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Unification of the a priori inconsistencies checking among assembly 

constraints in assembly sequence planning 
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Sequence planning generation is an important problem in assembly line design. A good assembly sequence can 

help to reduce the cost and time of the manufacturing process. This paper focuses on assembly sequence 

planning (ASP) known as a hard combinatorial optimization problem. Although the ASP problem has been 

tackled via even more sophisticated optimization techniques, these techniques are often inefficient for proposing 

feasible assembly sequences that satisfy the assembly planners’ preferences.  

This paper presents an approach that makes easier to check the validity of operations in assembly process. It is 

based on a model of the assembly planners’ preferences by means of strategic constraints. It helps to check a 

priori the consistency of the assembly constraints (strategic an operative constraints) given by the assembly 

system designers before and while running an assembly plan generation algorithm. This approach reduces the 

solution space significantly.  

 

A case study is presented to demonstrate the relevance of the proposed approach. 

 

 

Keywords: Assembly plans generation; assembly sequences; assembly strategy; strategic constraints; assembly 

precedence graph, interference matrices 

 
The aim of Assembly Sequence Planning (ASP) is to determine the arrangement of assembly operations on the 

assembly line. Generally, ASP consists of two major activities: assembly modelling and assembly sequence 

generation [Hui 07]. Assembly sequence generation of complex products is a difficult problem, because the size 

of the search space is exponentially proportional to the number of components that form the product. 

Consequently, ASP is a typical combinatorial explosion problem [Henrioud 91] [Marian 03] [Gu 08] which has 

been proved to be NP-hard.  

For the last ten years, a great attention has been drawn to the development of complex algorithms that exploit 

specific meta-heuristics in order to solve the ASP problem [Wang 09]. The traditional solving approach is 

structured as follows: representation, generation, feasibility, and selection [Gottipolu 03]. Much research has 

been done on this basis [Bai 05] [Wang 09]. Related works generate possible assembly sequences, check 

assembly feasibility (for instance, for geometric feasibility [Hui 07]) and finally try to identify the final choice 

by the optimization of cost or time criteria.  

However, the previous optimization approaches often fail to represent product designer’s and assembly planner’s 

preferences, so that the resulting assembly sequences are not fully satisfactory from their point of view.  

Few authors have mentioned the interest of strategic constraints [Henrioud 89] [Homem 91] [Delchambre 92] 

[Gottipolu 03] [Perrard 12] that come from either technical or industrial concerns. These constraints are added to 

other design data that describe the product structure (product model). They are issued from an analysis that is 

performed by a team made of product designers and assembly planners [Demoly 11]. Assembly planners need 

assembly plans (or sequences) to define the flows of components throughout the assembly system. Surprisingly, 

few ASP algorithms based on strategic constraints have been developed whereas they make it possible to 

significantly reduce the research space of assembly sequence generation algorithms (decrease in the number of 

sequences) and to better satisfy the assembly system designers [Martinez 09]. 

A recent paper [Perrard 12] described a new approach allowing a priori checking of the inconsistencies among 

strategic constraints within an assembly strategy that is given by the assembly system designers. This checking is 

said a priori because it is made before running the whole ASP program. This former paper presented different 

types of strategic constraints. 

The present paper is an extension of the former paper. It demonstrates the interest of this new approach in the 

assembly plan generation problem. Usually when researchers propose to deal with strategic constraints during 



2 

the generation of optimal assembly sequences, they develop multiple specific programs to check the feasibility 

of candidate sequences in regard of each strategic constraint.  

In this paper, we propose to make the program writing easier by integrating all checking programs into one 

global program. This improvement makes it possible to reduce the time necessary to write the checking program 

and help to check the consistency of each candidate sequence quickly and globally. The proposed unified 

checking will facilitate the integration of strategic constraints in future optimization algorithms because it makes 

it possible to quickly check the validity of a potential operation in regard of the assembly planners’ preferences 

(this operation may be generated by cross-over in a genetic algorithm). 

 

This paper addresses two main contributions:  

- unification/merging of the representations of assembly data (product model, strategic constraints, 

interference constraints) in a unique Boolean equation 

- integration of the a priori inconsistencies checking between these data into the ASP. 

Another interest of these proposals is the simplification of the programming of the ASP algorithm. 

 

This paper is composed of four main sections: 

- The description of a case study that will be applied to illustrate state of the art concepts and proposal 

concepts along the paper. 

- A brief review of classical models used by ASP and the review of related methods. 

- The adaptation of the a priori checking of inconsistencies among strategic constraints to the problem of 

ASP to check operations, and the description of the reorganization of the stages inside ASP. Then, a 

proposal will be made, in order to allow an efficient management of the strategic constraints. It will be 

shown to be a huge simplification of traditional programs. 

- finally, in the last section, assembly operations issued from the case study are matched to demonstrate 

the effectiveness of the proposal. 

Notations are given in Table 1. 

- PF the end product 

- Cp set of the c (elementary) components to assemble. Cp={ c1,…cn } 

- VA set of added values to provide to Cp in order to obtain the end 

                                                        product. VA={va1,…vam} ; VA= L ! S ! A where: 

- L set of liaisons of PF. It is a sub-set of VA  

- S set of attachments of PF. It is a sub-set of VA 

- A set of added requirements of PF. It is a sub-set of VA 

- va an element of VA 

- "OO’ the complement of sub-set O’ inside set O 

- P(va1 , va2) or P’(VA1 , VA2) strong anteriority constraint where 

                                                          P involves added values 

                                                          P’ involves sets of added values 

- Q(va1 , va2) or Q’(VA1 , VA2) weak anteriority constraint 

- R(va1 , va2) or R’(VA1 , VA2) anteriority constraint, either weak or strong 

- S(va1 , va2) or S’(VA1 , VA2) simultaneity constraint 

- ASP assembly sequence planning 

- OGC operative geometric constraint 

Table 1. Notations 

 
In order to highlight the main concepts, we propose to illustrate this paper with a case study. This example is 

issued from an industrial technology transfer application. An electronic purse (Figure 1) is composed by six 

elementary components: upper case (UC), flexible keyboard (FK), printed circuit board (PCB), lower case (LC), 

batteries (Ba), batteries cover (BC). Its assembly implies the performing of eight liaisons and four other added 

values: soldering (So), screwing (Sc), final check (FC), labelling (La). 
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Figure 1: Exploded view and view of the electronic purse 

3. State of the art: Models related to assembly sequence 

generation 
Key concepts related to assembly plan (or sequence) generation are presented in this section. They have been 

mostly described in [Henrioud 89]. More recently, [Jimenez 11] gives a large review of the literature in ASP. 

