k2m
̂̃φl(m, ω) = k2m

̂̃φ
(00)

l (m, ω) +
ie

ǫ0

∑

j∈S;j 6=l

exp(−ikm · rj0) km · δr̂j(ω − ωm,j), (11)

where ωm,j comes from the r
(0)
j in Eq. (6) ; ̂̃φ

(00)

l (m, ω) is ̂̃φ
(0)

l (m, ω) computed with δrj(0) =

δṙj(0) = 0 for all j’s. On substituting the δr̂j ’s with their expression, Eq. (11) becomes

k2m
̂̃
φl(m, ω) −

e2

L3meǫ0

∑

n

km · kn

∑

j∈S;j 6=l

̂̃
φj(n, ω + ωn,j − ωm,j)

(ω − ωm,j)2
exp[i(kn − km) · rj0]

= k2m
̂̃φ
(0)

l (m, ω). (12)
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Summing Eq. (12) over l = 1, ...N and dividing by N − 1 yields

k2m
̂̃
φ(m, ω) −

e2

L3meǫ0

∑

n

km · kn

∑

j∈S

̂̃
φ(n, ω + ωn,j − ωm,j)

(ω − ωm,j)2
exp[i(kn − km) · rj0]

= k2m
̂̃
φ
(0)

(m, ω), (13)

where
̂̃
φ(m, ω) and

̂̃
φ
(0)

(m, ω) are respectively
̂̃
φl(m, ω) and

̂̃
φ
(0)

l (m, ω) complemented with the

missing l-th term. Equation (13) is the fundamental linear equation of this paper. This fundamental

linear equation is of the type E ̂̃φ = source term, where E is a linear operator, acting on the infinite

dimensional array whose components are all the Doppler shifted
̂̃
φ(m, ω)’s.

A fully nonlinear and rigorous version of the fundamental linear equation is provided in Ap-

pendix B : Eq. (B9). Its linearization provides Eq. (13), which endows it with a status analogous

to the linearized version of the nonlinear Vlasov-Poisson system of equations. Since the nonlinear

version is not used in this paper, for simplicity we derived here the linearized version only.

IV. DEBYE SHIELDING, LANGMUIR WAVES AND LANDAU DAMPING

A. Shielded Coulomb potential

We introduce a smooth function f(r,v), the smoothed position and velocity distribution function

at t = 0 such that the distribution

∑

l∈S

• =

∫∫
•f(r,v)d3rd3v +W (•), (14)

where the distributionW yields a negligible contribution when applied to space dependent functions

which evolve slowly on the scale of the inter-particle distance ; there the spatial integration is

performed over the elementary cube with volume L3, and the velocity integration runs over all

velocities.

On replacing the discrete sums over particles with integrals over the smooth distribution function

f(r,v) (Approximation 3 discussed in Appendix C), Eq. (13) becomes

k2m
̂̃Φ(m, ω)

= k2m
̂̃φ
(0)

(m, ω) +
e2

L3meǫ0

∑

n

km · kn

∫ ̂̃Φ(n, ω + (kn − km) · v)

(ω − km · v)2
f̃(n−m,v) d3v,

(15)

where ̂̃Φ is the smoothed version of ̂̃ϕ resulting from Approximations 1 to 3, and f̃ is the spatial

Fourier transform of f . We further assume the initial distribution f to be a spatially uniform
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distribution function f0(v) plus a small perturbation of the order of Φ (in agreement with Ap-

proximation 2). Then operator E becomes diagonal with respect to both m and ω (a complex

quantity). Linearizing Eq. (15) for ̂̃Φ amounts to replacing f̃ with its Φ-independent part, so that

ǫ(m, ω) ̂̃Φ(m, ω) =
̂̃
φ
(0)

(m, ω), (16)

where

ǫ(m, ω) = 1−
e2

L3meǫ0

∫
f0(v)

(ω − km · v)2
d3v. (17)

This shows that the smoothed self-consistent potential ̂̃Φ is determined by the response function

ǫ(m, ω), viz. the classical plasma dielectric function. A first check of this can be obtained for a

cold plasma : then ǫ(m, ω) = 1 − ω2
p/ω

2, where ωp = [(e2n)/(meǫ0)]
1/2 is the plasma frequency

(n = N/L3 = L−3
∫∫

f(r,v) d3rd3v is the plasma density). The classical expression involving

∂f0/∂v obtains by a mere integration by parts if f0 is differentiable.

As a result of Eq. (8), the part of ̂̃Φ(m, ω) generated by particle j is δ ̂̃Φj(m, ω) =

δ
̂̃
φ
(0)

j (m, ω)/ǫ(m, ω). By inverse Fourier-Laplace transform, after some transient discussed later,

the potential due to particle j becomes the shielded Coulomb potential [3, 17, 29]

δΦj(r) = δΦ(r− rj(0) − ṙj(0)t, ṙj(0)), (18)

where

δΦ(r,v) = −
e

L3ǫ0

∑

m 6=0

exp(ikm · r)

k2m ǫ(m,km · v+ iε)
(19)

with the usual iε prescription resulting from inverting the Laplace transform as the integral in Eq

(17) is undefined for the real-valued ω = km · v. Therefore, after this transient, the dominant

contribution to the full potential in the plasma turns out to be the sum of the shielded Coulomb

potentials of individual particles located at their ballistic positions computed with their initial

position and velocity.

Let λD = [(ǫ0kBT )/(ne
2)]1/2 = [kBT/me]

1/2ω−1
p be the Debye length, where kB is the Boltzmann

constant and T the temperature. The wavenumbers resolving scale ‖r‖ are such that km‖r‖ >
∼ 1.

Shielding involves scales on the order of λD. The transient is given by the zeros of ǫ(m, ω). For

shielding scales, these zeros correspond to a strong damping over time scales on the order of the

plasma period. Therefore, the transient is damped after such a period, as estimated in statement

II.(5). For scales much larger than λD, the damping is small, and particles excite weakly damped

Langmuir waves too.
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If ‖r‖ ≪ λD, the corresponding wavenumbers are such that kmλD ≫ 1. Therefore, there is

no shielding for ‖r‖ ≪ λD, since ǫ(m,km · v) − 1 ≃ −[vth/(λD km · v)]2 ≈ −(kmλD)
−2 where

vth = λD ωp is the thermal velocity.

