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ABSTRACT
‘Understanding context is vital’ [1] and ‘context is key’ [2]
signal the key interest in the context detection field. One
important challenge in this area is automatically detecting
the user’s task because once it is known it is possible to
support her better. In this paper we propose an ontology-
based user interaction context model (UICO) that enhances
the performance of task detection on the user’s computer
desktop. Starting from low-level contextual attention meta-
data captured from the user’s desktop, we utilize rule-based,
information extraction and machine learning approaches to
automatically populate this user interaction context model.
Furthermore we automatically derive relations between the
model’s entities and automatically detect the user’s task.
We present evaluation results of a large-scale user study we
carried out in a knowledge-intensive business environment,
which support our approach.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems -
Human information processing ;
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing - Abstracting methods, Indexing meth-
ods;
I.5.2 [Pattern Recognition]: Design Methodology - Clas-
sifier design and evaluation, Feature evaluation and selec-
tion

General Terms
Algorithms, Performance, Experimentation

Keywords
automatic task detection, user context model, context on-
tology, user context detection, machine learning

1. INTRODUCTION
Massive amounts of digital information are available to us
today and are still constantly increasing. No matter if we
talk about the information on the world wide web or the nu-
merous documents, presentations, emails, and multimedia
files we store on our computer desktops. Intelligent search
technologies have been developed to tackle the challenge of
finding and refinding information we need for achieving our
goals but what is still missing is to understand the context
in which information is used and produced. “Understand-
ing context is vital” [1] and “context is key” [2] highlight the
importance of context. As also recently discussed in the in-
formation retrieval community [3], the emphasis of future
information retrieval applications ought to be put on ex-
ploiting the user’s context in order to increase the accuracy
of retrieval results. Detecting the user context thus appears
to be of great interest for several research fields.

Two important issues in the context detection area are user
context observation and user context analysis. In our previ-
ous work we have focused on context observation [4], which
we briefly summarize in Section 3.1. The focus of this pa-
per is on context analysis and more specifically on auto-
matic task detection. Automatic task detection is an im-
portant challenge within context analysis [2, 5]: if her cur-
rent task is detected automatically the user can be better
supported with relevant information such as learning and
work resources or task guidance. A classical approach has
been to model task detection as a machine learning prob-
lem. However, the focus has been so far on using only text-
based features and switching sequences [6, 7, 8, 9, 10] for
detecting the user’s task, which do not rely on sophisticated
models. Furthermore standard datasets for the evaluation
of task detection approaches are still missing as well as a
representative number of controlled user studies.

In this paper we propose an ontology-based user context
model for increasing the performance of automatic task de-
tection. Using an ontology-based user context model brings
several advantages, such as an easy integration of new con-
textual attention metadata [11], a simple mapping of the
raw sensor data into a unified model, and an easy extend-
ability of the user context model with concepts and prop-
erties about new resources and user actions. Most impor-
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tantly we show that using an ontology-based representation
of the user’s context enhances the performance of automatic
task detection in comparison to previous approaches. This is
achieved by deriving new ontology-specific features for ma-
chine learning algorithms which increase their performance.
We also present an evaluation of our approach based on a
controlled user study (220 recorded task instances from 13
participants) we carried out in a knowledge-intensive busi-
ness environment.

The outline of the paper is as follows: In the next section
(Section 2) we describe our conceptual model and its real-
ization as an ontology-based user context model. Section 3
elaborates on the mechanisms and techniques utilized to au-
tomatically populate the proposed ontology. In Section 4 we
present the principles of our ontology-based task detection
approach and how to evaluate it. Our experimental results
and a comparison of our ontology-based approach to other
recent task detection approaches are discussed in Section 5.
Section 6 contains concluding remarks and an outlook on
future work.

2. MODELING THE USER’S CONTEXT
Our view of the “user’s context” goes along with Dey’s def-
inition that context is “any information that can be used to
characterize the situation of entities that are considered rel-
evant to the interaction between a user and an application,
including the user and the application themselves” [5]. We
specifically focus on the interactions of the user with appli-
cations and resources on the computer desktop. We refer
to this focused perspective as the user’s interaction context,
or simply the user’s context. Our perspective puts the indi-
vidual user and her actions into the center of attention, and
aims at learning as much as possible about this individual
and her actions. Our goal is to study the relations between
the user’s interactions with the computer system and their
meaning and relevance to the user’s task.

