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We use molecular dynamics simulations to study the thermal transport properties of a range of poor to

good thermal conductors by a method in which two portions are delimited and heated at two different

temperatures before the approach-to-equilibrium in the whole structure is monitored. The numerical

results are compared to the corresponding solution of the heat equation. Based on this comparison, the

observed exponential decay of the temperature difference is interpreted and used to extract the thermal

conductivity of homogeneous materials. The method is first applied to bulk silicon and an excellent

agreement with previous calculations is obtained. Finally, we predict the thermal conductivity of

germanium and a-quartz. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4815945]

I. INTRODUCTION

Nanoscale effects on heat transport are expected to have

a major role on heat dissipation in advanced semiconductor

architectures and to improve the efficiency of novel thermo-

electric materials. Measurements of heat transport are gener-

ally performed on a macroscopic scale, and give the global

response of a multi-material structure, including the various

interfaces and materials. Atomistic computer simulation of

heat transport in nanoscale materials and interfaces can help

to analyze the experiments, understand the size- and time-

scale limiting effects, and assess relevant macroscopic mod-

els.1 Modeling of heat transport at the atomic scale by

molecular dynamics (MD) simulations has followed up to

now two major approaches. The first one, called equilibrium

MD,2 is based on the quantification of the fluctuations of the

heat current in a system equilibrated at a given temperature.

A Green-Kubo or Einstein fluctuation relation is eventually

used to extract the thermal conductivity of the bulk material.

The second method, called non-equilibrium MD or direct

method,3 is based on establishing a steady-state heat current

between a heat source and a heat sink, and thermal bulk con-

ductivity or interface conductance are extracted, respec-

tively, from the slope or the discontinuity in the temperature

gradient.

In the present work, we develop a different approach,

called AEMD for “approach-to-equilibrium” MD. The sys-

tem is initially set out-of-equilibrium by delimiting a portion

heated at a different temperature from the rest. The

approach-to-equilibrium, i.e., the time evolution of the tem-

perature difference between the two parts, is then monitored.

It can be shown that, for most practical cases of interest, the

temperature decay is exponential. The equilibrium is typi-

cally reached in a few tenths to hundreds of ps, and conse-

quently, the computational cost is much reduced, compared

to both the computation of an autocorrelation function, as in

the equilibrium MD, and the establishing of a steady state

thermal current, as in the non-equilibrium MD. Moreover,

the AEMD method is based on the calculation of the average

temperature over substantially extended portions of the at-

omistic system, instead of requiring a local definition of tem-

perature over extremely small regions (<1 nm). Of course,

one could calculate such “local” values in the course of the

simulation, e.g., for the sake of comparison with other MD

or continuum methods. However, it is worth noting that the

local temperature definition is not necessary ingredient for

the implementation of the method. As a further advantage,

the absolute energy flux does not have to be known, thereby

reducing the numerical noise of the simulation.

It is worth noting that the AEMD presented here is not

completely a new method. Inspired by the experimental set

up of the laser-flash method to measure macroscopic thermal

diffusivity,4 techniques based on the approach-to-equilib-

rium were already implemented by some authors as a practi-

cal alternative to the more conventional methods, most often

in cases where computational convergence seemed difficult

to reach.5 However, the exponential temperature decay was

just observed as a result without providing a theoretical ba-

sis, moreover without investigating the advantages and limi-

tations of the method. In the present paper, we propose

explicit formulas to extract the bulk conductivity from the

decay time of the temperature difference. The equations are

derived from the analytical solution of macroscopic

Fourier’s heat equation. The limits of this assumption have

been addressed and taken into account in the application of

the formulas to the MD results. The AEMD method is

applied to a range of bulk materials having thermal conduc-

tivities ranging from good (silicon) to poor (a-quartz).

The present work is structured as follows: in Sec. II, we

describe the molecular dynamics calculation of the

approach-to-equilibrium. In Sec. III, we derive a relation

between the decay time of the exponential temperature dif-

ference and the bulk conductivity, by comparison with the

solution of the heat equation in the same conditions. In Sec.

