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I like to think that no cause is noble if it does not serve mankind as a whole.

— Confucius
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Abstract

Thanks to Victor Veselago for his hypothesis of negative index of refraction, metamaterials – engineered
composites – can be designed to have properties difficult or impossible to find in nature: they can have both
electrical permitivity (ǫ) and magnetic permeability (µ) simultaneously negative. The metamaterials – henceforth
negative-index materials (NIMs) – owe their properties to subwavelength structure rather than to their chemical
composition. The tailored electromagnetic response of the NIMs has had a dramatic impact on the classical
optics: they are becoming known to have changed many basic notions related with the electromagnetism. The
present article is focused on gathering and reviewing the fundamental characteristics of plasmon propagation in
the coaxial cables fabricated of the right-handed medium (RHM) [with ǫ > 0, µ > 0] and the left-handed medium
(LHM) [with ǫ < 0, µ < 0] in alternate shells starting from the innermost cable. Such structures as conceived
here may pave the way to some interesting effects in relation to, e.g., the optical science exploiting the cylindrical
symmetry of the coaxial waveguides that make it possible to perform all major functions of an optical fiber
communication system in which the light is born, manipulated, and transmitted without ever leaving the fiber
environment, with precise control over the polarization rotation and pulse broadening. The review also covers
briefly the nomenclature, classification, potential applications, and the limitations (related, e.g., to the inherent
losses) of the NIMs and their impact on the classical electrodynamics, in general, and in designing the cloaking
devices, in particular. Recent surge in efforts on invisibility and the cloaking devices seems to have spoiled the
researchers worldwide: proposals include not only a way to hide an object without having to wrap the cloak
around it, but also to replace a given object with another, thus adding to the deception even further! All this is
attributed as much to the fundamental as to the practical advances made in the fabrication and characterization
of NIMs. The report concludes addressing briefly the anticipated implications of plasmon observation in the
multicoaxial cables and suggesting future dimensions worth adding to the problem. The background provided is
believed to make less formidable the task of future writers of reviews in this field.
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Keywords: Electromagnetism; Metamaterials; Negative Index; Coaxial cables; Surface plasmons; Invisibility; Cloaking

1

http://arxiv.org/abs/1306.3563v1


I. A KIND OF INTRODUCTION

The civilization of the ancient Greeks, Hindus, and Romans has been immensely influential on the

art, education, architecture, language, politics, philosophy, science, and technology of the modern world:

from the surviving fragments of classical antiquity until the Renaissance in Western Europe. While

descriptions of disciplined empirical scientific methods have been employed since the Middle Ages, the

dawn of modern science is generally traced back to the early modern period during what is known as

the Scientific Revolution of the 16th and 17th centuries. From the Middle Ages to the Enlightenment,

the preferred term for the study of nature among English speakers was natural philosophy. The word

scientist, meant to refer to a systematically working natural philosopher (as opposed to an intuitive or

empirically minded one), was coined in 1833 by William Whewell.

As such, people have been curious about the sciences for millennia, albeit the term physics was only

coined in the 19th century. In 1850 Cardinal Newman defined it to be: that family of sciences which

is concerned with the sensible world, with the phenomena which we see, hear, and touch; it is the

philosophy of matter. Gradually, physicists have narrowed their focus over the past century, perhaps

because they have realized that the span of knowledge has been growing so great and so fast that few,

if any, can encompass it all. Nevertheless, if there is any subject that can still claim to lie at the heart

of knowledge of the natural world, it is physics.

The world’s renowned savants – from the past and present – believe that the transformation of

the society has produced, to be sure, many beautiful ruins, but not a better society. The reason [for

such disappointment(s)] obviously being the man-made disaster in Hiroshima and Nagasaki during the

World War II! The physics and particularly the solid state physics that has an exceptionally poignant

creation myth is the key-stone behind such a contention.

The solid state physics – that has changed its name into condensed matter physics to demonstrate

its momentum – can safely be regarded as the discipline of -ons. These -ons include the real particles

such as electron, quanta of collective excitations such as plasmon, and dressed particles such as polaron.