Various representation formats are available for modeling
the user’s context. We go along with the conclusion of the
surveys from Strang et al. [12] and Baldauf et al. [13] which
advocate the use of ontology-based approaches. In our con-
text specifically we argue that an ontology-based context
model brings the following advantages: (i) It allows to eas-
ily integrate new context data sensed by context observers to
map the sensor data into a unified context model. (ii) It can
be easily extended with concepts and properties about new
resources and user actions. (iii) The relationships between
resources on various granularity levels can be represented.
(iv) The evolution of datatype properties (i.e., data and
metadata) into objecttype properties (i.e., relations between
instances of ontology concepts) can be easily accomplished.
(v) Being a formal model, it also allows other applications
and services to build upon it and to access the encapsulated
context information in a uniform way.

Most importantly we will show that the performance of auto-
matic task detection can be enhanced by using an ontology-
based context model (see Section 5). This stems from the
fact that our approach provides new ways of constructing
features (see Section 4.1) for the machine learning algo-
rithms, that enhance performance.

Figure 1: The semantic pyramid [4] comprises the
event, the event block and the task layers. Infor-
mation needs can originate from each layer and are
fulfilled by resources.

2.1 Conceptual Model -
The Semantic Pyramid

The user’s context can be seen as a pyramid, the semantic
pyramid (see Figure 1), which connects the user’s actions
with resources acted upon. At the bottom are events that
result from single user interactions with the computer desk-
top. Above are event-blocks, which are sequences of events
that belong logically together. At the top are tasks, which
are well-defined steps of a process, that cannot be divided
into sub-tasks, and in which only one person is involved.
The layers of the semantic pyramid represent aggregation
levels of user actions. It also integrates the idea of deliver-
ing resources that are relevant to the user’s actions based on
her information needs. For detailed definitions and a more
elaborated discussion about the semantic pyramid we would
like to refer to [4].

2.2 UICO: User Interaction Context Ontology
Our user interaction context ontology (UICO) can be seen
as the realization of the semantic pyramid with the sup-
port of semantic technologies. We follow a bottom-up ap-
proach and build the UICO on the basis of our conceptual
model, the semantic pyramid, and incrementally add rela-
tions when new sensor data or algorithms are added. UICO
holds context information that has been sensed and relates
the information that is automatically derived from it. By
context information we mean the concepts and the relations
between concepts of the semantic pyramid, as well as the
resource data and metadata that have been captured by the
context sensors.

The UICO’s intention is to represent the user’s interaction
context originating from context sensors that automatically
observe the user on the computer desktop and the corre-
sponding automatically derived contextual information. If
new sensor information is available new concepts and rela-
tions can be easily added to the ontology. Our methodol-
ogy here is to capture and store all concepts and relations
we can compute. Based on the application domain in which
the UICO is used we decide which relations and concepts are
useful and which are not. In the special case of ontology-
based task detection we study concepts and relations that
are significant for a specific task, i.e., highly discriminative
between tasks. Although it would be possible to allow the



Figure 2: The concepts of the User Interaction Context Ontology (UICO) visualized in the Protégé tool. In
the left area this figure shows the action dimension, in the right area the resource dimension, in the bottom
left area the user dimension and the information need dimension on the bottom right area. The application
dimension is not represented as concepts and hence is not visible here.

user to manually add new concepts and relations to the
UICO this is not in focus at the moment.

At the moment UICO contains 88 concepts and 272 prop-
erties and is modeled in OWL-DL1. From these 272 prop-
erties there are 215 datatype properties and 57 objecttype
properties. The tool used for modeling the ontology was
the Protégé ontology modeling tool2. A visualization of the
concept hierarchy in Protege is given in Figure 2.

From a top level perspective, we define in UICO five differ-
ent dimensions. These are the action dimension, resource
dimension, information need dimension, application dimen-
sion and user dimension.

Action Dimension. The action dimension consists of con-
cepts representing user actions, task states and connection
points to top-down modeling approaches. User actions are
distinguished based on the granularity, i.e., Event at the
lowest level, then EventBlock and then Task. These action
concepts corresponds to the levels of the semantic pyramid.
The ActionType concepts specify which types of actions are
distinguished on each granularity level. Currently we only
distinguish types of actions on the event level (EventType
concept) but the elaboration of EventBlockTypes and Task-

Types is in progress. There are 25 different EventTypes, each

1http://www.w3.org/2004/OWL/
2http://protege.stanford.edu

one representing a single type of user interaction (see upper
left part of Figure 2). As an example, if the user clicks on
the search button of a search engine’s web page in a web
browser, this user interaction will generate an Event of type
WebSearch.