B. Langmuir waves and Landau damping

We now apply the smoothing using distribution function f to
̂̃
φ
(0)

(m, ω) too in Eq. (16) (Ap-

proximation 4). On neglecting δrj to lowest order in Eq. (6), this yields a Φ̃(0)(m) whose Laplace

transform is

̂̃Φ
(0)

(m, ω) = −
ie

ǫ0k2m

∫
f̃(m,v)

ω − km · v
d3v. (20)

This shows that, whenever f is differentiable in v, this second smoothing makes Eq. (16) to become

the expression including initial conditions in Landau contour calculations of Langmuir wave growth

or damping, usually obtained by linearizing Vlasov equation and using Fourier-Laplace transform,

as described in many textbooks.

However, since Eqs (16) and (20) do not involve derivatives of f , they also enable computing

Langmuir waves induced by an initial perturbation in the case of a non differentiable f (for instance

a two-stream one). In all these calculations, ̂̃Φ
(0)

(m, ω) turns out to be the smoothed version of

the actual shielded potential in the plasma.

It is interesting to compare the above derivation with that used by classical textbooks when

they start with the N -body description to derive both Debye shielding and the combination of Eqs

(16) and (20). Debye shielding is exhibited in the equilibrium pair correlation function computed

after deriving the first two equations of the BBGKY hierarchy (see e.g. chapter 12 of [7]). The

combination of Eqs (16) and (20) is obtained independently by linearizing Vlasov equation about a

uniform velocity distribution function, and by using the Fourier-Laplace transform. A prerequisite

is the derivation of Vlasov equation by two main fundamental approaches : a mean-field deriva-

tion [32], or the BBGKY hierarchy that involves statistical arguments starting with the Liouville

equation (see e.g. [25]). In contrast with the latter, the present derivation performs the Laplace

transform in time of the linearized dynamics of a single realization of the N -body system. This

yields Eq. (13) which keeps the full graininess of the system. A first smoothing involving a ve-

locity distribution function yields Eqs (18)-(19), and a second one yields Eq. (20) combined with

Eq. (16). This provides a much shorter connection between these equations and the underlying

N -body problem. In this derivation, the smoothed velocity distribution is introduced after particle
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dynamics has been taken into account, and not before, as occurs when kinetic equations are used.

This avoids addressing the issues of the exact definition of the smoothed distribution for a given

realization of the plasma, and of the uncertainty as to the way the smoothed dynamics departs

from the actual N -body one [32].

C. Mediated interactions imply Debye shielding

In the above derivation of Debye shielding, using the Laplace transform of the particle positions

does not provide an intuitive picture of this effect. We now show that such a picture can be

obtained directly from the mechanical description of microscopic dynamics with the full OCP

Coulomb potential of Eq. (1). To compute the dynamics, we use Picard iteration technique. From

Eq. (3), r
(n)
l , the n-th iterate for rl, is computed from

r̈
(n)
l =

e

me
∇ϕ

(n−1)
l (r

(n−1)
l ), (21)

where ϕ
(n−1)
l is computed by the inverse Fourier transform of Eq. (1) with the rj ’s substituted with

the r
(n−1)
j ’s. The iteration starts with the ballistic approximation of the dynamics defined by Eq.

(4), and the actual orbit of Eq. (3) corresponds to n → ∞. Let δr
(n)
l = r

(n)
l − r

(0)
l be the mismatch

of the position of particle l with respect to the ballistic one at the n-th iterate. It is convenient to

write Eq. (21) as δr̈
(n)
l =

∑
j∈S;j 6=l δr̈

(n)
lj , with

δr̈
(n)
lj = aC(r

(n−1)
l − r

(n−1)
j ) (22)

and

aC(r) =
ie2

ǫ0meL3

∑

m 6=0

k−2
m km exp(ikm · r). (23)

Let δr
(n)
lj =

∫ t
0

∫ t′

0 δr̈
(n)
lj (t′′) dt′′dt′. For n ≥ 2, one finds

δr̈
(n)
l =

∑

j∈S;j 6=l

[(δr̈
(1)
lj +M

(n−1)
lj ) + 2∇aC(r

(0)
l − r

(0)
j ) · δr

(n−1)
lj ] +O(a3), (24)

where a is the order of magnitude of the total Coulombian acceleration, and

M
(n−1)
lj = ∇aC(r

(0)
l − r

(0)
j ) ·

∑

i∈S;i 6=l,j

(δr
(n−1)
li − δr

(n−1)
ji ) (25)

is the modification to the bare Coulomb acceleration of particle j on particle l due to the following

process : particle j modifies the position of all other particles, so that the action of the latter ones
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on particle l is modified by particle j. Therefore M
(n−1)
lj is the acceleration of particle l due to

particle j mediated by all other particles. The last term in the bracket in Eq. (24) accounts for the

fact that both particles j and l are shifted with respect to their ballistic positions.

Since the shielded potential of the previous paragraph was found by first order perturbation

theory, it is felt in the acceleration of particles computed to second order. This acceleration is

provided by Eq. (24) for n = 2. Therefore its term in brackets is the shielded acceleration of

particle l due to particle j. As a result, though the summation runs over all particles, its effective

part is only due to particles j typically inside the Debye sphere (with radius λD) about particle

l. Starting from the third iterate of the Picard scheme, the effective part of the summation in

Eq. (24) ranges inside this Debye sphere, since the δr
(n−1)
lj ’s are then computed with a shielded

acceleration. This approach clarifies the mechanical background of the calculation of shielding

using the equilibrium pair correlation function which shows shielding to result from the correlation

of two particles occurring through the action of all the other ones (see e.g. section 12.3 of [7]). The

preceding calculation yields the interpretation of shielding given in statement II.(5).

V. WAVE-PARTICLE DYNAMICS

Section IVB enables the calculation of Langmuir waves excited by a given initial perturbation.

To describe Langmuir waves with discrete particles, we consider that the rl0’s are random, and

we allow for non zero δrj(0)’s and δṙj(0)’s for the δrj ’s in Eq. (6). Therefore, in the formulas of

section IV, the rj0’s and vj ’s are slightly shifted with respect to the initial rj(0)’s and ṙj(0)’s due

to Langmuir waves.

Up to this point, we described Langmuir waves by a fully linear theory. We now generalize

the analysis of section III to afford the description of nonlinear effects in wave-particle dynamics.