In the language of the quantum mechanics, these -ons are characterized either as bosons or as fermions

– the former obey the Bose-Einstein statistics whereas the latter the Fermi-Dirac statistics. The name

and the underlying concept associated with the -ons (anion, boson, electron, exciton, fermion, helicon,

hoctron, magnon, neutron, phonon, photon, plasmon, plasmeron, polariton, polaron, proton, roton,

skyrmion, ...) were, often, the work of separate people, far removed in time. These -ons are to the

wave-propagation characteristics as are the steel girders and concrete to the modern structures.

Our interest here is in the (surface) plasmon: the collective excitation of electron density bound to

the surface. The free electron gas in metals and electron-hole gas in semiconductors make up the solid
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state plasmas. Depending upon the wavelength of the probe, the solid state plasma can reveal two

very different modes of behavior: single-particle excitations and collective (plasmon) excitations. The

two domains of behavior are distinguished by the critical length (λc) called Debye (screening) length

in classical (quantum) plasmas. For λ > λc (λ < λc) the plasma responds collectively (single-particle-

like). The surface plasmon is a well-defined excitation that can exist on an interface that separates

a surface-wave active medium (with ǫ < 0) from a surface-wave inactive (with ǫ > 0) medium. It is

characterized by the electromagnetic fields that are localized at and decay exponentially away from the

interfaces. In a conventional system, and under the normal physical conditions, an interface supports

one and only one confined mode associated with either p-polarization or s-polarization [1-16].

 

FIG. 1: (Color online) This picture shows the four possible combinations of ±ǫ, ±µ . In each quadrant new
phenomena are observed. For example when ǫ < 0 surface plasmons are observed. Therefore it is as if a new door
has been opened into third quadrant electromagnetism. One of the phenomena seen here is negative refraction,
but there are other remarkable effects to be found such as subwavelength imaging. (After J.B. Pendry, Ref. 121).

It is now widely known that mid 1970s had begun to offer the condensed matter physicists with quite

new and exciting venues to explore: the semiconducting quantum structures with reduced dimensions

such as quantum wells, quantum wires, quantum dots, and their periodic counterparts. The tremendous

research interest in the quantum phenomena associated with these systems was obviously spurred by

the discovery of quantum Hall effects – both integral [17] and fractional [18]. While this momentum

still seems to be growing [19], the classical phenomena emerged with the proposal of the photonic

(and phononic) crystals [20-22] and, more recently, the negative-index metamaterials (NIMs) have been

drawing considerable attention of numerous research groups worldwide. Conceived and hypothesized

some four decades ago by Veselago [23], theorized through the proposal of superlens by Pendry [24],

and first practically realized by Smith and co-workers [25], an artificially designed negative-index meta-

material – exhibiting simultaneously negative electrical permittivity ǫ(ω) and magnetic permeability
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µ(ω) and hence negative refractive index n = ±√
ǫµ [see Fig. 1] – seems to have changed many basic

notions of the traditional (or conventional) electromagnetism.
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FIG. 2: (Color online) A material with negative refractive index (n < 0) bends rays of incident light to the wrong
side of the normal (a). Meanwhile the wave vector points in the opposite direction to the energy flow because the
group velocity is negative (b). In the conventional system with (n > 0) the Cherenkov radiation is emitted from
the cone in front of the charged particle (c), whereas in the NIMs (n < 0) it is emitted from the cone behind the
charged particle (d).

A superlens (or perfect lens) is a lens which is made up of NIMs to go beyond the diffraction

limit. The diffraction limit is an inherent barrier due, in part, to the imperfections in the lenses or

misalignment in the conventional optical devices. There is a fundamental maximum to the resolution

of any optical system which is due to the diffraction limit. An optical system with the ability to

produce images with angular resolution as good as the device’s theoretical limit is said to suffer from

the diffraction limit. The observation of sub-wavelength structures with microscopes is a hard nut to

crack because of the (Abbe) diffraction limit. In 1873, Ernst Abbe found that light with wavelength