The TaskState concept and its sub-concepts (visualized in
the lower left part of Figure 2) are used to model the ways
the user does task management and task executions. The
types of task states are derived by the Nepomuk Task Man-
agement Model [14] and integrated into the UICO. With the
help of task states UICO can model the user’s task handling
, i.e., creating, executing, interrupting, finishing, aborting,
approving and archiving a task. The behavioral patterns of
the user’s task handling and task state changes are tracked
via the TaskStateChange concept.

The Model concept has been introduced to have connection
points to top-down modeling approaches. Currently only
one connection point in form of the TaskModel, a sub class
of the Model concept, is present. Our TaskModel concept is
similar to those defined in the area of workflow management
systems or task process analysis.

At the moment, the TaskModel concept can be seen as a
way of categorizing a task. An example of instances of the
TaskModel and the Task concepts is “Planning a journey”
and “Planning the journey to CIAO 2009 workshop” respec-
tively.



Resource Dimension. The resource dimension, visualized
in the upper right corner of Figure 2, contains concepts for
representing resources on the computer desktop. Specifi-
cally we focus on modeling resources used by knowledge-
workers [15] and identified by interviews. Further resource
types can be easily added if required. We define 16 differ-
ent resource concepts. A resource is constructed from the
data and metadata captured by the context sensors. The de-
tailed description of the resource discovery and construction
processes is given in Section 3.2.

Relations can be defined between concepts of the resource di-
mension and of the action dimension for modeling on which
resources what kind of user actions have been executed. For
example, if the user enters a text in a Microsoft Word doc-
ument, all keyboard entries are instances of the Event con-
cept, connected via the objecttype property isActionOn to
the same instance of a TextDocument (and a FileResource)
representing that document.

Information Need Dimension. The information need di-
mension represents the context-aware pro-active information
delivery aspect of the UICO. An information need is de-
tected by a set of fixed rules based on the available context
information. An InformationNeed concept has properties
defining the accuracy of the detection and the importance
to fulfill the information need in a certain time-frame. For
details about information need detection we refer to [16].

An information need is associated with the user’s action(s)
that trigger(s) a rule. Hence a connection between the in-
formation need dimension and the action dimension exists.
The resource dimension is also connected to the information
need dimension, since each resource that helps for fulfill-
ing the user’s information need is related via the objecttype
property suggestsResource with the InformationNeed.

User Dimension. The user dimension contains two con-
cepts, the User and the Session concepts. The User concept
defines basic user information such as user name, password,
first name and second name. The user dimension is related
to the action dimension in such a way that each Action is
associated with a User via the objecttype relation hasUser.
Indirectly the user dimension is also related to the resource
dimension and the information need dimension via the ac-
tion dimension. The Session concept is used for tracking
the time of user logins and the duration of a user session in
our application.

Application Dimension. The application dimension is a
“hidden” dimension because it is not modeled as concepts in
the UICO. This dimension is present is such a way that each
user interaction happens within the focus of a certain appli-
cation, e.g., the user’s desktop, Microsoft Word or the Mi-
crosoft Windows Explorer. The Event concept holds the in-
formation about the user interaction with the application by
the datatype properties hasApplicationName and hasPro-

cessId. Standard applications that run on the Microsoft
Windows desktop normally consist of graphical user inter-
face (GUI) elements. Console applications also have GUI

elements such as the window itself, scroll bar(s) and but-
tons for minimizing, maximizing and closing the applica-
tion. Most of GUI elements have an associated accessibility
object3 which can be accessed by context sensors. Datatype
properties of the Event concept hold the data about the in-
teractions with GUI elements. Later on we show that these
accessibility objects play an important role in task detection.

A resource is normally accessed by the user within an appli-
cation hence there is a relation between the resource dimen-
sion and the application dimension. This relation is indi-
rectly captured by the relation between the resource dimen-
sion and the action dimension, i.e., by the datatype property
hasApplicationName of the Event concept.