3.1. Product model 

 

The end product may be seen, according to the assembly point of view, as the mating of two sets: 

- Cp, that represents the set of the c (elementary) components ci to be assembled  

- VA, that represents the set of values vai to add to these components in order to obtain the end product. 

An element of VA is usually called ‘added value’. 

Then the product can be represented by the couple (Cp, VA) 

The added values have the function of: 

- structuration of the components together (it is the set of geometrical liaisons L) 

- perennialization of this structure (it is the set of attachments S) 

- satisfaction of particular product requirements (it is the set of auxiliary added values A, like milling, 

forming, checks, cleanings,…). 

Then, VA is the union of L, S and A. 

To perform a given added value of VA, specific conditions have to be satisfied, like the presence of some 

components and the previous performing of other added values of VA. Then, it is possible to represent the added 

values and their associated relationships by an oriented graph. We propose to call it ‘precedence graph of added 

values’. A precedence (or anteriority) between two added values va1 and va2 describes the need to perform va1 

before va2. Of course, a given precedence graph may represent a great amount of valid sequences to assemble 

the product. 

 

Liaison graph and other non geometric added values 

Cp={UC, FK, PCB, LC, Ba, BC} 

VA = L ! S ! A, with: 

L={l1, l2, l3, l4, l5, l6, l7, l8} where (see Figure 2): 

l1 = (UC, LC) 

l2 = (UC, FK) 

l3 = (UC, PCB) 

l4 = (LC, PCB) 

l5 = (LC, BC) 

l6 = (FK, PCB) 

l7 = (PCB, Ba) 

l8 = (Ba, BC) 
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Figure 2: Liaison graph of the electronic purse 

S={So, Sc} where: 

So is the soldering of UC and LC; it may be expressed by: 

So=({UC, FK, PCB, LC}, {l1, l2, l3, l4, l6}) 

Sc is the screwing of LC and BC: 

Sc=({LC, BC}, {l5}) 

A={FC, La} where: 

FC=(Cp, {So, Sc}, #, #) 

La= ({LC}, #, {FC}) 

Precedence graph of added values 

The previous model gives the set of precedence (see Figure 3): 

    P’({ {l1, l2, l3, l4, l6}, {So}) 

$ P’({l5}, {Sc}) 

$ P’({Sc, So}, {FC}) 

$ P’({FC},{La}) 

 
Figure 3: Precedence graph of added values for the electronic purse issued from the product modelling 

Note that, in the graph in Figure 3, liaisons l7 and l8 do not have anteriorities with other added values, according 

to the product model. 

3.2. Description of sub-assemblies and assembly operations 

A sub assembly is completely defined by: 

- the list of its elementary components 

- the list of the added values that have been performed to form the sub-assembly. 

Then, each sub-assembly of a given product can be represented by a 4-tuple: 

(Ci,Li,Si,Ai) 

where Ci % C, Li % L, Si % S and Ai % A. 

An operation is partially defined when the list of added values concerning this operation is provided (Figure 4). 
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 -a-    -b- 

Figure 4: examples of different contexts to perform the l4 liaison of the electronic purse. 

It becomes fully defined if each involved sub-assembly is described: sub-assemblies before and the sub-

assembly after the operation. To define an operation completely, one must define: 

- the description of each sub-assembly (Ci,Li,Si,Ai) that is involved by the operation (before and after it), 

- the sub-set of VA that is brought by the operation. 

Thus, an operation can be represented by a 4-tuple: 

((C1,L1,S1,A1), (C2,L2,S2,A2), VAi, (C3,L3,S3,A3)) 

Example: 

The operation described by Figure 1.b. can be represented by the 4-tuple: 

(({LC},#,#,#), ({PCB, FK},{l6},#,#), ({l4}, ({LC,PCB,FK},{l4,l6},#,#)) 

Notes: 

- the order between the first two terms of this 4-tuple doesn’t matter (at this step of the assembly process 

design, the concept of primary/secondary sub-assemblies is not taken into account) 

- it is always possible to deduce one term of the 4-tuple from the three others (redundant information). 

3.3. Assembly plan models 

An assembly plan describes a particular way to assemble the elementary components in order to obtain the end 

product. It involves a particular set of operations. It exists different levels of description of an assembly plan: 

- the most simple one, called assembly process. It only describes objects (components, produced sub-

assemblies and end product), and partial order between operations to perform. These operations only 

describe which added values are brought to sub-assemblies. 

- the most complete one, called operative diagram. It is an assembly process and all pertinent information 

to perform operations (objects orientation, logistic operations, used equipment and adjustments used, 

operative times,…) 

- intermediate assembly plan description, depending on the ASP method used. 

In this paper, we only deal with processes. 

In a process, the operations are partially ordered through a tree. A process is a particular solution that respects 

the added value precedence graph (Figure 5). It is the less refined description level of an assembly plan. 

 
 -b- parallel process   -c- linear process 

Figure 5: examples of process of the electronic purse. 

Usually, a process involves: 

- binary operations, if they make it possible to mate two constituents. They are so-called geometric 

operations. A geometric operation brings one (or more) added value(s) of L. The « + » symbol indicates 

a multi-added values operation, like examples in Figure 3. 