λ traveling in a medium with refractive index n and converging to a spot with angle θ will make a

spot with diameter d = λ/[2n sin(θ)]. The factor n sin(θ) in the denominator is called the numerical

aperture and can reach about 1.25 in modern optics, hence the Abbe limit turns out to be d ≈ λ/2. The

green light with λ ≈ 500 nm yields the Abbe limit close to 200 nm, which is large compared to most

nanostructures or biological cells which have sizes on the order of 1 µm. In 2000, John Pendry proposed

a superlens to be fabricated of metamaterial that was shown to compensate for the wave decay and to

reconstruct images in the near field [24]. While theory and simulations demonstrate that the superlens

and hyperlens can, in principle, work, engineering obstacles need to be overcome.
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FIG. 3: (Color online) (a) Refraction of light by a conventional dielectric prism. (b) Refraction of light by the
metamaterial prism proposed in this Letter. Notice that the palette of refracted colors is reversed. (c) and (d)
Perspective views of the metamaterial prism. The metamaterial is formed by nonconnected crossed metallic wires
that lie in planes normal to the y direction. (After M.G. Silveirinha, Ref. 58).

A NIM forms a left-handed medium (LHM), with the energy flow E × H being opposite to the

direction of propagation, for which it has been argued that such phenomena as Snells law, Doppler

effect, and Cherenkov radiation are inverted. What actually does that mean? Let us take, for example,

Snells law [n1 sin (θ1)= n2 sin (θ2)]: (i) in the conventional system, light is bent towards the normal

with n2 > n1 and θ2 < θ1 [see Fig. 2 (a)], but (ii) in the left-handed metamaterials, (with n2 < 0), light

is bent on the same side of the normal with sin(θ2) < 0 [see Fig. 2 (a)]. The time-averaged Poynting

vector is antiparallel to phase velocity. However, for waves (energy) to propagate, a -µ must be paired

with a -ǫ in order to satisfy the wave number dependence on the material parameters k = ω
√
ǫµ [see

Fig. 2 (b)]. Cherenkov radiation is emitted when a charged particle [such as an electron] travels

through a dielectric (electrically polarizable) medium with a speed greater than that at which light

would otherwise propagate in the same medium. As the charged particle travels, it disrupts the local

electromagnetic field in the medium thereby polarizing the atoms in the dielectric. Photons are emitted

as an insulator’s electrons restore themselves to the ground state after the disruption has passed. A

reverse Cherenkov effect can be experienced using the NIMs: this means that when a charged particle

passes through a (metamaterial) medium at a speed greater than the speed of light in that medium,

that particle will radiate from a cone behind itself [see Fig. 2 (d)], rather than in front of it (as is the

case in the conventional materials) [see Fig. 2 (c)].

The subject of metamaterials, or (artificially) engineered composites, has gained un unexpected

momentum and the research interest seems to have focused not only on the photonic crystals with

metamaterial components [26-33] but also on the single- and multi-layered planar structures [34-43]
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FIG. 4: (Color online) (Top panel) A hot desert surface causes a refractive index gradient in the air above,
causing rays of light to be refracted continuously to form a reflection in the road and hence the appearance of
water: mirage. (Bottom panel) Similarly, a graded refractive index cloak can guide light around a hidden object
so that an observer sees only that which is behind the cloak. (After J.B. Pendry, Ref. 67).

as well as on the (usually) single cylindrical geometries [44-55]. The interesting phenomena emerging

from the geometries involving metamaterials include the slowing, trapping, and releasing of the light

signals [56], the proposal of the cloaking devices [57], and the extraordinary refraction of light [58]

(see Fig. 3). The early development of the subject can be found in interesting review articles by

Pendry [59], by Boardman [60], and by Shalaev [61]. Cloaking is an illusion like a mirage: you steer

light around an object and therefore you never see the object [see Fig. 4]. The practical interest

in devising the cloaking devices is no longer confined to the electromagnetic waves [62-72], but has

also imbued the similar quest related with the acoustic waves [73-85] and the plasmonic waves [86-

98]. The cloakmania has gone to the extent that some scientists think that all the attention paid to

cloaking phenomenon distracts us from the technology’s true potential: anything that makes use of the

electromagnetic spectrum might be improved or altered! The tailored response of the metamaterials has

had a dramatic impact on engineering, material science, optics, and physics communities alike, because

they can offer electromagnetic properties that are difficult or impossible to achieve with naturally

occurring (conventional) materials.