2.3 Related Work
The UICO is similar to the Personal Information Model On-
tology (PIMO) [17] developed in the research project NEPO-
MUK4 in terms of representation of desktop resources. How-
ever, for our purposes of automatic context capturing, a lim-
itation of the PIMO is the coarse granularity of concepts
and relations. Our UICO is a fine-grained ontology, driven
by the goal of representing automatically captured low-level
contextual information whereas the intension of PIMO is to
enable the user to manually extend the ontology with new
concepts and relations to define her environment for personal
information management.

The native operations (NOP) ontology5 which is used in
the Mymory project [18] models native operations (e.g., Ad-
dBookmark or CopyFile) on generic information objects (e.g.,
email, bookmark or file) which are recorded by system and
application sensors. Native operations are similar to the
UICO’s ActionType concepts and more specifically to the
EventType concepts. The DataObject concepts describe sev-
eral desktop resources in a more coarse granular way than
we do for the UICO’s Resource concepts.

In [19] a layered and semantic ontology-based framework for
personal information management (PIM) which follows the
principles of semantic data organization, flexible data manip-
ulation and rich visualization is proposed. The framework
consists of an application, domain and resource layer as well
as a personal information space. The resource dimension of
our UICO can be seen as a combination of the domain and
resource layer because resource instances are mapped to con-
cepts of the domain layer. The intention of the approach is
to propose a framework for PIM whereas the UICO focuses
on representing the user interaction context. The main dif-
ferences are that in the UICO there are (1) no pre-defined
ontology for resources and (2) no concepts or relations for
representing user actions.

3. AUTOMATIC MODEL POPULATION
For a user it is not convenient to manually enter the data
about her context on such a fine-granular level, as is defined
in our UICO. Hence semi-automatic and automatic mecha-
nisms are required to ease the process of “populating” the

3Microsoft Active Accessibility:
http://msdn.microsoft.com/en-us/accessibility/
4http://nepomuk.semanticdesktop.org
5http://usercontext.opendfki.de/wiki/NopOntology



ontology. Rule-based, information extraction and machine
learning approaches are utilized to automatically populate
the ontology and automatically derive relations between the
model’s entities. We describe in this section how we build
instances of concepts and augment relations between the
concept instances. We show which kind of sensors we use to
observe user interactions with the computer desktop, how
to discover resources the user has utilized, unveil connec-
tions between resources, and aggregate single user interac-
tions (events) into event blocks and tasks.

3.1 Context Observation
Context observation mechanisms are used to capture the
user’s behavior while working on her computer desktop, i.e.,
performing tasks. Low-level operating system and applica-
tion events initiated by the user while interacting with her
desktop, are recorded by context observers, which is similar
to the approach followed by contextual attention metadata
[11] and other context observation approaches [9, 20, 21].

The data about the occurred events is sent as an XML
stream to the context capturing framework for processing
and analysis. Our targeted domain of the contextual atten-
tion metadata collection is the Microsoft Windows XP or
Vista environment. Especially, we focus on supporting ap-
plications that knowledge workers are using in their daily
work. We have identified the following applications to be
worthwhile for utilization: the Microsoft Office 2003/2007
suite (Word, Excel, PowerPoint, Outlook), Microsoft Inter-
net Explorer, Novell GroupWise, Mozilla Thunderbird and
Mozilla Firefox. Context observers, also referred to as con-
text sensors, are programs, macros and plug-ins that provide
the functionality to observe the user interaction behavior on
the computer desktop. We distinguish sensors based on the
origin of the sensor data they deliver and talk about system
and application sensors. We refer to [4] for a complete list-
ing of the available system and application sensors and for a
description of what kind of contextual information they are
able to sense.

3.2 Resource Discovery
The resources that populate the ontology model are for ex-
ample links, documents, persons, emails, files, folders, web
pages, organizations, locations, files, folders, presentations,
text documents or spreadsheets. Resource discovery is about
the identification of resources and the extraction of related
metadata in the contextual attention metadata stream, re-
ferred to as the event stream. Furthermore it is about un-
veiling the resources the user has interacted with and the
resources that are included or referenced in a used resource.
We say that a resource is included in another one if its con-
tent is part of the content of another resource, e.g., copy of a
part of text from an email to a text document. A resource is
referenced by another resource if the location of the resource
appears in the content of another resource, e.g., a link to a
web page appears in the content of an email. The resources
that are identified by resource discovery mechanisms are re-
lated to instances of the Event concept by the isActionOn

objecttype property.

