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VARIATIONAL PRINCIPLE FOR WEIGHTED POROUS MEDIA

EQUATION

ALEXANDRA ANTONIOUK AND MARC ARNAUDON

Abstract. In this paper we state the variational principle for the weighted
porous media equation. It extends V.I. Arnold’s approach to the description
of Euler flows as a geodesics on some manifold, i.e. as a critical points of some
energy functional.

1. Introduction

In the beginning 18th century Leibniz, Maupertuis, Euler claimed that all phys-
ical phenomenons may be obtained from the Least Action Principle and since La-
grange and Hamilton it was well understood for the classical mechanics. However
only in 1966 V.I. Arnold in [2] achieved it for the fluid dynamics. To do this he re-
marked that the group of volume preserving diffeomorphisms Dµ(M) of a manifold
M (µ being a given volume element on M) is the appropriate configuration space
for the hydrodynamics of an incompressible fluid. In this framework the solutions
to the Euler equation become geodesic curves with respect to the right invariant
metric on Dµ, which at g ∈ Dµ is given by

(

X,Y
)

=
∫

M
< X(x), Y (x) >x dµ(x),

for X,Y ∈ TgDµ, < ·, · >x is a metric on TxM , and µ is the volume element on
M induced by the metric. The relation between geodesics on Dµ and the Euler
equation was further studied in [7] and shortly may be expressed in the following
way. Let t 7→ gt ∈ Dµ be a geodesic with respect to the right invariant metric (·, ·),

vt = d
dt
gt be the corresponding velocity, and ut = vt ◦ g−1

t be a time dependent
vector field on M. Then ut is a solution to the Euler equation for perfect fluid. In
particular the map t 7→ gt defined on some time interval [0, T ] minimizes the energy
functional

S(g) =
1

2

∫ T

0

(

∫

M

∥

∥

dgt

dt

∥

∥

2
dµ(x)

)

dt

and the Euler-Lagrange equations for this functional are precisely the Euler equa-
tion for perfect fluid.

Developing this approach in [1], [3], [9], by means of stochastic methods it was

shown that an incompressible stochastic flow g(u) with generator
1

2
∆+ut is critical

for some energy functional if and only if u solves Navier-Stokes equation for viscous
incompressible fluid. See also [4] and [8] for other stochastic characterizations of
solutions to Navier-Stokes equation. The purpose of this article is to show that the
weighted porous media equation ([5], [6]), which generalizes the standard porous
media equation,

(1)
∂u

∂t
=

(

−u · ∇+
1

2
∆

)

(

‖u‖q−2u
)

+∇P.
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may be also obtained in the framework of Least Action Principle for specially chosen
energy functional. In the particular case of q = 2 this recovers the Navier-Stokes
equation.

2. Operator formulation of variational principle.

For simplicity we work on the torus T of dimension N . From now on, when
integrating in the torus, dx will stand for the normalized Lebesgue measure.

Definition 2.1. For some smooth divergence free time dependent vector field
(t, x) 7→ vt(x) ∈ TxT we define the flow of v̇t: et(v) ∈ Dµ(T) as a solution of
the ordinary differential equation

(2)
det(v)

dt
= v̇t(et(v)), e0(v) = IIT.

Let us remark that in some sense et(v) is a perturbation of identity map in space
Dµ(T). The solvability of this equation easily follows from the compactness of T
and smoothness of v.

Consider a time-dependent divergence-free vector field u on [0, T ] × T. So u

takes its values in the tangent bundle of T which can at every point be identified

with R
N . Divergence-free means that

∑N

j=1 ∂ju
j ≡ 0. Define the operator L(ut) :

C∞(T,RN ) → C∞(T,RN ) by L(ut)f =
1

2
∆f + ut · ∇f.

Definition 2.2. The energy functional is defined for q > 1 as

(3) Eq(u, v) =
1

q

∫ T

0

∫

T

∥

∥

∥

[

(

∂t + L(ut)
)

et(v)
]

(e−1
t (v)(x))

∥

∥

∥

q

dx dt,

where e−1
t (v) is the inverse map of the diffeomorphism et(v) : T → T.

Definition 2.3. We say that u is a critical point of Eq if for all divergence-free

time dependent vector field v such that v0 = 0 and vT = 0,
d

dε

∣

∣

∣

ε=0
Eq(u, εv) = 0.

Theorem 2.1. A divergence-free time dependent vector field u is a critical point
of Eq, q ≥ 2 if and only if there exists a function P (x) such that (1) is satisfied.

Proof. For et(εv)∗
(

ut

)

(x) = Te
−1

t
(εv)(x)et(εv)

(

ut

(

e−1
t (εv)(x)

))

, we compute
[

(

∂t + L(ut)
)

et(εv)
]

(

e−1
t (εv)(x)

)

= εv̇(t, e−1
t (εv)(x)) + et(εv)∗

(

ut

)

(x) +

+
1

2

(

∆et(εv)
)(

e−1
t (εv)(x)

)

,

where Tyet(εv)(·) being the tangent map of et(εv) at point y. Therefore we have

d

dε

∣

∣

∣

ε=0

[

(

∂t + L(ut)
)

et(εv)
]

(

e−1
t (εv)(x)

)

= v̇t(x) + [ut, vt](x) +
1

2
∆vt(x).