The recent research interest in surface plasmon optics has been invigorated by the experiment

performed on the transmission of light through sub-wavelength holes in metal films [99] (see Fig. 5).

This experiment has spurred numerous theoretical [100-104] as well experimental [105-110] works on

similar structured surfaces: either perforated with holes, slits, dimples, or decorated with grooves.

It has been argued that resonant excitation of surface plasmons creates huge electric fields at the
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FIG. 5: (Color online) The model system: a × a square holes arranged on d × d lattice are cut into the surface
of a perfect conductor. The theory predicts localized surface plasmon modes induced by the resultant structure.
(After J.B. Pendry et al., Ref. 103).

surface that force the light through the holes, yielding very high transmission coefficients. The idea of

tailoring the topography of a perfect conductor to support the surface waves resembling the behavior of

surface plasmons at optical frequencies was discussed in the context of a surface with an array of two-

dimensional holes [104]. The experimental verification of this proposal has recently been reported [111-

113] on the structured metamaterial surfaces which support surface plasmons at microwave frequencies.

Because of their mimicking characteristics, these geometry-controlled surface waves were named spoof

surface plasmons [see Fig.6].

Here, it would be interesting to shed some light on how the plasma frequency is lowered in the

metamaterials structured periodically with wire loops or coils [see, e.g., Fig. 7]. Some time ago, Pendry

and coworkers [114] argued that any restoring force acting on the electrons will not only have to work

against the rest mass of the electrons, but also against the self-inductance of such wire structures. This

effect is of paramount importance in these wire structures. They went on arguing that the inductance of

a thin wire diverges logarithmically with wire radius and confining the electrons to thin wires enhances

their effective mass by orders of magnitude. In other simpler format [105] one can, from Ohm’s law

(j = σElocal), determine the effective conductivity for the inductive wire , and calculate an effective local

dielectric function analogous to the Drude dielectric function, but with plasma frequency directly related

to the inductance (L) of the unit cell (of length l) and wire spacing d according to ωp =
√

l/(d2Lǫ0).

Thus reducing the wire radius enhances the inductance which thereby lowers the plasma frequency of

the system. Such estimates led them to predict the plasma frequency on the order of ∼ 7 to 8 GHz.
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FIG. 6: (Color online) The dispersion relation for the spoof surface plasmons on a structured surface. The
asymptotes of the light line at low frequencies and the plasma frequency at large values of k‖ are shown. Note
that at large k‖ the frequency of the mode approaches ωp, in contrast to an isotropic plasma where the asymptote

is ωp/
√
2. (After J.B. Pendry et al., Ref. 103).

The purpose of this article is to review the recent research efforts dedicated to investigate the surface

plasmon propagation in the coaxial cables fabricated of metamaterials interlaced with conventional

dielectrics using the Green-function (or response function) theory in the absence of an applied magnetic

field [115-116]. Theoretical framework of the Green function theory has already been successfully tried

and tested for the conventional (semiconducting) coaxial cables both with and without an applied

magnetic field [117-119]. To be explicit, we discuss the propagation characteristics of surface plasmons

in coaxial cables made up of right-handed medium (RHM) [with ǫ > 0, µ > 0] and the left-handed

medium (LHM) [with ǫ(ω) < 0, µ(ω) < 0] in alternate shells starting from the innermost cable. In

other words, we visualize a cylindrical analogue of a one-dimensional planar superlattice structure bent

round until two ends of each layer coincide to form a multicoaxial cylindrical geometry. We prefer to

name such a resultant structure as multicoaxial (metamaterial) cables.

Such structures as conceived here may pave the way to some interesting effects in relation to, for

example, the optical science exploiting the cylindrical symmetry of the coaxial waveguides that make

it possible to perform all major functions of an optical fiber communication system in which the light

is born, manipulated, and transmitted without ever leaving the fiber environment, with precise control

over the polarization rotation and pulse broadening [120]. The cylindrical geometries are already known

to have generated particular interest for their usefulness not just as electromagnetic waveguides, but

also as atom guides, where the guiding mechanism is governed mainly by the excited cavity modes. It

is envisioned that the understanding of atom guides at such a small scale would lead to much desirable
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FIG. 7: (Color online) Top panels: Examples of metamaterials used in the microwave experiments. The unit
cells are of the order of 5mm across. Bottom panel: The Boeing cube– a structure designed for the negative
refractive index in the GHz range. (After J.B. Pendry and D.R. Smith, Ref. 59).

advances in atom lithography, which in turn should facilitate atomic physics research [121].