Indeed, resonant particles may experience trapping or chaotic dynamics, which imply km · δrl’s

of the order of 2π or larger for wave km’s. To describe such a dynamics, it is not appropriate

to expand φ as was done in Eqs (5)-(6) for such particles. However, this expansion may still be

justified for non resonant particles over times where trapping and chaos show up for resonant ones.

In order to keep the capability to describe the latter effects, we now split the set of N particles

into bulk and tail, in the spirit of Refs [2, 10, 15, 26, 27]. The bulk is defined as the set of particles

which are not resonant with Langmuir waves. We then perform the analysis of section III for

the Nbulk particles, while keeping the exact contribution of the Ntail particles to the electrostatic

potential. To this end, we number the tail particles from 1 to Ntail, the bulk ones from Ntail + 1
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to N = Nbulk +Ntail, and we call these respective sets of integer Stail and Sbulk. For l ∈ Sbulk, we

now substitute Eq. (5) with

φ̃l(m) =
Nbulk − 1

Nbulk
U(m) +

∑

j∈Sbulk;j 6=l

δφ̃j(m), (26)

where

U(m) = −
eNbulk

ǫ0k2m(Nbulk − 1)

∑

j∈Stail

exp(−ikm · rj). (27)

In the r.h.s. of Eq. (26), the first term vanishes if Ntail = 0. We now perform the calculation of

section III on substituting the previous summations with index running from 1 to N by ones where

the index runs over Sbulk, while keeping the exclusion of j = l where indicated. The previous

division by N − 1 preceding Eq. (13) is now a division by Nbulk − 1. This yields

k2m
̂̃
φ(m, ω) −

e2

L3meǫ0

∑

n

km · kn

∑

j∈S

̂̃
φ(n, ω + ωn,j − ωm,j)

(ω − ωm,j)2
exp[i(kn − km) · rj0]

= k2m
̂̃φ
(0)

(m, ω) + k2mÛ(m, ω), (28)

where Û(m, ω) is the Laplace transform of U(m, t). Then Eq. (16) becomes

ǫ(m, ω) ̂̃Φ(m, ω) =
̂̃
φ
(0)

(m, ω) + Û(m, ω). (29)

Let Φ̃(m, t) be the inverse Laplace transform of ̂̃Φ(m, ω), ̂̃Φbulk(m, ω) be the solution of Eq. (16)

computed for the bulk particles, and Φ̃bulk(m, t) be its inverse Laplace transform. We now derive an

amplitude equation for Φ̃(m, t) in a way similar to Refs [26, 27]. Let ωm be such that ǫ(m, ωm) = 0 ;

because of the definition of the bulk, this frequency is real. Then Φ̃bulk(m, t) = A exp(−iωmt),

where A is a constant, and

̂̃
φ
(0)

(m, ω) =
iA

ω − ωm

, (30)

according to Eq. (16).

Let g(m, t) = Φ̃(m, t)/Φ̃bulk(m, t). Therefore ̂̃Φ(m, ω) = A ĝ(ω − ωm), which together with

Eqs (29) and (30) yields

Aǫ(m, ωm + ω′) [ĝ(m, ω′)−
i

ω′
] = Û(m, ωm + ω′), (31)

where ω′ = ω − ωm. If Ntail ≪ Nbulk, g(m, t) is a slowly evolving amplitude, and the support

of ĝ(m, ω) is narrow about zero. This justifies Taylor-expanding ǫ(m, ωm + ω′) about ω′ = 0 in
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Eq. (31), which yields ∂ǫ(m,ωm)
∂ω ω′ to lowest order. Setting this into Eq. (31) and performing the

inverse Laplace transform finally yields an amplitude equation for Φ̃(m, t)

∂Φ̃(m, t)

∂t
+ iωmΦ̃(m, t) =

ieNbulk

ǫ0k2m(Nbulk − 1)∂ǫ(m,ωm)
∂ω

∑

j∈Stail

exp(−ikm · rj). (32)

The self-consistent dynamics of the potential and of the tail particles is ruled by this equation and

by the equation of motion of these particles

r̈j =
ie

L3me

∑

n

kn Φ̃j(n) exp(ikn · rj). (33)

These two sets of equations generalize to 3 dimensions the self-consistent dynamics defined

in Refs [2, 10]. The study of this dynamics enables recovering Vlasovian linear theory with a

mechanical understanding (see [12, 13] for a synthetic presentation). In particular, the reason

why Landau damping cannot be a damped eigenmode is shown to be rooted deeply in Hamiltonian

mechanics : a damped eigenmode must exist along with an unstable one, which is going to dominate

with probability 1. Landau damping is recovered as an analogue of van Kampen phase-mixing

effect. This phase-mixing in turn plays an essential role in the calculation of Landau instability in

order to cancel the damped eigenmode (section 3.8.3 of Ref. [10]). The self-consistent dynamics

comes with an important bonus : it brings the information of particle dynamics in parallel with the

wave’s. In particular, it reveals that both Landau damping and instability result from the same

synchronization mechanism of particles with waves, which explains why there is a single formula for

the rates of growth and damping [10, 11, 15]. This synchronization mechanism was indeed evidenced

experimentally [9]. As we stressed in section I, this is absent in the Vlasovian description, and

forces textbooks to come up with complementary mechanical models. The self-consistent dynamics

approach enables to assess these models which are not all correct, unfortunately (see section 4.3.1

of Ref. [10] ; in particular, though initially published with a caveat, the surfer model induces in the

mind of students the wrong feeling that trapping is involved in Landau effect). We point out that

in Refs [2, 10] the equivalent of Eqs (32)-(33) was obtained without using any smoothing, but by

a direct mechanical reduction of degrees of freedom starting with the N -body problem.