Three techniques are applied to discover resources: the reg-
ular expression, the information extraction and the direct
resource identification approaches. (i) The regular expres-

sion approach identifies resources in the event stream based
on certain character sequences predefined as regular expres-
sions. This is used to identify files, folders, web links and
email addresses for example. (ii) The information extraction
approach extracts person, location and organization entities
in text-based elements in the event stream. This extraction
is rule-based and utilizes natural language specifics. The ex-
tracted entities are mapped to concepts of the UICO based
on the available context information. As an example, when
the name of a person is identified in a text document, it is
mapped to an instance of an already existing Person con-
cept and a relation specifying that this person is mentioned
in that document is added. (iii) The direct resource iden-
tification approach finds data about the resource to build
directly in the sensor data, and directly maps certain fields
of the event stream data to the resource. An example is the
sensor data about an email that the user has opened. In this
case the sensor sends the information that a specific email
identified by the server message id has been opened for
reading. Additional metadata about the email is attached
by the sensor and added to the discovered resource. An-
other example is the ClipboardSnippetResource which is
built from the content of the clipboard application sensed
by the clipboard observer.

3.3 Event to Event Block Aggregation
Context sensors observe low-level context attention meta-
data that result in events. For logically aggregating events
that belong together (i.e. grouping user’s actions) into blocks
of events, so-called event blocks, static rules are used. Log-
ically in this sense means grouping the events that capture
the interaction of a user with a single resource into an event
block. Resources can be of various types and opened in
different applications. Therefore for different types of appli-
cations different rules are applied in the grouping process.
An application can handle multiple resource types. This is
the case for example for Microsoft Outlook or Novell Group-
Wise in which emails, tasks, notes, appointments and con-
tact details are managed. The complexity and accuracy of
the static rules depend on the mechanism of the applica-
tion for identifying a single resource and on the possibility
to capture this resource id with a sensor. If it is not possi-
ble for a sensor to capture a unique id for a resource in an
application then heuristics are used for uniquely identifying
that resource.

Two types of rules can be distinguished for the event to
event block grouping process. The first type is a set of rules
designed for specific applications, and referred to as appli-
cation specific rules. An example of such a rule is: group
all events that happened on the same slide in the Microsoft
PowerPoint application.

The second type of rules, referred to as default application
rules, are applied if no application specific rule is applica-
ble. They also serve as backup rules if there is a lack of
information in the event stream for applying an application
specific rule. The goal of these rules is to heuristically group
events into event blocks based on event attributes which can
be observed operating-system-wide by the context sensors.
These attributes are the window title of the application, the



process number (id) and the id of the window handle6. The
window title and the process id perform the best for a generic
event to event block grouping in which no application spe-
cific attributes are present. This discriminative power of
the window title has been observed also in other work: In
SWISH [6] the window title results in an approximately 70%
accurate task detection. This finding goes hand in hand with
Shen et al.’s task detection research [7] in which a combi-
nation of the window title and the file path of the currently
edited document has been utilized. In Granitzer et al. [10]
the window title is also mentioned as a good discriminating
context feature for tasks.

3.4 Tasks
The aggregation of user actions into tasks is different from
the previous rule-based approach since it would require to
manually design rules for each task. This might be a reason-
able approach for well-structured tasks, like administrative
or routine tasks, but is obviously not appropriate for tasks
that involve a certain freedom and creativity in the exe-
cution, e.g., for knowledge-intensive tasks like “Planning a
journey” or “Writing a research paper”. To be able to also
handle such kind of unstructured tasks the idea is to auto-
matically extract tasks from the information available in the
user interaction context model by means of machine learn-
ing techniques. Once detected, these tasks will enrich the
ontology model.

4. ONTOLOGY-BASED TASK DETECTION
A classical approach for automatic task detection is to model
it as a machine learning problem (classification task). This
approach has been used for recognizing web based tasks [22,
23], tasks within emails [24, 25] or from the complete user’s
desktop [6, 7, 9, 10]. All these approaches are based on the
following steps. First, the contextual attention metadata has
to be captured by context sensors. Second, it has to be cho-
sen which parts of the data (features) are used for building
the training instances for the machine learning part. Since
these features can not directly be used as inputs for machine
learning algorithms the third step is to transform the con-
text features into attributes [26]. This transformation may
also include data preprocessing operations. An example for
the famous window title feature would be a summarization
of the words appearing in the window title into a “bag of
words” then transformed into vector format. For text based
features, preprocessing steps like removing stopwords [7, 9,
10] or application specific terms [6], are applied. The fourth
step is to apply feature selection algorithms [10, 27] to se-
lect the most important features for the learning algorithms
(optional). The fifth step is the training and testing of the
learned model.