There is one trait that many theoretical physicists share with philosophers. In both cases the interest

in a field of study seems to vary in inverse proportion to how much one must learn to qualify as an

expert. There is an important core of truth to the fact that “expertness is what survives when what

has been learnt has been forgotten”. True learning leading someone to become an expert is a long-term

project – ideally, life-long. However, present day learning of any subfield of science, particularly the

vastly growing physics, motivated to gain mastery is inconceivably precarious for survival in the existing

competitive world of science. In this relatively short space we shall try to review briefly what we have

been able to learn from theoretically motivated analytical diagnoses of the surface plasmon propagation

in the coaxial metamaterial cables in the cylindrical symmetry. We appeal to the interested readers to

digest what they can and blame the authors for the rest.

The rest of the paper is organized as follows. In Sec. II, we discuss some basic notions of the

theoretical framework employed to derive exact inverse response functions within the framework of

Green function theory. In Sec. III, we report several interesting illustrative examples on the plasmon

dispersion and density of states in a variety of experimentally feasible situations for single-, double-, and

multiple-interface coaxial cables. In Sec. IV, we list some potential technological applications of the

metamaterials in diverse shapes, sizes, and dimensions. Finally, we conclude our findings and suggest

some interesting dimensions worth adding to the problem in Sec. V.
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II. STRATEGY OF THE GREEN-FUNCTION THEORY

Recently, we have embarked on a systematic investigation of the surface plasmon excitations in

the coaxial cylindrical shells made up of left-handed metamaterials interlaced with right-handed me-

dia within the framework of the Green-function (or response function) theory (GFT) [115-116]. The

knowledge of such excitations is fundamental to the understanding of the plasmon optics in the system.

We consider the cross-section of these coaxial cables to be much larger than the de-Broglie wavelength,

so as to neglect the quantum size effects. We include the retardation effects but neglect, in general, the

damping effects and hence ignore the absorption. In the state-of-the-art high quality systems, this is

deemed to be quite a reasonable approximation [25]. Thus we study the plasmon excitations in a neat

and clean system comprised of coaxial metamaterial cables [see Fig. 8]. While it is always important to

have a paper as much self-contained as possible, we think that reiterating all the mathematical details

from Ref. [115] would make it an unwanted repetition. That is why we choose to give here only a

sketch of the strategy of working within the GFT and refer the reader for the details to Ref. 115.
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X
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[A] [B] [C]
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FIG. 8: (Color online) Schematics of the concept of three perturbations: [A], [B], and [C]. The blank (shaded)
region refers to the material medium (black box) in the system. The sum of the first two perturbations defines a
metamaterial (dielectric) cylinder embedded in a dielectric (metamaterial) and the sum of all three perturbations
specifies a metamaterial (dielectric) shell surrounded by two unidentical dielectrics (metamaterials). Here Rj is
the radius and X ≡ ǫ(ω) or µ(ω) for a specific medium. (After Kushwaha and Djafari-Rouhani, Ref. 115).

We consider the plasma waves propagating with an angular frequency ω and the wave vector ~k [‖ ẑ

in a medium with cylindrical symmetry (ρ, θ, z). The plasma waves will be throughout assumed to

observe the spatial localization in the plane perpendicular to the axis of the cylinder. Note that the

situation here is totally different from the Cartesian co-ordinate system in which one can readily define
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a sagittal plane (i.e., the plane defined by the wave vector and the normal to the surface/interface)

and hence isolate the transverse magnetic (TM) and the transverse electric (TE) modes, at least in the

absence of an applied magnetic field. The only exception to this notion is the Voigt geometry (with a

magnetic field parallel to the surface/interface and perpendicular to the propagation vector) that can

still (i.e., even in the presence of an applied magnetic field) allow the separation of the TM and TE

modes (see, for details, Ref. 19). In the literature, the TM and the TE modes are also referred to as

p-polarization and s-polarization, respectively.