- unary operations, if they bring an added value to an unique constituent. This added value is unique and 

belongs to S ! A. The corresponding operation, so-called non geometric, is an attachment (if the added 

value belongs to S) or an auxiliary one (if the added value belongs to A). 

- other operations that involve more than two constituents are not taken under consideration here. 

Thus, a process may be represented by a binary tree, where each node represents an operation. Such a tree can be 

represented by: 

- a set of nodes O, that are the operations of the process, 
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- a set of oriented arcs X % O x O between the nodes of the tree. The orientation of these arcs indicates 

the chronological way of performing the operations of the defined process. Then, each arc represents a 

precedence. 

3.4. Different assembly plan generation methods 

There are many assembly plan generation methods. They can be divided into two groups: systematic and 

stochastic methods. Consequent state of the art in ASP can be found in [Zhao 12] and [Jimenez 11]. 

 

The oldest methods are issued from a systematic generation of assembly plans, which starts from a product 

model, for instance: 

- Reverting disassembly plans [Mascle 01], 

- Direct assembly plan generation, using: 

o Ascending method [Perrard 07], 

o Descending methods [Henrioud 89] (or so called ‘cut-set’ [Homem 91]) 

A specific software has been developed in order to automatically generate assembly plans under strategic 

constraints. It is based on an algorithm that combines the ascending method [Perrard 07] and the descending one 

[Henrioud 89] . This enables to solve industrial cases of product assembly planning. 

 

For the last ten years, great attention has been drawn to the development of complex algorithms that exploit 

specific meta-heuristics in order to solve the ASP problem [Wang 09]. Much progress has been made in 

generating optimal / sub-optimal assembly sequences by developing various kinds of algorithms that have been 

refined even further:  

- Genetic algorithms [Bonneville 95], [Lazzerini 00], [Lit 01], [Pan 10], [Hsu 11] 

- Memetic algorithms [Gao 10] 

- Ant colony algorithms [Wang 05], [Shuang 08], [Youhui 12] 

- Other methods [Chang 11], like multi-agent approaches [Zeng 11] or swarm optimization [Lv 10], 

[Wang 10] 

Each of these methods always leads to questioning the user (or a database, or another kind of system) about the 

validity of the applicant operations, in order to validate their introduction in a valid process [Henrioud 03]. Much 

research modelled the ASP problem, generated feasible assembly sequences and then selected optimal assembly 

sequences using genetic algorithms. For instance, [Choi 09] optimized a multi-criteria ASP problem using 

genetic algorithms. However, [Lv 10] underlined that the proportion of feasible sequences in the initial 

population has a great effect on the performance of such algorithms. 

However, stochastic methods do not guarantee the exploration of the whole search space. Then, assembly 

sequence generation using such algorithms need disputable heuristics from the assembly planner’s point of view 

and the generation of an initial population of assembly plans without knowledge about their relevance. 

3.5. Operative assembly constraints 

During the ASP, whatever the method, some operations are found impossible to perform. This is due to operative 

constraints. An operative constraint describes a material impossibility to mate two sub-assemblies. Mainly, there 

are the geometric constraint, the material constraint and the stability constraint [Henrioud 89]. These constraints 

are revealed during the assembly process generation. However, some evident ones can be easily described before 

running ASP tool for efficiency purposes (like discarding some questions to the user during the execution of the 

ASP tool). 

3.6. Reduction of the research space induced by the previous methods 

However, the previous methods suffer from the excessive generation of a huge amount of results. Then, they 

often exploit additional ways to reduce the number of candidate solutions. They usually add other knowledge to 

the product model: 

- The oldest introduce a description of the product by a (component) precedence graph, in order to 

describe partial orders between assembly operations [Rashid 12]. This is still a proposed approach today 

[Hsu 11]. 

- Another solution consists of taking into account the geometry and the position of the parts of the 

product by using association matrices and interference matrices. This makes it possible to automatically 

deduce some geometric constraints and to minimise assembly direction changes [Lee 94], [Chang 11]. 
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Some authors add performing considerations, like the indication of a list of usable tools to achieve an 

operation in order to reduce the number of tool changes [Liu 11]. 

- Other authors proposed to add a deducing CAD module in order to compute some operative constraints 

(usually geometric constrains). However, this last solution does not reduce the research space of 

assembly plan generation, but only makes it possible to reduce the number of questions addressed to the 

user [Wilson 94]. 

- Another way is to take an assembly strategy into account. It is issued from knowledge of the product 

designer and of the assembly planner. Due to its strong power of reducing the research space when 

solving ASP problems, this approach will be preferred in this paper [Henrioud 89], [Homem 91], 

[Martinez 09], [Demoly 11]. 

In the three following sub-sections, we describe precedence graphs, interference matrices and assembly strategy. 

3.7. Precedence graphs 

Assembly components precedence graphs are usually used by most of authors. However, this is a poor 

representation due to the inherent confusion induced between component and liaison. Then, it is preferable to use 

added values precedence graphs. 

Fortunately, precedence representation should be easy to integrate into the proposed approach. Indeed, we use 

added value precedence graphs when usually, components precedence graphs are provided. 

 
Figure 6. Components precedence graphs for the electronic purse representing geometric knowledge 

Generally, such a precedence graph is not directly usable. Then, in this work, we need to translate components 

precedence graphs into added value precedence graphs in order to integrate their precedence constraints into our 

approach. 

3.8. Interference matrices 

Interference matrix concepts were proposed by [Lee 94] and [Wilson 94]. An interference matrix is a table where 

line i is labelled by component ci and column j is labelled by component cj. 

An interference between two parts of a given product is the collision that can occur between these two parts if 

one of them is translated along a particular path while the other is considered as fixed. 