In the machine learning part we use the machine learning
toolkit Weka [26] for parts of the data preprocessing, filter-
ing, feature selection, and classification.

4.1 Training Instance Construction
Constructing training instances for the machine learning al-
gorithms is done on the task level. This means that each
task represents a training instance for a specific class to be

6The window handle id is a unique identifier of the window
constructed by the Microsoft Windows operating system.

learned. A class corresponds to a specific task model. Hav-
ing multiple task models hence results in a multi-class clas-
sification problem. A training instance for a class is built
from features and feature combinations of the context of an
instance of a Task concept. The process of constructing fea-
tures representing a task instance and of transforming them
into attributes that can be used to train machine learning
algorithms is referred to as feature engineering.

The context features we chose for building the training in-
stances can be grouped in four categories: ontology struc-
ture, content, resource, and action. The ontology structure
category contains features representing the number of in-
stances of concepts and the number of datatype and object-
type relations used per task. The content category stands
for the set of features that involve text based content: the
content of the resource displayed, the content in focus and
the text input of the user. The resource category includes
the complete contents and URIs of the used, referenced and
included resources, as well as a feature that combines all the
metadata about the used resources in a ‘bag of words’. The
action category can be seen as the category that represents
the user interaction. It contains features about the inter-
action with applications, graphical user interface elements
(accessibility objects), resources types, resources, key input
types (navigational keys, letters, numbers), the number of
events and event blocks, the duration of the event blocks,
and the time intervals between event blocks.

Besides the ontology structure category, which is obviously
specific to our ontology-based approach, we have also new
ontology-based features in the action and resource categories.
These new features are constructed based on combinations
of concepts with concepts as well as concepts with concept
instances. An example for the first one is the combination of
the EventType with the sub-concepts of the Resource con-
cept. For the second one the combination of the EventType

with an instance of the TextDocument concept is an example.

4.2 Data Preprocessing and Feature to
Attribute Transformation

Following steps were performed to preprocess the content
of text-based features (in this sequence): (i) remove end of
line characters, (ii) remove markups, e.g., \&lg and ![CDATA,
(iii) remove all characters but letters, (iv) remove German
and English stopwords, (v) remove words shorter than three
characters. We transformed text-based features into vectors
of words representing this feature with the StringToWord-

Vector function of Weka. For numeric features we applied
the Weka PKIDiscretize filter to replace discrete values by
intervals. We used the Information Gain (IG) measure to
rank features by their discriminative power.

4.3 Evaluation
In our experiment we evaluated the influence of three pa-
rameters on the task detection performance: (i) the number
of features, (ii) the classification model and (iii) the fea-
ture category. The Weka toolkit and the WEKA integration
of the libSVM provided us with the tool set to study the
performance of the Naive Bayes (NB), Linear Support Vec-
tor Machine (SVM), J48 decision tree (J48) and k-Nearest
Neighbor (KNN-k) with k ∈ {1, 5, 10, 35} algorithm.



Table 1: Overview of the best accuracies (a) for the features (f) from the UICO, Dyonipos, SWISH and
TaskPredictor approaches. The learning algorihtm (l), the number of attributes (g), the micro precision (p)
and the micro recall (r) are also given.

Set f l g a p r

Action Cat. J48 776 83.64 0.95 0.82
Content Cat. NB 1409 65.00 0.87 0.67

UICO Resource Cat. NB 1849 67.27 0.89 0.72
Ontology St. Cat. J48 232 65.00 0.87 0.63
All Categories J48 4201 89.55 0.97 0.90

ApplicationName(A) J48 18 46.81 0.78 0.50
Content(C) KNN-1 109 62.72 0.86 0.63
WindowTitle(W) J48 241 79.01 0.93 0.78

Dyonipos AC J48 2353 69.55 0.89 0.70
AW J48 313 80.91 0.94 0.81
CW NB 1509 81.82 0.95 0.84
ACW NB 755 82.73 0.95 0.85