IV, we first validate the method on the determination of the

conductivity of silicon. An excellent agreement with previ-

ous calculations is found. Afterwards we apply the method

to predict the conductivity of poorer thermal conductors,

namely germanium and a-quartz, for which corresponding

numerical evaluations are not available.a)Electronic mail: evelyne.lampin@univ-lille1.fr
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II. APPROACH-TO-EQUILIBRIUM MOLECULAR
DYNAMICS

The principle of AEMD is to set an atomistic system out-

of-equilibrium by imposing a temperature difference between

two parts in contact; subsequently, the system is let evolve to

its equilibrium, i.e., the temperature difference between the

different parts of the system going to zero. In a typical case, a

box is constructed to induce a preferential energy flow in the

z-direction (see Fig. 1). Periodic boundary conditions are used

in the three directions. Atoms in the interval [z¼ 0,Ls] are

heated up to equilibrate at a temperature T1, while atoms in

the interval [Ls,Lz] are heated to the temperature T2.

Afterwards the temperature controls are released, in order to

create a directed energy flow that will bring the system to its

equilibrium by a microcanonical, constant-{NVE} MD simu-

lation. The initial equilibration of the two halves of the box

(Ls¼ Lz/2) respectively at T1¼ 600 K and T2¼ 400 K, is per-

formed during 10 000 steps of 1 fs using the Nos�e-Hoover

thermostat.6 This setting of the parameters leads to a target

equilibrium temperature Teq¼ 500 K. Si–Si and Ge–Ge intera-

tomic forces are described using Tersoff potential,7 the Si-O

interactions in a-quartz are described using the BKS potential8

within a modified version of the DL_POLY9 code.

In classical MD simulations, all the vibrational degrees

of freedom are excited at any temperature, i.e., energy is dis-

tributed according to the Maxwell-Boltzmann rather than the

Bose-Einstein distribution. Therefore, MD simulations are

meaningful only around or above the Debye temperature.

This consideration motivates our choice of the target equilib-

rium temperature of 500 K (the Debye temperature being

equal to 625 K for cSi (Ref. 10)).

Figure 2 gives an example of the temperature profiles at

three subsequent snapshots of the MD simulation for the case

of a crystalline silicon (cSi) box of dimensions 16a0� 16a0

� 1100a0¼ 87� 87� 5993 Å3 (a0¼ 5.45 Å is the lattice pa-

rameter at the final temperature) containing 2 252 800 atoms.

The square temperature profile corresponding to the initial

equilibration of each block at distinct temperatures is labeled

“0 ps” (red curve in Fig. 2). After 100 ps (green curve) the

temperature profile becomes sinusoidal, and its amplitude

decreases with time.

The temperature difference DT¼T1–T2 between the two

blocks is calculated every 50 steps and plotted in Figure 3.

The time evolution of the DT(t) curve during the approach-to-

equilibrium, DT!0 K, can be fitted by a bi-exponential curve

DT ¼ c1expð�t=sLongÞ þ c2expð�t=sTransÞ; (1)

where c1¼ 183 K, c2¼ 14 K, sLong¼ 225ps, sTrans¼ 23ps;

the fit is also given in Fig. 3, light blue curve. As a general

finding, the approach-to-equilibrium is always dominated by

one single exponential over long times, together with a tran-

sient, short-lived contribution. In Sec. III, we provide an ex-

planation for such multi–exponential behavior, and establish

a way to extract the bulk conductivity from the DT(t) curve.

III. TEMPERATURE EQUILIBRATION IN A BULK
MATERIAL

In the case of unidirectional (or 1-dimensional) heat

transport, the heat equation governing the time and space

evolution of the temperature, T(t,z), derived from the Fourier

law and from energy conservation, is

@Tðt; zÞ
@t

¼ a
@2Tðt; zÞ
@z2

; (2)

where a ¼ j=CVq is the thermal diffusivity (m2 s�1), j is

the thermal conductivity (W K�1 m�1), CV is the heat capacity

(J K�1), and q is the number density (m�3). It is assumed that

these quantities do not vary with time and space since we con-

sider an homogeneous material, while their dependence on

temperature is presumed to be slow over the temperature range

considered, so as to be replaced by an average value. A solution

of this equation can be obtained using separation of variables

Tðt; zÞ ¼ hðtÞ:fðzÞ: (3)

In the particular case of a bulk system with periodic bound-

ary conditions the temperature and flux are identical at z¼ 0

FIG. 1. An elongated box of length Lz

and cross section S is periodised in the

3 directions. The atoms in the range

z � [0;Ls] are heated to T1, the atoms

in the range [Ls;Lz] are heated to T2.