Usually, considered paths are the main translations, as X+, X-, Y+, Y-, Z+ and Z-. If there is a collision between 

the two considered parts, along a particular path I, the corresponding box of the I interference matrix is equal to 

1, otherwise it is equal to 0. The opposite interference matrix I- of an interference matrix I+ can be deduced from 

I+ (If part p1 collides part p2 when following path I+, then, part p2 collides part p1 when following path I-); 

then: 

I-(i,j) = I+(j,i)). 

Part p is considered as non colliding with itself (I(i,i)=0). 

It is possible to use the same matrix for sub-assemblies; it is obtained by merging the corresponding lines and 

columns of the interference matrix while applying a logic OR between the values of the corresponding boxes. 

Two sub-assemblies are considered as impossible to assemble if all of the corresponding interference sub-

matrices contain 1 in all boxes I(i,j)=1, if i ! j. 

Tables 1 describe interference matrices for the electronic purse, considering only Z+ and Y+ paths (parts of the 

first column are considered as mobile while parts of the first row are considered as fixed). On box Iij, part cj is 

supposed motionless while part ci is supposed moving along the trajectory associated with the matrix. 
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Z+ UC FK PCB LC Ba BC  Y+ UC FK PCB LC Ba BC 

UC 0       UC 0 1 1 1   

FK 1 0      FK 1 0     

PCB 1 1 0     PCB 1  0 1   

LC 1 1 1 0    LC 1  1 0 1 1 

Ba 1 1 1 1 0   Ba    1 0 1 

BC 1 1 1 1 1 0  BC    1 1 0 

Tables 1: interference matrices of the electronic purse 

Mating UC with LC gives the reduced interference matrices of tables 2. These new matrices highlight the 

impossibility to joint PCB in a subsequent assembly operation (yellow boxes of table 2). This shows an operative 

geometric constraint (OGC) [Henrioud 89] between the sub-assemblies SA1=({UC, LC},{l1},#,#) and 

SA2=({PCB},#,#,#). 

 

Z+ UC-

LC 

FK PCB Ba BC  Y+ UC-

PCB 

FK PCB Ba BC 

UC-

LC 

0 1 1    UC-

LC 

0 1 1   

FK 1 0     FK 1 0    

PCB 1 1 0    PCB 1  0 1 1 

Ba 1 1 1 0   Ba   1 0 1 

BC 1 1 1 1 0  BC   1 1 0 

Tables 2: reduced interference matrices when mating UC and PCB 

 

Interference matrices are a powerful tool for producing operative geometric assembly constraints. 

[Wilson 94] and [Delchambre 92] developed such a tool linked to CAD softwares in order to extract interference 

matrices from the product CAD model. Then, it is only necessary to integrate these interferences matrices into 

the proposed approach without redeveloping the extracting tool. 

3.9. Assembly strategy model 

 

An assembly strategy is the description by the designer, from his point of view, and from assembly context 

purposes, of what is a good assembly process. In opposition to operative constraints, an assembly strategy is 

defined before the assembly processes generation, in order to strongly reduce the research space of the problem 

and to only produce ‘good’ assembly processes. Strategic constraints are used to describe an assembly strategy. 

 

An assembly strategy is: 

• a set of strategic constraints that are imposed by the user to generate particular patterns to processes, 

• and a global function that combines these constraints together. 

This function and its involved constraints have to be respected by each assembly plan that matches the assembly 

strategy. 

 

The strategic constraints are: 

o Boolean: 

! Anteriority constraint 

! Sub-assembly constraint 

! Cluster constraint 

! Linear processes constraint 

! Basis component constraint 

o Integer: 

! Delay or anticipate the performing of an added value 

! Perform as soon as possible a (non-geometric) added value 
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These constraints were described in detail in the reference paper [Perrard 12]. We do not describe them again in 

this paper. 

We developed a specific algorithm to introduce assembly strategy into assembly plan generation. It enables to a 

priori check inconsistencies among strategic constraints before running the assembly plan generation software. 

This software was described and tested on an industrial case study in [Perrard 12].  

 

This work is limited to Boolean logic field only. Indeed, the reference paper [Perrard 12] demonstrated that 

anteriority constraints are sufficient to represent any Boolean constraint. Consequently, an assembly strategy is a 

Boolean equation that links anteriority constraints. 

Then, any Boolean strategic constraint can be represented by a set of strong anteriorities constraints linked 

together by a Boolean equation. 

An anteriority (strong or weak) links together two added values of the product model. Strong anteriority induces 

in the corresponding processes a strict anteriority between the performing of the two implied added values and a 

weak anteriority admits simultaneity or parallelism between them. 

 

The reference paper describes an approach to a priori check the consistency of an assembly strategy that is given 

by the assembly system designers before running an assembly plan generation algorithm. The aim of this work is 

to improve the assembly plan designer’s efficiency by reducing the research space while proving the existence of 

acceptable solutions.  

The assembly strategy combined with the product’s model implies a set of constraints on the assembly processes. 

The proposed method determines whether the given assembly strategy produces possible assembly processes. In 

case of inconsistencies among the strategic constraints, the method will help the designer to identify the 

contradictory constraints. The set of constraints can be expressed by a Boolean equation. 

The originality of the proposed method consists in defining an elementary strategic constraint that is used to 

describe every other constraint. This elementary constraint is the strong anteriority constraint. The proposed 

method leads to model an assembly strategy by a single Boolean equation that is used to check the 

inconsistencies. 

 

An assembly process respects a strong anteriority constraint P(va1 , va2) between va1 and va2 ((va1,va2) & 

VA ' VA) if it exists an oriented path (whose distance is not null), inside this process, that starts from operation 

o1 (o1 performs va1) and that ends at operation o2 (o2 performs va2). 

For a given process Pr of PR, it is possible to define the evaluation function P: 

P: VA'VA ( {FALSE, TRUE} 

       (va1,va2) ! b 

where b=TRUE if Pr respects P(va1 , va2), else b=FALSE. 

A weak anteriority constraint Q(va1 , va2) is defined by !P(va2 , va1). 

The writing R(va1 , va2) will denote a weak anteriority or a strong anteriority indifferently. 