It is noteworthy that the roots of our Green-function theory lie virtually in the interface-response

theory (IRT) [123] generalized to be applicable to such quasi-one dimensional (Q1D) systems as in-

vestigated here [117]. Ever since its inception, the IRT has been extensively applied to study various

quasi-particle excitations such as phonons, plasmons, magnons, ...etc. in the heterostructures and su-

perlattices [see, e.g. Ref. 19]. Lately, it has also been successfully applied to study the magnonic,

phononic and photonic band-gap crystals.

Before we proceed further, it is crucial to define a characteristic feature of the IRT: the black-box

surface (BBS). By BBS we mean an entirely opaque surface through which electromagnetic fields cannot

propagate. The idea of introducing the BBS in the IRT was conceived with two prominent advantages

over the contemporary semiclassical approaches in mind. First, it allows one to disconnect completely

from the extra mathematical world and hence to confine only within the truly building block of the

system concerned. Second, it provides a great opportunity to get rid of using the boundary conditions

one is so routinely accustomed to in dealing with the inhomogeneous systems. What results is a number

of simplified and compact forms of the response functions which one only needs to sum up in order

to proceed further for studying the desired physical property of the resultant system. Conceptually,

this is achieved by imposing that c (the speed of light in vacuum), ǫ (the electric permittivity), and µ

(the magnetic permeability) vanish inside a specific region. In order to create a medium bounded by

a black-box surface, we assume that Eqs. (2.5) − (2.8) [in Ref. 115] are only valid for either ρ > R or

ρ < R, with R as the radius of the only cylinder in question by now. Then we multiply the right-hand

sides of Eqs. (2.5) − (2.8) [in Ref. 115] by the step function θ(ρ−R) or θ(R− ρ), as the case may be.

It should be noted first, that all the quantities referred to earlier or to be referred in what follows will

carry a subscript j when referring to a given perturbative operation. The first and the foremost point is

to create a black-box surface in order to confine within the building block of the system and disconnect

altogether from the rest of the mathematical world. For this purpose, we assume a step function θ(...)

specifying a given physical situation in front of field components such as given in Eqs. (2.5) − (2.8)

in Ref. 115, for example. This then leads us to define a cleavage operator Ṽj(...), which is, in fact, a

2n × 2n matrix, where n is the number of interfaces in the problem. Now we also know beforehand

11



that there is a bulk Green’s function matrix G̃j(...) representing the medium we are confined to. With

this, we define a response operator

Ãj(...) = Ṽj(...) G̃j(...) (1)

The arguments of all of these matrices are many depending upon the physical problem at hand, but

the two which are the most important to be specified are ρ and ρ′ in the present problem. Evidently,

the response operator is also a 2n× 2n matrix. Next, we define an operator

∆̃j(...) = Ĩ + Ãj(...) (2)

where Ĩ is a unit matrix of the same order as the rest. Now we need to calculate the inverse of the

bulk Green’s function G̃j(...), which is given by, say, G̃−1

j (...). As such, we now have all what we need

to calculate the inverse response function g̃−1

j (...) in the interface space (say, Ms). This is defined by

g̃−1

j (...) = ∆̃j(...) G̃
−1

j (...) (3)

Notice that g̃−1

j (...) represents exclusively the response function of the region we are initially confined

to rather than for the physical system we may have been interested in. To be more explicit, suppose

that g̃−1

1
(...) in Eq. (3) represents the dielectric, metallic, or semiconducting cylinder surrounded by

a black-box. And suppose we are interested in a physical system made up of this cylinder surrounded

by some real, but different, material. Then we will have to follow the steps identical to those leading

to Eq. (3) but now confining to the semi-infinite region enclosing the black-box. Suppose the latter

system turns out to be represented by some inverse response function g̃−1

2
(...). Then the final physical

system made up of a semiconducting cylinder surrounded by a dielectric is represented by

g̃−1

f (...) = g̃−1

1
(...) + g̃−1

2
(...) (4)

This response function serves many useful purposes in the realistic situations. For instance, the de-

terminant of g̃−1

f (...) equated to zero yields the respective dispersive modes of, e.g., a semiconducting

cylinder surrounded by a semi-infinite dielectric. It also becomes useful to calculate the local as well

as total density of states [115]. Analogous response functions are also useful to compute numerous

electronic, and optical properties of a given system under different physical conditions. Such is the

strategy of working within our GFT employed to obtain the results discussed in what follows.