Since ut =
(

∂t+L(ut)
)

(II), for II = et(0) : T → T the identity map,
d

dε

∣

∣

∣

ε=0
Eq(u, εv)

equals
T
∫

0

∫

T

‖
(

∂t + L(ut)
)

(id)‖q−2
〈

v̇t + [ut, vt] +
1

2
∆vt, ut

〉

dx dt =



3

=

T
∫

0

∫

T

‖ut‖
q−2

〈

v̇t + [ut, vt] +
1

2
∆vt, ut

〉

dx dt.

On the other hand

0 =

∫

T

‖uT‖
q−2

〈

uT , vT
〉

dx

=

T
∫

0

∫

T

{

‖ut‖
q−2

〈

ut, v̇t
〉

+
〈

‖ut‖
q−4(q − 2) < u̇t, ut > ut + ‖ut‖

q−2u̇t, vt
〉

}

dx dt.

Therefore, writing u = ut and v = vt,

0 =
d

dε

∣

∣

∣

ε=0
Eq(u, εv)+

+

T
∫

0

∫

T

{

‖u‖q−2
(

〈

u̇, v
〉

−
〈

[u, v], u
〉

−

〈

∆v, u
〉

2

)

+ (q − 2)‖u‖q−4
〈

u̇, u
〉〈

u, v
〉

}

dx dt.

Due to
∫

T

‖u‖q−2 < ∇vu, u > dx =
1

q

∫

T

< ∇‖u‖q, v > dx = −
1

q

∫

T

‖u‖q div v dx = 0

for div v = 0, we have, using [u, v] = ∇uv −∇vu,

−
d

dε

∣

∣

∣

ε=0
Eq

(

u, (εv)
)

=

T
∫

0

∫

T

{

− ‖u‖q−2
〈

∇uv, u
〉

−
1

2

〈

v,∆
(

‖u‖q−2u
)

〉

+

+ (q − 2)‖u‖q−4
〈

u̇, u
〉〈

u, v
〉

+ ‖u‖q−2
〈

u̇, v
〉

}

dx dt

=

T
∫

0

∫

T

〈

∇u

(

‖u‖q−2u
)

−
1

2
∆
(

‖u‖q−2u
)

+

+ (q − 2)‖u‖q−4
〈

u̇, u
〉

u+ ‖u‖q−2u̇, v
〉

dx dt =

=

T
∫

0

∫

T

〈(

∂t + u · ∇ −
1

2
∆
)

‖u‖q−2u, v
〉

dx dt

(notice that in the second equality we used the fact that
∫

T
u
(

〈v, ‖u‖q−2〉
)

dx =
∫

T
div u〈v, ‖u‖q−2〉dx = 0). This equality is true for all time dependent divergence

free vector field v, so it gives the equivalence between u critical point of Eq and
solution to equation (1).

3. Stochastic variational principle for incompressible diffusion

flows

We define a diffusion flow gt(x) on T, x ∈ T, t ∈ [0, T ], T > 0 as a stochastic
process, which satisfies the Itô stochastic equation:

(4) dgt(x) = σ(gt(x)) dWt + ut(gt(x)) dt, g0(x) = x
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where ut is a time dependent vector field on T, σ ∈ Γ(Hom(H, TT)) is a C2-map
satisfying for all x ∈ T (σσ∗)(x) = IITxT

, Wt is a cylindric Brownian motion in
Hilbert space H.

Let us remark that a diffusion flow is a diffusion process {gt(u)(x)}t≥0 with

generator L(ut) =
1
2∆+ ut. We define an incompressible diffusion flow gt(u)(x)(ω)

as a diffusion flow such that a.s. ω for all t ≥ 0, the map x 7→ gt(u)(x)(ω) is a
volume preserving diffeomorphism of T. Examples of incompressible diffusion flows
can be found in [3]. Notice that a necessary condition is divut = 0.

For the diffusion flow gt (4) we define the drift as the time derivative of the finite
variation part by Dgt(ω) := ut(gt, ω), and the energy functional by

(5) Eq(g) :=
1

q
E

[

∫ T

0

∫

T

∥

∥

∥
Dgt(x)(ω)

∥

∥

∥

q

dx dt
]

, q > 1.

We make a perturbation by letting gvt (u) = et(v) ◦ gt(u), where v is a smooth
divergence free time dependent vector field and et(v) is defined in (2).

Definition 3.1. We say that gt(u) is a critical point for the energy functional
Eq if for all smooth time dependent divergence free vector field v on TT such that
v0 = vT = 0,

d

dε

∣

∣

∣

ε=0
Eq(g

εv(u)) = 0.

Theorem 3.2. Let q ≥ 2. An incompressible diffusion flow gt(u) with generator
L(ut) is a critical point for the energy functional Eq if and only if there exists a
function P (x) such that ut satisfies equation (1).

Proof of this theorem is a consequence of Theorem 2.1 and the Itô’s formula.
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