For the sake of brevity, we do not develop here the full generalization of the analysis in Refs

[2, 10] ; it is lengthy, but straightforward. However, since this analysis unifies spontaneous emission

with Landau growth and damping, we recall the result ruling the evolution of the amplitude of a

Langmuir wave provided by perturbation calculation where the right hand sides of Eqs (32)-(33)

are considered as small of order one. This is natural for Eq. (32) since Ntail ≪ Nbulk, and for

Eq. (33) if the Langmuir waves have a low amplitude. Let J(m, t) = 〈Φ̃(m, t)Φ̃(−m, t)〉, where the



16

average is over the random initial positions of the tail particles (their distribution being spatially

uniform). Then a second order calculation in Φ yields

dJ(m, t)

dt
= 2γmLJ(m, t) + Sm spont, (34)

where γmL is the Landau growth or damping rate given by

γmL = αm

dfred
dv

(
ωm

km
;m

)
(35)

with

αm =
πe2

meǫ0k2m
∂ǫ(m,ωm)

∂ω

, (36)

and fred is the reduced smoothed distribution function fred(v;m) =
∫∫

f(vk̂m + v⊥) d
2v⊥ where

k̂m is the unit vector along km and v⊥ is the component of the velocity perpendicular to km ;

Sm spont is given by

Sm spont =
2α2

m

πe2kmn
fred(

ωm

km
), (37)

where n = N/L3 is the plasma density. Sm spont corresponds to the spontaneous emission of waves

by particles and induces an exponential relaxation of the waves to the thermal level in the case of

Landau damping (the analogue of what was found in [10, 15]). The second order calculation for the

particles yields the diffusion and friction coefficients of the Fokker-Planck equation ruling the tail

dynamics. This equation corresponds to the classical quasilinear result, plus a dynamical friction

term mirroring the spontaneous emission of waves by particles, as found in the one-dimensional

case in Refs [10, 15].

An important aspect of the self-consistent dynamics defined by Eqs (32)-(33) is that it enables to

use the modern tools of nonlinear dynamics and chaos available for finite dimensional systems. Let

us consider two examples. First, the van Kampen phase-mixing effect leading to Landau damping

is now a classical result of Vlasovian theory. However, one may wonder whether nonlinear effects

do not destroy these linear modes and the corresponding phase mixing. Proving the innocuity

of nonlinear effects is the equivalent of deriving a Kolmogorov-Arnold-Moser (KAM) theorem for

a continuous system (the Vlasov-Poisson one). This tour de force partly earned C. Villani the

2010 Fields medal [24]. The same result for the above finite dimensional self-consistent dynamics

requires the standard KAM theorem only : it is much simpler to keep the genuine granularity of

the plasma.
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Second, consider a tail distribution function which is a plateau in both velocity and space (this

occurs for instance at the saturation of the bump-on-tail instability in a particle description of the

plasma). Then the source term in Eq. (32) vanishes, as well as mode coupling, and the waves keep

a fixed amplitude : the self-consistency of Eqs (32)-(33) is quenched, even when particle dynamics

is strongly chaotic in the plateau domain. Then, it is possible to use the tools of 1.5 degree-of-

freedom Hamiltonian chaos to compute the diffusion of particle velocities. In particular, if chaos

is strong enough, one may use a quasilinear diffusion coefficient (see section 2.2 of [14]). In a

Vlasovian description, the bump-on-tail instability saturates with the previous plateau substituted

with a very jagged distribution in both space and velocity resulting from the chaotic stretching and

bending of the initial beam-plasma distribution (f is conserved along particle motion) ; a plateau

in velocity exists for the spaced-averaged distribution function only, and a plateau in space exists

for the velocity-averaged distribution only.

VI. DEBYE SHIELDING AND COLLISIONAL TRANSPORT

As a further benefit from our many-body approach, this section revisits collisional transport

with the aim of providing a derivation covering all the scales of the impact parameter, from the

classical distance of minimum approach to infinity, including the scales about the interparticle

distance. For simplicity, we give here the principle of the general derivation by computing the

trace of the diffusion tensor of a given particle. We perform an explicit mechanical calculation by

considering that particles interact through their shielded Coulomb potentials.

To this end, we focus on the case where the particles have random initial positions, i.e. where

the plasma has a uniform density, and for simplicity we consider the plasma to be in thermal

equilibrium. Then the dynamics of particles has no collective aspect, but is ruled by the cumulative

effect of two-body deflections. More specifically, we choose random rl0’s, and vanishing δrl(0)’s

and δṙl(0)’s ; in contrast to the randomness of initial positions, each particle has a well prescribed

initial velocity, in such a way that the overall initial smoothed velocity distribution is close to some

given Maxwellian. We focus on particle l which is assumed to be close to the center of the cube

with side L ≫ λD. In this section, we approximate the true dynamics with that due to the shielded

Coulombian interactions, i.e. we write

δr̈l =
∑

j∈S;j 6=l

a(rl − rj,vj), (38)
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with

a(r,v) =
e

me
∇δΦ(r,v), (39)

where δΦ(r,v) is given by Eq. (19). This means that we use Eq. (18) by substituting δΦ(r−rj(0)−

ṙj(0)t, ṙj(0)) with δΦ(r − rj,vj) : the shielded potential of particle j is computed by taking into

account its actual position, since the genuine shielded potential is the original Coulomb one close

to rj. The error made for r − rj of the order of λD is small as long as the mismatch of rj from

the ballistic orbit is much smaller than λD. As was done for the bare potential of Eq. (1), the field

acting on a given particle l is obtained by removing its own divergent contribution δΦl from Φ.

We now compute particle l deflection in a sequence of steps. First, we use first order perturbation

theory in δΦ, which shows the total deflection to be the sum of the individual deflections due to all

other particles. For an impact parameter b much smaller than λD, the deflection due to a particle

turns out to be the perturbative value of the Rutherford deflection due to this particle if it were

alone. Second, for a close encounter with particle n, we show that the deflection of particle l is

exactly the one it would undergo if the other N − 2 particles were absent. Third, the deflection for

an impact parameter of order λD is shown to be given by the Rutherford expression multiplied by

some function of the impact parameter reflecting shielding. These three steps yield an analytical

expression for deflection whatever the impact parameter in the “large box limit” L/λD → ∞.

We first compute δrl by first order perturbation theory in δΦ, taking the ballistic motion defined

by Eq. (4) as zeroth order approximation. This yields

δṙl1(t) =
∑

j∈S;j 6=l

δṙlj1(0, t), (40)

where

δṙlj1(t1, t2) =

∫ t2

t1

a[r
(0)
l (t′)− r

(0)
j (t′),vj ] dt

′. (41)

It is convenient to write

r
(0)
l (t′)− r

(0)
j (t′) = blj + (t′ − tlj)∆vlj, (42)

where tlj is the time of closest approach of the two ballistic orbits, and blj is the vector joining

particle j to particle l at this time. Then blj = ‖blj‖ is the impact parameter of these two orbits

when singled out. The initial random positions of the particles translate into random values of blj

and of tlj . The typical duration of the deflection of particle l given by Eq. (41) is ∆tlj ≡ blj/∆vlj

where ∆vlj = ‖∆vlj‖, but a certain number, say α, of ∆tlj’s are necessary for the deflection to be
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mostly completed. For a given blj and for t ≫ ∆tlj, the deflection of particle l given by Eq. (41)

is maximum if tlj is in the interval [α∆tlj , t− α∆tlj]. We notice that ∆tlj is about the inverse of

the plasma frequency for blj ∼ λD and ∆vlj on the order of the thermal velocity.