A simultaneity constraint S(va1 , va2) is defined by !P(va1 , va2) $!P(va2 , va1). 

 

We propose to extend anteriority P into P’ to sub-sets of VA, through this way: 

P’: P (VA) ' P (VA) ( {FALSE, TRUE} 

                (VA1,VA2) ! b 

b=TRUE )* va1& VA1 and * va2 & VA2 there always is P(va1 , va2)=TRUE 

(P(X) is the set of all the parties of X). 

We extend by the same way Q into Q’, R into R’ and S into S’. 

 

Description 

Let ST1 be the proposed strategy for the electronic purse. It is described as follows: 

a) Forbidding the sub-assembly ({Ba, BC},{l8}, #, #) for stability reasons 

b) Imposing linear processes: this constraint only keeps processes that assemble one component after the 

other on a base component. This is a useful constraint to prepare an easier layout of the assembly line. 

c) Imposing the upper case as a base component: this constraint completes the previous one. 
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d) In order to link all these constraints together by a global Boolean equation (description of the strategy), the 

respect of all of these constraints is required in the proposed ST1 strategy (ST1 ) a . b . c) 

Model of the strategy 

Every strategic constraint can be expressed by a set of P’, Q’, R’ and S’ constraints. Then, each Q’, R’ and S’ 

constraints can be easily transformed into an equation made of the elementary constraint P’. For a better 

understanding of these formulas, the reader will find helpful information in [Perrard 12]. 

a) gives the set of precedences: 

¬[ P’({l8}, {l5, l7}) $ ¬P’({l1,l2,l3,l4,l6, So, Sc, FC, La}, {l8}) ] 

To obtain this sub-assembly, there are the following conditions: 

• The considered sub-assembly can be represented by {l8}. 

• This added value has to be performed strictly before {l5, l7} for product structure reasons. 

• l8 can be made before, simultaneously or in parallel of {l1,l2,l3,l4,l6, So, Sc, FC, La}, that’s 

gives : Q’({l8} , {l1,l2,l3,l4,l6, So, Sc, FC, La}), that gives the second term. 

To forbid this sub-assembly, it is sufficient to negate the previous conditions. 

b) and c) give the set of precedences: 

    P’({l1},{l2, l3, l4, l5, l6, l7, l8} ! S ! A) 

+ P’({l2},{l1, l3, l4, l5, l6, l7, l8} ! S ! A) 

+ P’({l3},{l1, l2, l4, l5, l6, l7, l8} ! S ! A) 

Because component B is linked to the others by l1, l2 and l3, a valid process has to perform first one of 

these three added values. 

3.10. Synthesis 

As said in Section 3.5., some evident operative constraints (usually geometric constraints) can be found before 

running any ASP tool. These constraints may be (partially) described by components precedence graph, or by 

interferences graphs. In this paper, we call product geometric pre-knowledge such descriptions. 

We propose now to translate assembly strategy, interference graphs, components precedence graphs and 

geometric constraints into a single added values precedence set, that are linked together by a single Boolean 

equation. 

Traditional precedence graphs (components precedence graphs) are an unsatisfying way to describe constraints 

to assemble a given product. This is due to the confusion in this model between components and added values. 

Precedence graphs are not able to properly describe: 

- parallel sequences into an assembly plan 

- operative difficulties between two similar feasible operations (Figure 4). 

Few authors have mentioned the interest of strategic constraints [Henrioud 89] [Homem 91]. Some recent works 

[Gottipolu 03] and [Demoly 11] rediscover their interest that comes from either technical or industrial concerns. 

These constraints are added to design data that describe the product structure (product model). Strategic 

constraints help to describe many points of view of the product assembly: design, geometric, technological, 

operative, lay-out, logistic… They may constitute a common language for the different actors who collaborate on 

the assembly line design. 

When the knowledge of the product geometry is added to strategic constraints, it is possible to generate quickly 

and automatically only valid assembly sequences. 

 
This section will present the main improvements of the proposed approach. The first part of this section locates 

in the method steps where these improvements are and their nature. Following parts give details of product 

geometry pre-knowledge and operation translation into precedence sets in order to be compared with strategy. 

4.1. Main step improvements description 

Figure 7.a. describes the proposed method as detailed in [Perrard 12]. Its main steps are: 

- analysis (S1), in order to translate user’s knowledge into an assembly strategy and product data into a 

product model for ASP. 

- a priori checking (S2), that makes it possible to verify the reality of the assembly strategy regarding the 

product model (checking of inconsistencies) 

- ASP (S3) as it. 
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We propose to improve this method (Figure 7.b.) by: 

- adding data concerning product geometry (component precedences and interferences), in order to 

automate the ASP as much as possible. To this end, we propose to adapt these data into precedences in 

order to use the proposed checking tool 

- merging the a priori checking with the ASP. Indeed, the existing checking method can be easily 

extended to check operations that are generated during the ASP process. This will highly simplify the 

ASP, by avoiding many specific modules. To this end, an operation will have to be translated into an 

added values precedence set, in order to be processed by the checking module. 

 

"  
-a-       -b- 

Figure 7: main description of assembly plan generation process and proposed improvement 

4.2. Adaptation of product geometry pre-knowledge 

 

Fortunately, components precedence graphs are simplified added value precedence graphs. Indeed, in 

components precedence graphs, a node refers to a component. Actually, it refers to the linking of this component 

to a base component or to the components previously assembled on the base one. This base component is a 

source into such a graph.  

Then, transformation of these graphs is easily done by replacing in each component’s node the name of the 

component by the set of liaisons to be realised between the component and the base and the previously 

assembled components. 

Figure 8 describes an added values precedence graph for the electronic purse, when adding geometric knowledge 

to the product model. Geometric knowledge comes from previous precedence graph Figure 6. 