The use of the GFT has numerous advantages over the traditional Maxwell equations with the
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boundary conditions. It is quite well known that the Maxwell equations with proper boundary condi-

tions only provide us with the dispersion relations for the electromagnetic waves in an inhomogeneous

medium. The GFT, which is essentially a matrix formulation, on the other hand, not only enables us

to obtain the dispersion relations for the desired excitations but also allows us to study various static

and dynamic properties in terms of the response function for the resultant system. These include, e.g.,

the local and total density of states, reflection and transmission coefficients, inelastic electron and light

scattering, tunneling phenomena, and selective transmission, to name a few [19].

III. ILLUSTRATIVE EXAMPLES

As can be seen in Ref. 115, our final analytical results for the dispersion characteristics are Eqs.

(3.26) and (3.32), respectively, for the single cylindrical cable embedded in some different material

background and the coaxial cylindrical system made up of a finite shell bounded by the closed (in-

nermost) cable and the semi-infinite medium. Note that both of these equations are, in general, the

complex transcendental functions. Therefore, in principle, we need to search the zeros of such complex

functions. We had to strike a compromise among a few choices. We decided to ask the machine to

produce those zeros where the imaginary (real) part of the function changes the sign, irrespective of

whether or not the real (imaginary) part is zero in the radiative (nonradiative) region. We believe this

has resulted into a reliable scheme for studying the dispersion characteristics of plasmons in the present

systems. This is because all the plasmon modes (confined or extended) are found to have excellent

correspondence with the peaks in the local and/or total density of states. We purposely consider only

the cases with dispersive metamaterials interlaced with conventional dielectrics (usually vacuum with

ǫ = 1 = µ). So the only parameters involved in the treatment are F and ω0 and we choose them such

that F = 0.56, ωp/2π = 10 GHz and ω0/2π = 4 GHz; the latter yields ω0/ωp = 0.4 [see Ref. 115]. We

will later assign an additional numeral as a suffix to the background dielectric constants corresponding

to the region in the geometry concerned. Other parameters such as the ratio of the radii of the cylinders

R2/R1, the normalized plasma frequency ωpR/c, and the azimuthal index of the Bessel functions m

will be given at the appropriate places during the discussion. We will present our results in terms of the

dimensionless propagation vector ζ = ck/ωp and frequency ξ = ω/ωp, where ωp stands for the screened

plasma frequency. Both local and total DOS will be shown in arbitrary units throughout.

A. Single-interface systems

Figure 9 illustrates the plasmon dispersion for the dielectric (vacuum) cable embedded in a metama-

terial background for m = 0, 1, 3, and 5. The plots are rendered in terms of the dimensionless frequency
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FIG. 9: (Color online) Plasmon dispersion for a dielectric (vacuum) cable embedded in a metamaterial background
for different values of index m = 0, 1, 3, 5. The dimensionless plasma frequency used in the computation is
specified by ωpR1/c =

√
3.5. Dashed line and curve marked as LL1 and LL2 refer, respectively, to the light lines

in the vacuum and the metamaterial. The horizontal dotted line stands for the characteristic resonance frequency
(ω0) in the metamaterial. The shaded area represents the region within which both ǫ(ω) and µ(ω) are negative
and prohibits the existence of the confined modes. (After Kushwaha and Djafari-Rouhani, Ref. 115).

ξ and the dimensionless propagation vector ζ. The important parameter involved is the dimensionless

plasma frequency specified by ωpR1/c =
√
3.5. The dashed line and the curve marked as LL1 and LL2

refer, respectively, to the light lines in the vacuum and the metamaterial. The horizontal dotted line

stands for the characteristic resonance frequency (ω0 = 0.4ωp) in the metamaterial. The shaded area

represents the region where ǫ(ω) < 0 and µ(ω) < 0 and disallows the existence of the confined modes

[see Sec. III.G in Ref. 115]. It is important to notice that the confined modes can be distinguished as

TM or TE only when the Bessel function index m = 0. However, we designate one group of modes as

TM and another as TE, even for m 6= 0, simply on the basis of the asymptotic limits attained by them.