For brevity, we compute here just the trace TD of the diffusion tensor for the particle velocities.

To this end, we perform an average over all the rl0’s to obtain

〈δṙ2l1(t)〉 =
∑

j∈S;j 6=l

〈δṙ2lj1(t)〉, (43)

taking into account Eq. (19), and the fact that the initial positions are independently random,

as well as the ri − rj’s for i 6= j. Therefore, though being due to the simultaneous scattering

of particle l with the many particles inside its Debye sphere, 〈δṙ2l1(t)〉 turns out to be the sum

of individual two-body deflections for blj ’s such that first order perturbation theory is sufficient.

Hence the contribution to 〈δṙ2l1(t)〉 of particles with given blj and ∆vlj can be computed as if it

would result from successive two-body collisions, as was done in Ref. [28] and in many textbooks.

For an impact parameter much smaller than λD, the main contribution of a[r
(0)
l (t′)−r

(0)
j (t′),vj ]

to the deflection of particle l comes from times t′ for which ‖r
(0)
l (t′) − r

(0)
j (t′)‖ ≪ λD. Therefore

a(r,v) takes on its bare Coulombian value, and 〈δṙ2l1(t)〉 is a first order approximation of the effect

on particle l of a Rutherford collision with particle j. Comparing this approximate value with the

exact one shows the perturbative calculation to be correct for blj ≫ λma =
e2

πmeǫ0∆v2
lj

, the distance

of minimum approach of two electrons in a Rutherford collision, as given by energy conservation.

Second, we consider the case of the close approach of particle p to particle l, i.e. bln ∼ λma. We

write the acceleration of particle l as

r̈l = a(rl − rp,vp) +
∑

j∈S;j 6=l,p

a(rl − rj,vj). (44)

For particle p, we write the same equation by exchanging indices l and p. Since the two particles are

at distances much smaller than the inter-particle distance d = n−1/3 = L/N1/3, the accelerations

imparted on them by all other particles are almost the same. Therefore, when subtracting the two

rigorous equations of motion, the two summations over j almost cancel. Moreover, as particles p

and l are close, their shielded potential reduces to the bare Coulomb one, yielding

d2(rl − rp)

dt2
= 2aC(rl − rp), (45)

which is the equation describing the Rutherford collision of these two particles in their center of

mass frame, in the absence of all other particles. Since blp ≪ d, ∆tlp is much smaller than the

∆tlj’s of the other particles. Therefore the latter produce a negligible deflection of the center of
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mass during the Rutherford two-body collision, and the deflection of particle l during this collision

is exactly that of a Rutherford two-body collision. The contribution of such collisions to 〈δṙ2l (t)〉

was calculated in Ref. [28].

Now, since the deflection of particle l due to particle j as computed by the above perturbation

theory is an approximation of the Rutherford deflection for the same impact parameter, we may

approximate the perturbative deflection with the full Rutherford one, which provides an obvious

matching of the theories for blj ∼ λma and for λD ≫ blj ≫ λma : we may use the estimate of [28]

in the whole domain blj ≪ λD.

Third, we deal with impact parameters of the order of λD and consider the limit L/λD → ∞.

Then the deflection due to particle j must be computed with Eq. (41). For simplicity, we do the

calculation for the case where vj is small, which makes δΦ(r,v) ≃ δΦ(r,0) which is the Yukawa (or

Debye-like) potential δΦY(r) = − e
4πǫ0‖r‖

exp(−‖r‖
λD

) (Eq. (18) of Ref. [17]); in this limit L/λD → ∞.

The first order correction in km · vj to this approximation is a dipolar potential with an electric

dipole moment proportional to vj . Since a Maxwellian distribution is symmetrical in v, these

individual dipolar contributions cancel globally. As a result, the first relevant correction to the

Yukawa potential is of second order in km · vj . This should make the Yukawa approximation

relevant for a large part of the bulk of the Maxwellian distribution.

In the small deflection limit, a calculation using the fact that the force derives from a central

potential shows that the full deflection of particle l due to particle j is provided by

δṙlj1(−∞,+∞) =
e2

4πmeǫ0
blj

∫ +∞

−∞
[

1

r3(t)
+

1

λDr2(t)
] exp[−

r(t)

λD
]dt, (46)

where r(t) = (b2lj +∆v2ljt
2)1/2 and blj was defined with Eq. (42). Defining θ = arcsin[∆vljt/r(t)],

this equation becomes

δṙlj1(−∞,+∞) = −
2e2

4πmeǫ0∆vlj

h(blj)

b2lj
blj, (47)

where

h(b) =

∫ π/2

0
[cos(θ) +

b

λD
] exp[−

b

λD cos(θ)
] dθ < [1 +

πb

2λD
] exp[−

b

λD
]. (48)

During time t ≫ ∆tlj, a volume 2π∆vljtbljδblj of particles with velocity vj and impact parameters

between blj and blj + δblj produce the deflection of particle l given by Eq. (47), and a contribution

scaling like
h2(blj)
blj

δblj to 〈δṙ2l1(t)〉. Let bmin be such that λD ≫ bmin ≫ λma. The contribution of all

impact parameters between bmin and some bmax is thus scaling like the integral
∫ bmax

bmin
h2(b)/b db.

Since h(0) ≃ 1 for b small, if bmax ≪ λD this is the non-shielded contribution of orbits relevant to the
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above perturbative calculation. Since, on approximating it with the Rutherford-like result of Ref.

[28], this contribution matches that for impact parameters on the order of λma, the contribution

of all impact parameters between λma and some bmax small with respect to λD is thus scaling like

the integral
∫ bmax

λma
1/b db as was computed in Ref. [28]. The matching of this result for b ∼ λD is

simply accomplished by setting a factor h2(b) in the integrand which makes the integral converge

for b → ∞. Taking this limit, one finds that the Coulomb logarithm ln(λD/λma) of the second

Eq. (14) of Ref. [28] becomes ln(λD/λma) + C where C is of order unity. If the full dependence of

the shielding on vj were taken into account, the modification of the Coulomb logarithm would be

velocity dependent.