SWISH W J48 589 79.55 0.93 0.79

TaskPredictor W&filepath J48 701 81.82 0.94 0.82

For each classifier/learning algorithm l ∈ L and each feature
category f ∈ F we selected the g attributes having the high-
est IG value to obtain our dataset. As values for g we used
50 different measure points that were equally distributed
over the available number of attributes. Since we measured
no performance increase by using more than 10000 attributes
we introduced an upper bound at this point for the measur-
ing interval. The total number of attributes depends on the
chosen features. Stratified 10-fold cross-validation was ap-
plied and statistical values for each fold were computed. In
addition, the mean and standard deviation of all values were
calculated across all folds. We measured the accuracy (a) of
the used algorithms, the number of attributes (g), the micro
precision (p) and micro recall (r).

5. EXPERIMENT
This section describes the first results achieved from a task
detection experiment we have carried out in the knowledge-
intensive domain of the Know-Center. Furthermore we com-
pare the performance of our approach to these of the TaskPre-
dictor [7], the SWISH [6] and the Dyonipos [10] system.

For the experiment we selected five typical task models from
our domain for the experiment. Three task models were
routine tasks (Task 1: “Filling in the official journey form”,
Task 2: “Filling in the cost recompense form for the official
journey”, Task 3: “Creating and handing in an application
for leave”) and two were knowledge-intensive tasks (Task 4:
“Planning an official journey”, Task 5: “Organizing a project
meeting”). Before we started the experiment we did an on-
line questionnaire to confirm that the descriptions of the
task models are clear to the users and that the routine task
are tasks that have already been executed by the employees
several times before. The dataset we gained by the methods
and techniques presented in the previous sections has 220
task instances (Task 1: 55, Task 2: 47, Task 3: 51, Task 4:
52, Task 5: 15) from 13 participants. Half of the task in-

stances were collected on a single laboratory computer com-
mon to all users and the other half on the employees’ own
work station computers. The dataset contains over 1 mil-
lion triples. The average number of triples per task is 4900
with a standard deviation of 4200 triples. The task with the
maximum number of triples contains 29700 triples.

Figure 3 shows the performance of the seven studied learn-
ing algorithms for different numbers of attributes based on
the feature combinations for the presented categories. The
highest three accuracy values were achieved by the J48 deci-
sion tree algorithm with 89.55% on 4201 attributes (p=0.97,
r=0.90), with 88.18% on 3801 attributes (p=0.97, r=0.88)
and with 87.73% on 401 attributes (p=0.96, r=0.88). The
k-Nearest Neighbor (k = 5) achieves 71.81% on 1201 at-
tributes (p=0.91, r=0.74). The results which are summa-
rized in Table 1 highlights that the J48 decision tree and
the Naive Bayes algorithm perform best and that features of
the action category achieve the highest accuracy compared
to the other feature categories.

The preliminary analysis of the task detection performance
of singular context features showed that the name of the ac-
cessibility object (l=J48, g=26, a=84.55, p=0.95, r=0.84)
and the value of the accessibility object (l=J48, g=1765,
a=72.27, p=0.90, r=0.73) are good discriminative features.

5.1 Comparison with other Task Detection
Approaches

Comparing our approach to the TaskPredictor, SWISH and
Dyonipos approaches can not be done directly because the
construction of the training instances varies in terms of the
granularity. In SWISH window switching algorithms are in-
troduced that determine the boundary of a training instance,
in TaskPredictor Window-Document Segments (WDSs) are
built to make a prediction. In the Dyonipos approach one
training instance per event block is constructed. In our ap-



(a) Action Category (b) Content Category

(c) Resource Category (d) Ontology Structure Category

(e) All Categories

Figure 3: Accuracy of the learning algorithms for correctly identifying the task model a task belongs to. In
the top four pictures (a)-(d) the performances of the algorithms for each category is shown. The bottom
picture (e) visualizes that the combination of all features of all categories outperform each single category.
The information gain (IG) feature selection was used to select the top g number of attributes visualized on
the x-axis.



proach, we construct one training instance for each task.
Since the number of training instances per class has an
influence on the accuracy of the classification we focused
on the feature engineering part for the comparison. We
took the context features used by the mentioned approaches,
preprocessed them as published in [6] for SWISH, [7] for
TaskPredictor and [10] for Dyonipos, and evaluated the per-
formance according to our experiment’s setup (dataset and
algorithms). Table 1 presents a comparison of the best al-
gorithm runs in terms of accuracy for task detection for the
various features/feature categories. It shows that the com-
bination of the feature categories of our ontology-based ap-
proach outperforms the features used in other approaches
in our experiment. The accuracy is increased by 6.82%, the
micro precision by 0.02 and the micro recall by 0.05 in com-
parison to the best values achieved by other approaches.