 
Figure 8. Added value precedence graph for the electronic purse 

In case of complex product structures, such a graph is not sufficient. However it is possible to use a Boolean 

equation to link the set of added values precedence [Henrioud 03]. For the simple case of Figure 8, the 

corresponding set of precedence is linked by a unique logic AND. 

Then, the result can easily be integrated into our approach, because this Boolean equation of precedence can be 

processed by the a priori checking step as is. 

 

In Section 3.8., we used interferences matrices to show an operative geometric constraint (OGC) related to the 

electronic purse. An OGC can be described by the couple of sub-assemblies: 

OGC(({UC, LC},{l1},#,#),({PCB},#,#,#)). 
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Mating these two sub-assemblies, if possible, would perform {l3, l4}, to produce (({UC, LC, PCB},{l1, l3, 

l4},#,#). Then, we propose to describe this impossibility through anteriorities between added values in the 

following way: 

 "P’({l1},{l3, l4}) 

This indicates it is not possible to produce l3 or l4 if l1 is already performed. Then, it can also be written as 

follows: 

) Q(l3, l1) + Q(l4, l1) 

Today, interferences matrices generation can easily be automated through any CAD software [Lee 94] 

[Wilson 94]. 

Computing all reduced matrices issued from each liaison makes it possible to highlight simple operative 

geometric constraints (see example, in Section 3.8.). Then, it is possible to express these operative constraints in 

precedence constraints, as shown in previous Section 4.2.2. These precedence constraints can be added to the 

global formula to be checked. This process can be easily automated too. This proposition makes it possible to 

automatically fill a pre-knowledge database about product geometry. 

However, this way of processing does not allow the generation of all operative geometric constraints, but only 

the simplest ones. Then, the process of assembly sequence generation is lighter for the user, due to the reduced 

number of questions (but not fully automated). This is due to the property of operative geometric constraints 

[Henrioud 89]: 

OGC(SA1, SA2) ) OGC(SA1 ! SA1’ , SA2 ! SA2’) 

(for instance, for the electronic purse: 

OGC(({UC, LC},{l1},#,#),({PCB},#,#,#)) 

) OGC(({UC, LC, FK},{l1, l2},#,#),({PCB, Ba},{l7},#,#)). 

Usually, from our own experience, this way of processing makes it possible to reduce the number of questions 

by 90%, without user’s intervention. Obviously, this depends on the product structure. 

However, willing to automatically find every OGC from the interferences matrices would conduct to redevelop 

an algorithm as complex as an ASP algorithm. This makes no sense here. 

 

[Henrioud 89] improved the computing of the operative feasibility of a candidate operation by using an operative 

constraints database. Each response can be stored in this database, and some responses can be made by deducing 

the result from previous answers (using the above formula). This is very helpful to reduce the number of 

questions that the designer is asked. In this work, this proposal is kept. 

 

Adding geometric knowledge to assembly sequence generation greatly improves its efficiency. We showed here 

that it can also be integrated into the approach we first presented in [Perrard 12]. Then, product geometry pre-

knowledge can be described by strong and weak precedences and can be added to other constraints that are 

described in the proposed checking tool (product model, assembly strategy,…). 

However, due to the nature of the geometric pre-knowledge (only interferences between parts), this approach 

cannot provide a fully automated method. An expert’s experience is still required to answer complex questions. 

But all simple and time-consuming questions can be automatically solved, allowing the expert to concentrate on 

the others. 

If a database (about operation feasibility) is used, it is possible to greatly reduce designers solicitations. 

Moreover, this database can be pre-filled with product geometry pre-knowledge. 

4.3. Merging of the a priori checking and ASP 

 

Usually, ASP is mainly divided into five sub-steps (Figure 9): 

- operation generation (S2 in Figure 9) 

- operation checking regarding the assembly strategy (S3 in Figure 9) 

- operation checking regarding the product geometry and assembly system constraints (S4 in Figure 9). In 

this step, valid operations are evaluated too (S42 in Figure 9) 

- arrangement of operations into assembly sequences (S5 in Figure 9) 

The a priori checking module can be merged with ASP too (S1 in Figure 9). It will make it possible to greatly 

simplify step S3 (in Figure 9), and to pre-check sub-step S41 (in Figure 9). 

To this end, operations have to be translated into added values precedence sets. 
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Figure 9: Checking of the validity of an operation in the assembly sequence generation using the new unified 

checking module 

 

As explained in Section 1. and in Section 4.1., an operation has to be translated into an added values precedence 

set. An operation can be completely described by three elements: 

- the composition of the two sub-assemblies SA1 and SA2 to mate, where SA1 = (Cp1,L1,S1,A1) and 

SA2 = (Cp2,L2,S2,A2) 

- the added values VA12 that will be brought by the proposed assembly operation, where VA12 = 

(L12,S12,A12) 

The result, a new sub-assembly SA3, can be deduced from the previous data, as follows: 

SA3 = SA1 ! SA2 ! VA12 

Or more precisely: 

SA3 = (Cp3,L3,S3,A3) where: 

Cp3 = Cp1 ! Cp2 

L3 = L1 ! L2 ! L12 

S3 = S1 ! S2 ! S12 

A3 = A1 ! A2 ! A12 

We note such an operation O by a 3-tuple: 

O = (SA1 , SA2 , VA12) 

 

Then, to be valid, the anteriorities induced by this operation, have to satisfy the extended strategic equation too. 