VII. CONCLUSION AND REFLECTIONS

This paper has set new foundations of basic plasma physics by using N -body mechanics only.

More specifically, it provided a direct path from microscopic mechanics to Debye shielding and

Landau damping without appealing to a lot of extraneous mathematics, but by using Newton’s

second law for the N -body description, and standard tools of calculus. The theory has been

extended to accommodate a correct description of trapping or chaos due to Langmuir waves, or to

avoid the small amplitude assumption for the electrostatic potential. Using the shielded potential,

collisional transport has been computed for the first time by a convergent expression including

the correct calculation of deflections for all impact parameters. Shielding and collisional transport

have been found to be two related aspects of the repulsive deflections of electrons.

Thanks to its direct approach, this paper also unifies Landau growth or damping and sponta-

neous emission, Debye shielding and collisional transport, and the descriptions of Debye shielding

and of linear Langmuir waves waves for both smooth and non-smooth velocity distribution func-

tions. All these results come with a considerable simplification of the mathematical framework with

respect to textbooks and with new intuitive insights into microscopic plasma physics. They might

have been derived decades ago, but the present approach worked completely beyond reasonable

expectation. In reality, this work is the outcome of a brainstorming about plasma physics [12, 13],

which was first an incentive to revisit collisional transport using shielded potentials. Once this had

been done, it looked somewhat odd to use shielded potentials derived by a kinetic approach in a

mechanical description with particles. This triggered successively the calculations of sections III,

IVA, IVB and IVC, and Appendix B. This chaotic research path illustrates Feynman’s reflection,

“Perhaps a thing is simple if you can describe it fully in several different ways without immediately
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knowing that you are describing the same thing.” [16].

For an expert, it might be hard to feel it useful to simplify the derivation of well-known phe-

nomena in plasma physics. Indeed, for her/him the intricacies underlying such principles are so

well assimilated that she/he has difficulties in recognizing them. However, “difficult” and “easy”

have no absolute definition, and our new theory might benefit to students and to their teachers.

The former, because of the unification and of the simplification of basic plasma physics brought

by the N -body approach ; this is all the more important in view of the huge scope of present

plasma science. The latter might gain from compact calculations, proceeding in a continuous way

from first principles, and benefiting from the intuitive nature of mechanics. This intuitive aspect

is important, for it brings a kind of quality insurance when building a course, even if there is not

enough time to teach all the details of the mechanical description of plasmas. The N -body dynam-

ics has always been the ultimate reference in plasma textbooks : here it becomes a practical tool.

Furthermore, as to chaotic dynamics, much more is known for finite dimensional systems than for

the Vlasov-Poisson system. It is now possible to avoid the painstaking prerequisites of fluid and

kinetic tools, and to introduce basic plasma concepts with the mechanical approach that reveals

their physical content. Reversing this perspective, the power and flexibility of these tools may now

be illustrated by a recalculation of some basic plasma phenomena.

One might think about trying to apply the above mechanical approach to plasmas with more

species, or with a magnetic field, or where particles experience trapping and chaotic dynamics. The

first generalization sounds rather trivial, and the third one is under way, at least in one dimension

(see a pedestrian introduction in [11] and more specific results in [5, 6]).

As in many textbooks, linearization was applied in this paper without questioning deeply its

range of validity. However, the smallness of the perturbation is not a sufficient criterion. Indeed,

as reviewed in Ref. [31], perturbation theory that relies on linearization has to be questioned, as

it yields a solution of the linearized set of equations only. Whether it also generates a solution

of the full set has to be shown explicitly, and this may be a hard (yet innovative and physically

illuminating) task – as is for instance the full proof of existence of Landau damping [24] in a

Vlasovian frame, recalled in section V.

Ph. Choquard, L. Couëdel, M.-C. Firpo, W. Horton, P.K. Kaw, J.T. Mendonça, F. Pegoraro,

Y. Peysson, H. Schamel, D. Zarzoso, and J.-Z. Zhu are thanked for very useful comments and new

references.
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Appendix A: Discussion of Approximation 1 (corrections to the ballistic approximation and

Coulomb potential)

Approximation 1 of ϕ by φ in section III corresponds to substituting the true dynamics in Eq.

(3) with an approximate one ruled by

δr̈l =
e

me
∇φl(r

(0)
l + δrl), (A1)

where φl(r) =
∑

j∈S;j 6=l δφj(r) is the inverse Fourier transform of Eq. (5), so that

lim
L→∞

δφj(r) = −
e

4πǫ0‖r− r
(0)
j ‖

−
e δrj · (r− r

(0)
j )

4πǫ0‖r− r
(0)
j ‖3

. (A2)

The j-th contribution to the approximate electric field acting on particle l turns out to be due to

a particle located at r
(0)
j instead of rj, and is made up of a Coulombian part and of a dipolar part

with dipole moment −e δrj . The cross-over between these two parts occurs for ‖rl − r
(0)
j ‖ on the

order of ‖δrj‖, i.e. when the distance between particle l and the ballistic particle j is about the

distance between the latter and the true particle j. For larger values of ‖rl − r
(0)
j ‖, the dipolar

component is subdominant. For smaller ones, it is dominant, but with a direction which is a priori

random with respect to the Coulombian one ((rl − r
(0)
j ) is almost independent from δrj). Since

the ‖δrj‖’s are assumed small, the latter case should be rare as it corresponds to a very close

encounter between particle l and the ballistic particle j. As a result, the approximate electric field

stays dominantly of Coulombian nature, but with a small mismatch of the charge positions with

respect to the actual ones.

Appendix B: Fundamental nonlinear equation for the potential

The derivation of the fundamental nonlinear equation for the potential starts as in section III

till the definition of δrl after Eq. (4). Equation (3) is equivalent to

δr̈l =
ie

L3me

∑

n

kn ϕ̃l(n) exp[ikn · (r
(0)
l + δrl)]. (B1)

We split ϕ̃l(m) as

ϕ̃l(m) = φ̃l(m) + ∆ϕ̃l(m) (B2)

where φ̃l(m) is given by Eqs (5)-(6), and

∆ϕ̃l(m) = −
e

ǫ0k2m

∑

j∈S;j 6=l

exp(−ikm · r
(0)
j )Rj(m), (B3)
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with

Rj(m) = exp(−ikm · δrj)− 1 + ikm · δrj , (B4)

which is of order two in δrj .