FIG. 2. Temperature profiles during

AEMD at the beginning of {NVE}

(red), after 100 ps (green) and 200ps

(blue), and sine fit.
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and z¼Lz. The time-dependent part of the solution is there-

fore hðtÞ ¼ h0 � expð�t=snÞ with

sn ¼
1

4p2n2

L2
z

a
¼ 1

4p2n2

Lz

S

CV

j
; (4)

S being the transverse section with respect to the heat flow

direction.

The complete solution is then given by

Tðt; zÞ ¼ A0

2
þ
X1
n¼1

ðAncosðqnzÞ þ BnsinðqnzÞÞ e�t=sn ; (5)

where qn ¼ 2pn=Lz, n being an integer and

An ¼
2

LZ

ðLZ

0

Tð0; zÞcosðqnzÞdz

Bn ¼
2

LZ

ðLZ

0

Tð0; zÞsinðqnzÞdz

8>>>>>>><
>>>>>>>:

(6)

correspond to the coefficients of the Fourier series of the ini-

tial condition. In the particular case where Ls¼ Lz/2,

T(0,z)¼T1 for 0< z< Ls and T(0,z)¼T2 for Ls< z< Lz, all

the An and the Bn with n even are null, and the solution reads

Tðt; zÞ ¼ T1 þ T2

2
þ
X1
m¼1

2ðT1 � T2Þ
ð2mþ 1Þp sin

2pð2mþ 1Þ
Lz

z

� �

� e�ð2mþ1Þ2t=s1 : (7)

The corresponding expression of the average temperature

difference between blocks DT(t) (plotted in Fig. 3) is

DTðtÞ ¼ 1

Lz=2

ðLz=2

0

Tðt; zÞdz� 1

Lz=2

ðLz

Lz=2

Tðt; zÞdz

¼
X1
m¼0

8ðT1 � T2Þ
ð2mþ 1Þ2p2

e�ð2mþ1Þ2t=s1 : (8)

The general solution is therefore a multi-exponential

function of time, with a dominant contribution of the first ex-

ponential decay time s1 (m¼ 0). The second exponential in

the series has a decay time s2¼ s1/9 and an amplitude 9

times smaller. Therefore, the terms for m> 1 are expected to

have but a minor contribution in the approach to equilibrium,

except during the transient since the terms for m> 1 enable

the transition from the initial square profile to a sinusoidal

one. Indeed, the temperature profile along z calculated by

MD was already shown to have a sinusoidal form after 100

ps (Fig. 2).

During the transient, non-linear effects may also origi-

nate from strong gradients at the temperature step and make

the solution deviate from Eq. (8). Nevertheless, we always

extracted the thermal conductivity using the temperature

decay at long times where temperature gradients are largely

reduced. In these conditions, non-linear effects can be con-

sidered as negligible. This hypothesis has been verified by

testing the dependence of the decay time on the fit range. A

good stability of the results has been found starting the fit

when DT(t)<DT(0)/2. The above considerations on transient

can also explain the small discrepancy between the s1/s2 ra-

tio predicted by the heat equation (s1/s2¼ 9) and the corre-

sponding ratio calculated by MD (sLong/sTrans¼ 9.8, Eq. (1)).

Identifying sLong with s1 (hereafter simply labeled s),

the bulk thermal conductivity can therefore be obtained from

the relation in Eq. (4)

j ¼ 1

4p2

LzCV

S

1

s
: (9)

IV. BULK THERMAL CONDUCTIVITY OF cSI, cGE, AND
a-quartz

We performed AEMD simulations with the method

described in Sec. II for various bulk crystalline systems rang-

ing from good to poor thermal conductors: cSi, cGe, and a-

quartz, and for system lengths up to 1.2 lm. Various cross

sections ranging from 4 � 4 to 16 � 16 (units of lattice pa-

rameter at the target temperature) were tested. Although the

decay time already converges to a constant value for the

smaller cross section (4 � 4), we used a higher section of 16

� 16 that presents a reduced numerical noise on the DT(t)
curve, thereby permitting a higher precision in the determi-

nation of the decay time.