These induced anteriorities are produced by the four following groups: 

1. P’(VA1, VA12) 

2. P’(VA2, VA12) 

3. Q’(VA1, VA2) $ Q’(VA2, VA1) = S’(VA1, VA2) 

(to describe the parallelism that exists between the two sub-assemblies to mate) 

4. R’(VA3 , "VAVA3) where VA3 = VA1 ! VA2 ! VA12 
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These four groups of anteriorities make it possible to fully describe an assembly operation. However, we need to 

describe this last anteriority in greater detail. This can be made by considering SA3 as a sub-assembly. Then, we 

can write: 

Let C be the set of components of Cp that are implied by the va3i added value of VA3 and let C’ be the 

set of components of Cp that are implied by the va3’j added value of "VAVA3. For each couple 

(va3i, va3’j) of VA ' VA, we can note that: 

• if C , C’ = #, then there is no relationship between va3i and va3’j; then, they may be performed in 

parallel into the acceptable processes. In the case of a linear process, then it’s va3i that has to be 

performed before va3’j, in order to respect the sub-assembly VA3. This can be expressed by: 

Q(va3i , va3’j) 

• on the contrary, if C , C’ ! #, then it exists a temporal relationship between va3i and va3’j; they 

have to be performed consecutively in the valid processes. The added value va3i has to be 

performed first, in order to respect the sub-assembly VA3. This is expressed by: 

P(va3i , va3’j) 

To conclude, any assembly operation can be described by a set of strong and weak anteriorities. Then, it is 

possible to check its validity using the proposed checking system. Then, any proposed operation can be 

compared with other constraints that are described into the proposed checking tool (product model, assembly 

strategy, product geometry pre-knowledge,…). 

 

The previous adaptations such as 

- translation of geometry pre-knowledge into precedence set, 

- description of an operation into precedence set, 

make it possible to extend functionalities of the proposed a priori checking module. It is now possible to use it in 

order to check operations regarding the chosen assembly strategy, the product models,… 

This is shown by improving the previous method (Figure 7a) into the new one (Figure 7b) by unifying the ‘a 

priori checking’ and the ‘generation and multiple checks’ steps into the single ‘checking and generation’ step. 

Then, Figure 9 in Section 4.3.1. describes the main structure of assembly plan generation algorithms when using 

the new unified checking module. With this new unified module, the checking of any applicant operation in 

regard to any given strategy can be done.  

Fortunately, the old dedicated set of operation verification modules can be advantageously replaced by the single 

a priori checking module (Figure 10 below). These old specific modules were designed to check the feasibility 

of an applicant operation regarding a particular kind of strategic constraints. In the past, this had led to the design 

of one module for each strategic constraint. 

 
Figure 10: Old specific checking modules into the generation step  
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4.4. Conclusion 

In this paragraph, we proposed: 

- to unify checking of model, geometry, constraints and operations (adaptations) 

- to simplify the previous operation checking by avoiding the development of specific modules 

- a universal tool, usable in any ASP method 

The interest of this approach is obvious: it is no longer necessary to implement specific program modules, where 

each of them is dedicated to solving one particular kind of constraint regarding an operation. Here, simple 

Boolean equation solving is sufficient to check the consistency of the set of strategic constraints regarding the 

proposed operation. 

It is now possible to integrate any user’s constraint, independently of product consideration. 

 
In this section, the previous concepts of applicant operation checking that uses added value precedences are 

applied to some assembly operations of the electronic purse, in order to illustrate operations modelling and their 

checking using our approach. 

5.1. First case 

Let the applicant operation (Figure 11) be: 

O1 = (({Ba}, #, #, #), ({Bc}, #, #, #), {l8}) 

 
Figure 11: Operation O1 

It can be translated into the four groups of precedence constraints (see Section 4.3.2.): 

   P’(#,{l8}) 

$ P’(#,{l8})  

$ Q’(#,#) $ Q’(#,#) 

$ [ P’({l8},{l5, l7}) $ Q’({l8},{l1, l2, l3, l4, l6, So, Sc, FC, La}) ] 

The last term of this formula is exactly the opposite of the a) term of the proposed assembly strategy ST1 (see 

section 3.9.6.); then, the proposed applicant operation does not match the strategy. It is not a valid operation and 

will not be considered longer. 

More practically, the assembly strategy described in Section 3.9.6. imposed the upper case (UC) as a base 

component. This first case does not satisfy this constraint. 

5.2. Second case 

Let the applicant operation (Figure 12) be: 

O2 = (({UC, FK},{l2}, #, #), ({LC, PCB},{l4}, #, #), {l1, l3, l6}) 

 
Figure 12: Operation O2 

It can be translated into the four groups of precedence constraints (see Section 4.3.2.): 

O2 = 

   P’({l2},{l1,l3,l6}) term1 

$ P’({l4},{l1,l3,l6}) term2  

$ Q’({l2},{l4}) $ Q’({l4},{l2}) term3  

$ P’({l1, l2, l3, l4, l6}, {l5, l7, So, FC, La }) $ Q’({l1, l2, l3,l4, l6}, {l8, Sc }) term4 

Matching this expression with the strategy model gives: 

ST1 $ O2 

= a) $ b) $ c) $ O2 
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= a) $ b) $ [c1) + c2) + c3)] $ term1 $ term2 $ term3 $ term4 

= [c1) + c2) + c3)] $ a) $ b) $ term1 $ term2 $ term3 $ term4 

= [ c1) $ …] + [ c2) $ …] + [ c3) $ …] 

= [ P’({l1},"l1VA) $ …] + P’({l2},"l2VA)$ …] + [ P’({l3},"l3VA) $ …] 

 

=   P(l1, l2) $ P(l1, l3) $ P(l1, l4) $ P(l1, l6) $…  c1) = P’({l1},"l1VA)  

$ P(l4, l1) $ P(l4, l3) $ P(l4, l6) term2  

+ 

    P(l2, l1) $ P(l2, l3) $ P(l2, l4) $ P(l2, l6) $…  c2) = P’({l2},"l2VA) 

$ Q(l2, l4) $ Q(l4, l2) term3 

+ 

    P(l3, l1) $ P(l3, l2) $ P(l3, l4) $ P(l3, l6) $…  c3) = P’({l3},"l3VA)  

$ P(l4, l1) $ P(l4, l3) $ P(l4, l6) term2  

= FALSE 

The proposed applicant operation does not match the strategy. It is not a valid operation and will not be 

considered any longer. 