The Laplace transform of Eq. (B1) is

ω2δr̂l(ω) = −
ie

L3me

∑

n

kn exp(ikn · rl0) Ψl(̂̃ϕl ;n, ω + ωn,l) + iωδrl(0)− δṙl(0). (B5)

where carets indicate again the Laplace transformed versions of the quantities in Eq. (B1), ωn,l =

kn · vl as before, and the operator Ψl acting on a function g(m, ω) is defined by

Ψl(g ;n, ·) = g(n, ·) ∗ Tl(n, ·), (B6)

where · stands for the frequencies, ∗ is the convolution product in frequency, and Tl(n, ω) is the

Laplace transform of exp(ikn · δrl). The Laplace transform of Eqs (B2)-(B4) yields

k2m ̂̃ϕl(m, ω)

= k2m
̂̃φ
(00)

l (m, ω) +
ie

ǫ0

∑

j∈S;j 6=l

exp(−ikm · rj0) [km · δr̂j(ω − ωm,j) + iR̂j(m, ω − ωm,j)],

(B7)

where R̂j(m, ω) is the Laplace transform of Rj, and
̂̃φ
(00)

l (m, ω) is the Laplace transform of φ̃l(m)

computed from Eqs (5) and (6) on setting δrj = 0 for all j’s in the latter. Substituting the δr̂j ’s

with their expression Eq. (B5) yields

k2m ̂̃ϕl(m, ω)

−
e2

L3meǫ0

∑

n

km · kn

∑

j∈S;j 6=l

Ψj(̂̃ϕj ;n, ω + ωn,j − ωm,j)

(ω − ωm,j)2
exp[i(kn − km) · rj0]

= k2m
̂̃φ
(0)

l (m, ω)−
e

ǫ0

∑

j∈S;j 6=l

exp(−ikm · rj0)R̂j(ω − ωm,j), (B8)

where
̂̃
φ
(0)

l (m, ω) is the Laplace transform of φ̃l(m) computed from Eqs (5) and (6) on setting now

δrj = δrj(0) + δṙj(0)t for all j’s in the latter.

Summing Eq. (B8) over l = 1, ...N and dividing by N − 1, yields

k2m ̂̃ϕ(m, ω)

−
e2

L3meǫ0

∑

n

km · kn

∑

j∈S

Ψj(̂̃ϕ ;n, ω + ωn,j − ωm,j)

(ω − ωm,j)2
exp[i(kn − km) · rj0]

= k2m
̂̃
φ
(0)

(m, ω)−
e

ǫ0

∑

j∈S

exp(−ikm · rj0)R̂j(ω − ωm,j), (B9)
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where
̂̃
φ
(0)

(m, ω) is
̂̃
φ
(0)

l (m, ω) complemented by the missing l-th term. Equation (B9) is the sought

for fundamental nonlinear equation for the potential, and is a rigorous consequence of Eqs (1) and

(3) : no approximation was made. Both Ψj(̂̃ϕ ;n, ω+ωn,j −ωm,j) and R̂j(ω−ωm,j) are nonlinear

in δrj .

Note that in this paper, we use only a very specific part of the fundamental nonlinear equation

(B9) : the one involving linearization and smoothing. It would be interesting to study the effect

of the coupling of Fourier components with both coherent and incoherent effects, in particular, to

perform the analysis of section V by substituting k2mÛ(m, ω) with − e
ǫ0

∑
j∈S exp(−ikm ·rj0)R̂j(ω−

ωm,j). The question arises : is it possible to recover the hole solutions propagating near thermal

velocity or slower, which are smooth and nonlinear structures satisfying the full nonlinear Vlasov-

Poisson system (Ref. [31] and references therein) ?

Appendix C: Discussion of smoothing

In order to clarify the meaning and validity of smoothing, we rewrite Eq. (13) as

̂̃
φ(m, ω) =

̂̃φ
(0)

(m, ω)

ǫd(m, ω)

+
e2

L3meǫ0ǫd(m, ω)

∑

l 6=0

km · km+l

k2m

∑

j∈S

̂̃φ(m+ l, ω + ωl,j)

(ω − ωm,j)2
exp[ikl · rj0],

(C1)

where

ǫd(m, ω) = 1−
e2

L3meǫ0

∑

p∈S

1

(ω − ωm,p)2
(C2)

is the discretized version of the classical plasma dielectric function. Note that Eq. (C1) has no pole

at the ωm,j’s, since, for each j, ǫd(m, ω) has a pole canceling exactly the (ω−ωm,j)
2 contribution.

In this paper, we consider smooth distributions that are close to spatially uniform ones. We

now consider discrete analogues of a spatially uniform continuous velocity distribution f(v). They

are special configurations of the N -body system, where particles move on b monokinetic beams,

and where each beam is a simple cubic array of particles. The elementary cube of any array has

its edges along the three orthogonal directions with coordinates (x, y, z), and the edge length for

the s-th beam is L/ns where ns is an integer. Therefore, the number of particles of this beam in

the elementary cube with volume L3 is Ns = n3
s, and N =

∑b
s=1Ns. Beam s has a velocity us.
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The summation over j in Eq. (C1) can be decomposed into a summation over the b beams, and

for each beam over its particles. For all particles of beam s, ωl,j and ωm,j take on a single value

each. Therefore the summation over the Ns particles bears on exp[ikl ·rj0] only. The corresponding

sum vanishes unless the three components of l are on the simple cubic lattice As = (nsZ)
3 with

mesh length ns ; then the sum equals Ns. Therefore Eq. (C1) becomes

̂̃φ(m, ω) =
̂̃
φ
(0)

(m, ω)

ǫd(m, ω)

+
1

ǫd(m, ω)

b∑

s=1

ω2
ps

(ω − Ωms)2

∑

l 6=0, l∈As

km · km+l

k2m

̂̃φ(m+ l, ω +Ωls), (C3)

where ωps = (Ns/N)1/2ωp is the plasma frequency of beam s, and Ωms = km · us. For ω = Ωms,

Eq. (C3) is understood using limω→Ωms ǫd(m, ω)(ω − Ωms)
2 = −ω2

ps.