On the other hand, the heat capacity CV was computed

for each material following the approach of McGaughey and

Kaviany.11 The total energy E of a 8� 8� 8 cubic cell is

computed at T¼ 490, 495, 500, 505, and 510 K in the

{NVT} ensemble, and averaged over 60 ps and 10 different

initial conditions. The linear fit of E(T) gives a specific heat

per degree of freedom, CV/3NkB, equal to 1.014 6 0.013 for

cSi, 1.024 6 0.021 for cGe, and 1.196 6 0.011 for a-quartz

at T¼ 500 K.

First, the values of s and CV are obtained and combined

according to Eq. (9) in order to calculate j for silicon. The

results of these calculations are summarized in Fig. 4. The

uncertainty was systematically determined for each size fol-

lowing Zhou et al.12

FIG. 3. Temperature difference between the two blocks versus time for the

same system studied in Fig. 2 and its fits by Eq. (1).
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Results in Fig. 4 show a strong dependency of the con-

ductivity on the system length. Such a behavior is expected

due to the small size of the simulation box compared to

some of the phonon mean free paths (MFP) of the infinite

system. The convergence length issue was already raised by

Sellan et al.,13 who determined phonon MFPs greater than

10 lm in silicon at 500 K, such phonons contributing about

30% of the overall conductivity. Therefore, we have extrapo-

lated the asymptotic conductivity by means of the

Matthiessen’s rule3

1

j
¼ 1

j1
1þ k

Lz

� �
; (10)

with j1 the asymptotic value of the thermal conductivity,

and k a length related to the phonon MFP.

The computational effort required by the present AEMD

technique is drastically reduced compared to other numerical

methods. Once the initial square temperature profile is equili-

brated, the {NVE} MD simulation is performed during 100 ps

to 1 ns, depending on the system size, up to attaining an accu-

racy for the asymptotic decay time of the order of a few per-

cents. Therefore, bigger systems could be studied, of lengths

up to 1.2 lm (about 4.5 �106 of atoms with the 16 � 16 cross

section). Such sizes are about 2 times longer and 10 times

wider compared to previous calculations by Abs da Cruz

et al.,14 and 2 to 4 times longer and 4 times wider compared

to Howell.15 Nevertheless, due to computer limitations, the

numerical improvement was not sufficient to attain the macro-

scopic limit for silicon. The extrapolation based on Eq. (10)

gives j1¼ 154 6 6 W K�1m�1 and k¼ 502 6 34 nm.

Abs da Cruz et al.,14 and Howell15 already evidenced

the influence of the interatomic potential on the value of the

thermal bulk conductivity; therefore, we chose to compare

our results only to calculations performed with the same

(Tersoff) potential. The direct MD method is used by Abs da

Cruz et al.14 with a result of j1¼ 125 6 6 W K�1m�1 and

by Howell15 with a result of j1¼ 155 6 4 W K�1m�1. The

difference is attributed by Howell15 to an underestimation of

the error bars in Ref. 14. We did not find any results pub-

lished using the Tersoff potential with the Green-Kubo

method at a temperature of 500 K. Our results are in total

agreement with the results by Howell. This agreement vali-

dates AEMD as a method to extract thermal conductivities.

The theoretical determination keeps higher than the experi-

mental value for natural crystalline Si (Ref. 16) equal to

j1¼ 80 W K�1m�1. We believe that the role of the intera-

tomic potential in this discrepancy is crucial. As a matter of

fact, interatomic potentials like Tersoff were developed to

accurately describe the linear elastic behavior of silicon but

the non-linearity of the mechanical response, which should

be extremely accurate to give a good estimate of the thermal

conductivity, was not explicitly addressed in the design of

the potential. A known consequence is the poor quality of

the Gr€uneisen parameters19 for Tersoff as well as for other

potentials like Stillinger-Weber.20

We further applied the AEMD method to other materials

having significantly different thermal conductivity, namely

cGe and a-quartz. The size dependence of the thermal con-

ductivity in these materials at the same temperature (500 K)