More practically, the assembly strategy described in Section 3.9.6. imposes linear processes. This second case 

does not satisfy this constraint. 

5.3. Third case 

Let the applicant operation (Figure 13) be: 

O3 = (({UC, FK, LC},{l1, l2}, #, #), ({PCB}, #, #, #), {l3, l4, l6}) 

 
Figure 13: Operation O3 

It can be translated into the four groups of precedence constraints (see Section 4.3.2.): 

O3 )  P’({l1, l2}, { l3, l4, l6}) 

        $ P’(#, { l3, l4, l6}) 

        $ Q’({l1, l2}, #) $ Q’(#, {l1, l2}) 

        $ P’({l1, l2, l3, l4, l6}, {l5, l7, So, FC, La }) $ Q’(({l1, l2, l3, l4, l6},{l8, Sc}) 

Matching this expression with the strategy model, that is ST1  $ O3, and gives the following formula: 

¬(P’({l8}, {l5, l7}) $ ¬P’({l1,l2,l3,l4,l6, So, Sc, FC, La}, {l8})) 

$ [P’({l1},{l2, l3, l4, l5, l6, l7, l8} ! S ! A) + P’({l2},{l1, l3, l4, l5, l6, l7, l8} ! S ! A)] 

$ P’({l1, l2},{l3, l4, l6}) 

$ P’({l1, l2, l3, l4, l6}, {l5, l7,l8} ! S ! A) 

which admits solutions. This means that O3 satisfies ST1. Hence, O3 belongs to the set of candidate operations.  

More practically, the assembly strategy described in Section 3.9.6. is respected in this third case. 

 

However, when product geometry pre-knowledge constraints are added to the unified checking module, it gives 

(see Section 4.2.2.): 

OGC(({UC, LC},{l1},#,#),({PCB},#,#,#)). 

 "P’({l1},{l3, l4}) 

Then, it’s possible to deduce (see Section 4.2.2.): 

OGC(({UC, LC, FK},{l1, l2},#,#),({PCB},#,#,#)). 

Then, this impossibility is described in our method through anteriorities between added values by the following 

way: 

 "P’({l1, l2},{l3, l4, l6}) 
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However, this last term is the exact contrary of the first term that describes O3. Then, due to operative 

constraints, O3 will not belong to the set of performable operations. Using product geometry pre-knowledge, this 

operative geometric constraint can be found fully automatically. 

Moreover, it is not necessary to extend the first OGC; indeed, it is sufficient as it is to discard O3. 

 
In the reference paper, in order to illustrate the reduction of the search space, we shown for an industrial product 

inducing 416 processes without strategy, that the initial proposed strategy was inconsistent. Without running the 

assembly plan generation software, we were able to highlight the inconsistent terms of the initial strategy and to 

propose corrections. Then, four relevant assembly processes were generated only. 

The new contribution of this paper concerns the exploitation of useful entry data (interference matrices, 

precedence graphs) in order to help automate assembly plan generation. These data along with operation models 

were unified into Boolean strong anteriorities in order to check their consistency with the assembly strategy. This 

new contribution greatly simplifies the software architecture, by merging many modules into a single one.  

This approach ensures the exploring of the whole acceptable search space when generating assembly plans.  

From the assembly planner’s viewpoint, it guarantees the generation of all relevant assembly plans according to 

design constraints and his/her assembly preferences. This advantage is not a feature of stochastic methods. 

7  
Assembly strategy and its proposed constraints constitute a convenient and useful framework to widely restraint 

research space when solving ASP problems. It makes it possible to quickly provide acceptable solutions, and 

only them, according to the designer’s description of what a good solution is made of. However, it is little used 

in the literature, mainly due to ignorance (few authors mention it), we presume. 

However, since an assembly strategy describes the means to ease assembly operations, the product design 

choices have to be translated into assembly strategy. This can sometimes lead to inconsistencies into assembly 

strategy that has to be checked before running the ASP tool. 

 

In the proposed paper, new contributions were proposed, such as: 

- the description of any operation by a set of precedences. This makes it possible to check its relevance 

according to the chosen assembly strategy by using the same checking tool. 

- the mere replacement of each dedicated checking module by a single one (Figure 10). This makes it 

possible to greatly simplify programming, and to guarantee a global checking of any applicant operation 

- the translation of traditional components precedence graphs into added value precedence graphs, in 

order to match the input of the checking tool 

- the translation of interference matrices into precedences, in order to integrate operative constraints pre-

knowledge into ASP solving and reduce the research space, using product geometry.  

 

Moreover, this paper proposes the use of two forms of knowledge: 

- the assembly strategy and product geometry pre-knowledge description, that are described as 

precedence constraints in a first database, 

- the assembly operative constraints, which are described in a second specific database. 

These two databases allow the description of both product constraints and operative constraints, in order to 

match performable and acceptable assembly sequences. The description of product knowledge and operative 

knowledge into the same ASP tool, and the possibly to pre-fill corresponding databases before running ASP 

solving tool, should be performed by heterogeneous expert teams. Then, product designers, operative experts, 

process experts, logistics experts,… will share their needs through a common tool designed to ease discussion on 

ASP according to different points of view. 

 

This work provides new research opportunities. The proposed approach can be useful to many different ASP 

solving methods (systematic such as ascending and descending, genetic, memetic,…). However, in order to 

measure the efficiency improvement, it would be interesting to adapt it to some ASP algorithms and to run trials 

in order to make comparisons.  

The proposed approach can be easily applied to products with about 50 components. Research space can be 

easily contained by applying an easy-to-find assembly strategy. However, more complex products require more 

deliberation from the user, and some particular skills and know-how to define an adapted assembly strategy. 

Then, to solve such cases, it is first necessary to have a research to define what an assembly strategy has to be, 
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generally speaking. One answer would be to break the product down into hierarchized sub-assemblies and to run 

separately ASP system with each of them. Level number of this hierarchy may depend on product component 

number, function organization and relationship between components. 
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