The first term in the right hand side of Eqs (C1) and (C3) is the discretized analogue of the

expression of ̂̃Φ(m, ω) provided by Eq. (16), and yields an expression for the shielded potential

analogous (in Fourier-Laplace representation) to the summation of the individual potentials of

Eq. (18) due to the diagonal elements of operator E . In order to estimate the contribution of

the non-diagonal elements in Eq. (C3), we now proceed iteratively : in Eq. (C3) we substitute

̂̃φ(m+ l, ω +Ωls) with its value provided by ̂̃Φ(m+ l, ω +Ωls).

According to Eqs (18) and (19), the shielded potential of particle j involves a summation over

m where ǫ(m,km · v) stands at the denominator. For distances on the order of λD from particle

j, the larger contributions come from km <
∼ λ−1

D . In order to prevent the non-diagonal terms from

modifying the smoothed version of the potential at shielding distances, viz. large distances, we

must require ‖kl‖ ≫ λ−1
D . This implies 2πns/L ≫ 1/λD, hence nλ3

D = N(λD/L)
3 ≫ (2π)−3 since

n3
s = Ns < N . A similar condition is necessary to correctly describe Langmuir waves. Therefore,

smoothing is justified provided there are many particles in the Debye sphere.

[1] Abe R 1959 Giant cluster expansion theory and its application to high temperature plasma Progr.

Theor. Phys. 22 213–226

[2] Antoni M, Elskens Y and Escande D F 1998 Explicit reduction of N -body dynamics to self-consistent

particle-wave interaction Phys. Plasmas 5 841–852

[3] Balescu R 1963 Statistical mechanics of charged particles (London: Wiley–Interscience)

[4] Baus M and Hansen J-P 1980 Statistical mechanics of simple Coulomb systems Phys. Rep. 59 1–94



27

[5] Besse N, Elskens Y, Escande D F and Bertrand P 2011 Validity of quasilinear theory : refutations and

new numerical confirmation Plasma Phys. Control. Fusion 53 025012 (36 pp).

[6] Besse N, Elskens Y, Escande D F and Bertrand P 2011 On the validity of quasilinear theory

Proc. 38th EPS Conference on Controlled Fusion and Plasma Physics, Strasbourg, 2011, P2.009

http://ocs.ciemat.es/EPS2011PAP/pdf/P2.009.pdf

[7] Boyd T J and Sanderson J 2003 The physics of plasmas (Cambridge: Cambridge University press)

[8] Dewar R L 2010 The screened field of a test particle In celebration of K C Hines ed McKellar B H J

and Amos K (Singapore: World Scientific) 47–73, and references therein

[9] Doveil F, Escande D F and Macor A 2005 Experimental observation of nonlinear synchronization due

to a single wave Phys. Rev. Lett. 94 085003 (4 pp)

[10] Elskens Y and Escande D 2003 Microscopic dynamics of plasmas and chaos (Bristol: IoP Publishing)

[11] Escande D F 2010 Wave-particle interaction in plasmas : A qualitative approach Long-range interacting

systems ed Dauxois Th, Ruffo S and Cugliandolo L F (Oxford: Oxford University press) pp 469–506

[12] Escande D F 2013 How to face the complexity of plasmas ? From Hamiltonian chaos to com-

plex systems ed Leoncini X and Leonetti M (Berlin: Springer) pp 109–157 http://hal.archives-

ouvertes.fr/docs/00/71/74/51/PDF/Complexity of plasmas Escande.pdf

[13] Escande D F 2013 Complexity and simplicity of plasmas Preprint arXiv:1303.4613

[14] Escande D and Elskens Y 2002 Proof of quasilinear equations in the chaotic regime of the weak warm

beam instability Phys. Lett. A 302 110–119

[15] Escande D F, Zekri S and Elskens Y 1996 Intuitive and rigorous microscopic description of spontaneous

emission and Landau damping of Langmuir waves through classical mechanics Phys. Plasmas 3 3534–

3539

[16] Feynman R P 1965 The development of the space-time view of quantum electrodynamics

http://www.nobelprize.org/nobel prizes/physics/laureates/1965/feynman-lecture.html

[17] Gasiorowicz S, Neuman M and Riddell R J Jr 1956 Dynamics of ionized media Phys. Rev. 101 922–934

[18] Goldenfeld N and Kadanoff L P 1999 Simple lessons from complexity Science 284 87–89

[19] Hazeltine R D and Waelbroeck F L 2004 The framework of plasma physics (Boulder: Westview Press)

[20] Hubbard J 1961 The friction and diffusion coefficients of the Fokker-Planck equation in a plasma. II

Proc. Roy. Soc. (Lond.) A 261 371–387

[21] Kiessling M K-H 2013 to be published

[22] Malmberg J H and Wharton C B 1964 Collisionless damping of electrostatic plasma waves Phys. Rev.

Lett. 13 184–186

[23] Montgomery D, Joyce G and Sugihara R 1968 Inverse third power law for the shielding of test particles

Plasma Physics 10 681–687

[24] Mouhot C and Villani C 2010 Landau damping J. Math. Phys. 51 015204 (10 pp)

[25] Nicholson D R 1983 Introduction to plasma theory (New York: Wiley)

[26] O’Neil T M, Winfrey J H and Malmberg J H 1971 Nonlinear interaction of a small cold beam and a



28

plasma Phys. Fluids 14 1204–1212

[27] Onishchenko I N, Linetski A R, Matsiborko N G, Shapiro V D and Shevchenko V I 1970 Contribution

to the nonlinear theory of excitation of a monochromatic plasma wave by an electron beam ZhETF

Pis. Red. 12 407–411 (Eng. transl. JETP Lett. 12 281–285)

[28] Rosenbluth M N, MacDonald W M and Judd D L 1957 Fokker-Planck equation for an inverse-square

force Phys. Rev. 107 1–6

[29] Rostoker N 1964 Superposition of dressed test particles Phys. Fluids 7 479–490

[30] Salpeter E E 1958 On Mayer’s theory of cluster expansions Ann. Physics 5 183–223

[31] Schamel H 2012 Cnoidal electron hole propagation : Trapping, the forgotten nonlinearity in plasma

and fluid dynamics Phys. Plasmas 19 020501 (17 pp)

[32] Spohn H 1991 Large scale dynamics of interacting particles (Berlin: Springer)