is summarized in Fig. 5 together with the previous results for

cSi. The extrapolation according to Eq. (10) gives

j1¼ 51 6 2 W K�1m�1 and k¼ 214 6 15 nm for cGe and

j1¼ 10.8 6 0.3 W K�1m�1, and k¼ 24 6 3 nm for a-quartz

along the [001] direction. For these two materials, we could

not find in the literature any calculation performed at this

temperature. The experiments give a value of j1¼ 34 W

K�1m�1 for natural, crystalline Ge;16 experimental data for

isotopically pure Ge (Ref. 17) show only a small increase, of

about 10%, given the relatively low Debye temperature of

cGe (360 K (Ref. 10)). For a-quartz, Pohl et al.18 found a

value of 6.5 W K�1m�1 at 500 K. In these two cases, the cal-

culation overestimates the value of the thermal conductivity,

presumably for the same reason than for cSi, i.e., because of

the inability of the interatomic potentials to finely render

anharmonicity. Nevertheless, the decrease in thermal con-

ductivity from the cSi to cGe and from cGe to a-quartz is

obtained by the calculation, with a ratio equal to 3.0 for

j1
cSi/j1

cGe and 4.8 for j1
cGe/j1

a�quartz to compare with

the experiments equal to 2.3 and 5.2, respectively. The

decrease of the length k from cSi to a-quartz is also qualita-

tively consistent with the decrease of the maximum phonon

mean free paths in less good conductors.

FIG. 4. System size dependence of 1/j on 1/LZ for cSi. The straight line is a

fit with Eq. (10).

FIG. 5. System size dependence of j on LZ for cSi, cGe, and a-quartz. The

lines are fits with Eq. (10).

033525-4 Lampin et al. J. Appl. Phys. 114, 033525 (2013)



V. CONCLUSIONS

The approach-to-equilibrium MD method (AEMD) is

developed, and its connection to the Fourier macroscopic

heat equation is explicitly derived. The exponential behavior

of the temperature difference, observed between parts of a

material initially exposed to a temperature difference, is

explained, and the conditions under which a single exponen-

tial behavior at long times with a time constant s is observed

are spelled out. In the AEMD method, the temperature is cal-

culated as the average over large ensembles of atoms, and

the time constant s is extracted by an exponential fit of DT(t)
over several decades. Once s is obtained, an explicit expres-

sion for the thermal conductivity is derived.

The AEMD approach was applied to cSi. It was shown

that the convergence of the conductivity to its asymptotic,

size-independent value is improved thanks to the reduced

computational cost of the approach. Nevertheless, bulk con-

ductivity in materials with exceedingly long phonon MFPs is

out-of-reach even with the present method, but an extrapola-

tion scheme results in an excellent agreement with the results

obtained with the direct method and the same interatomic

potential. The method is further used to determine the ther-

mal conductivity of less good conductors, cGe and a-quartz.

The calculated values systematically overestimate the meas-

ured ones, a shortcoming common to other MD methods that

must be thought as tools to compare materials or system geo-

metries such as bulk, planes, nanowires, or structuration such

as holes rather than quantitative predictors. At least part of

the discrepancy between MD calculations and experiments is

attributed to the limitations of the interatomic potentials, typ-

ically not accurate enough to finely predict the anharmonic-

ity necessary to describe multi-phonon scattering.

Beyond the determination of bulk conductivity, an

AEMD approach has been previously applied to the study of

interfaces under the lumped capacitance approximation,21

but it can be easily extended to more general cases. In this

perspective, since the AEMD method relies on monitoring

just “macroscopic” temperature differences between parts of

a system, it is ideally suited for studying atomic-scale sys-

tems including complex features, such as nanowires and

other discrete nanostructures, disordered or amorphous

layers, interfaces with nanoscale roughness, and so on.

Therefore, we believe that AEMD can be applied to the

study of thermal interface resistances, and could be a fast-

computing alternative to study thermal properties in bulk,

nanoscale, and interface materials.
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