For a detailed comparison of the precision and recall val-
ues between the TaskPredictor, SWISH and Dyonipos ap-
proaches we refer to [10].

6. CONCLUSIONS AND FUTURE WORK
In the digital information age with the high amount of digital
information available to us it is important to know the task
of the user in order to support her better. For detecting the
user’s task we introduced an ontology-based user interaction
context model (UICO) that extends the spectrum of feature
construction for automatic task detection. Based on our
novel features we could outperform existing task detection
approaches which we evaluated on the dataset collected from
a large scale user study in a knowledge-intensive business
environment.

The promising results achieved sparked interest in further
investigating which features in particular are responsible for
the high task detection performance. We will study com-
binations of the best features to find a good balance be-
tween the number of features required, the task detection
speed as well as the accuracy, precision and recall of the
detection. The 50 measure points interval we used to eval-
uate our approach only shows a tendency of the number of
attributes that should be used in the classification hence
we will continue to investigate finer intervals. Since the
number of representative laboratory studies in the area of
task detection is low we plan to do further ones to get a
deeper insight on which kind of tasks can automatically be
detected. The work presented in this paper will be inte-
grated into our service-oriented knowledge services frame-
work (KnowSe) which strives to provide highly contextual-
ized and personalized knowledge services to the user.
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[16] A. S. Rath, M. Kröll, S. N. Lindstaedt, M. Granitzer,
Low-level event relationship discovery for knowledge
work support, in: Workshop on Productive Knowledge
Work - Management and Technological Challenges,
WM ’07, Potsdam, Germany, 2007.

[17] L. Sauermann, L. van Elst, A. Dengel, PIMO - a
framework for representing personal information



models, in: I-SEMANTICS ’07, Graz, Austria, 2007,
pp. 270–277.

[18] R. Biedert, S. Schwarz, T. R. Roth-Berghofer,
Designing a context-sensitive dashboard for an
adaptive knowledge worker assistant, in: Workshop on
Modeling and Reasoning in Context, HCP ’08, Delft,
The Netherlands, 2008.

[19] H. Xiao, I. F. Cruz, A multi-ontology approach for
personal information management, in: Workshop on
The Semantic Desktop - Next Generation Personal
Information Management and Collaboration
Infrastructure, ISWC ’05, Galway, Ireland, 2005.

[20] A. N. Dragunov, T. G. Dietterich, K. Johnsrude,
M. McLaughlin, L. Li, J. L. Herlocker, TaskTracer: a
desktop environment to support multi-tasking
knowledge workers, in: IUI ’05, San Diego, California,
USA, 2005, pp. 75–82.

[21] M. Van Kleek, H. E. Shrobe, A practical activity
capture framework for personal, lifetime user
modeling, in: UM ’07 - Poster, Corfu, Greece, 2007,
pp. 298–302.

[22] A. Gutschmidt, C. H. Cap, F. W. Nerdinger, Paving
the path to automatic user task identification, in:
Workshop on Common Sense Knowledge and
Goal-Oriented Interfaces, IUI ’08, Canary Islands,
Spain, 2008.

[23] M. Kellar, C. Watters, Using web browser interactions
to predict task, in: WWW ’06 - Poster, Edinburgh,
Scotland, 2006, pp. 843–844.

[24] N. Kushmerick, T. Lau, Automated email activity
management: an unsupervised learning approach, in:
IUI ’05, San Diego, USA, 2005, pp. 67–74.

[25] M. Dredze, T. Lau, N. Kushmerick, Automatically
classifying emails into activities, in: IUI ’06, Sydney,
Australia, 2006, pp. 70–77.

[26] I. H. Witten, E. Frank, Data Mining: Practical
Machine Learning Tools and Techniques, Morgan
Kaufmann, 2005.

[27] J. Shen, L. Li, T. G. Dietterich, J. L. Herlocker, A
hybrid learning system for recognizing user tasks from
desktop activities and email messages, in: IUI ’06,
Sydney, Australia, 2006, pp. 86–92.