Notice that both asymptotic limits are correctly dictated by Eqs. (3.53) and (3.54) in Ref. 115. What

is noteworthy here is that the system supports the simultaneous existence of TM and TE modes. It is

also interesting to notice that the resonance frequency ω0 is not seen to play any of its characteristic

role in the spectrum (see in what follows).

Figure 10 shows the local density of states for the system discussed in Fig. 9 for m = 0 and ζ = 1.0.

This value of the propagation vector lies in the non-radiative region which allows the pure confined

modes. The rest of the parameters are the same as in Fig. 9. Both sharp peaks occurring at ξ = 0.5119

and ξ = 0.7718 reproduce exactly the respective TE and TM modes existing at ζ = 1.0 in Fig. 9.

The short peak and the related noisy part in the immediate vicinity of the resonance frequency ω0 has
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FIG. 10: Local density of states for the system discussed in Fig. 9 and for m = 0 and ζ = 1.0. The rest of
the parameters used are the same as in Fig. 9. The arrows in the panel indicate the peaks at ξ = 0.5119 and
ξ = 0.7718. (After Kushwaha and Djafari-Rouhani, Ref. 115).

no physical significance and will show its signature almost everywhere in the computation of local as

well as total density of states. It has been found that similar calculation of LDOS at any value of the

propagation vector correctly reproduces both modes in spectrum discussed in Fig. 9.
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FIG. 11: Total density of states for the system discussed in Fig. 9 and for m = 0 and ζ = 1.0. The rest of the
parameters used are the same as in Fig. 9. Both negative peaks are characteristic of the resonance frequency
ω0 and other characteristic frequency ωc in the system and bear no physical significance. (After Kushwaha and
Djafari-Rouhani, Ref. 115).

Figure 11 depicts the total density of states for the dielectric (vacuum) cable embedded in a dispersive
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metamaterial background discussed in Fig. 9 for m = 0 and ζ = 1.0. For m = 0, the otherwise coupled

modes are decoupled as TM and TE. The ζ = 1.0 indicates the positions of the TE and TM modes lying

at ξ = 0.5119 and ξ = 0.7718 (see Fig. 9). Both of these positions of the respective modes are exactly

reproduced by the peaks marked by arrows in the total density of states here. A kind of resonant

behavior at ξ ≃ 0.4 and the negative peak at ξ ≃ 0.6 are characteristic of the critical frequencies ω0 and

ωc involved in the problem and we do not consider them of any importance and/or physical significance.

Similar behavior at these frequencies will be seen in the later examples as well.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

ω
p
R

1
/c=(3.5)1/2

ε
2
=1.0

µ
2
=1.0

 m=5
 m=3
 m=1
 m=0

RE
D

U
CE

D
 F

RE
Q

U
EN

CY
  ξ

REDUCED WAVE VECTOR  ζ

TM

TE

LL1

LL2

FIG. 12: (Color online) Plasmon dispersion for a metamaterial cable in a dielectric (vacuum) background for
different values of index m = 0, 1, 3, 5. The dimensionless plasma frequency used in the computation is specified
by ωpR1/c =

√
3.5. Dashed line and curve marked as LL1 and LL2 refer, respectively, to the light lines in the

vacuum and the metamaterial. The horizontal dotted line stands for the characteristic resonance frequency (ω0)
in the metamaterial. The shaded area represents the region within which both ǫ(ω) and µ(ω) are negative and
disallows the existence of the confined modes. (After Kushwaha and Djafari-Rouhani, Ref. 115).

Figure 12 illustrates the plasmon dispersion for a metamaterial cable in a dielectric (vacuum) back-

ground for different values of index m = 0, 1, 3, 5. The results are plotted in terms of the dimensionless

frequency ξ and the dimensionless propagation vector ζ. The dimensionless plasma frequency used in

the computation is specified by ωpR1/c =
√
3.5. The dashed line and curve marked as LL1 and LL2

refer, respectively, to the light lines in the vacuum and the metamaterial. The horizontal dotted line

stands for the characteristic resonance frequency (ω0) in the metamaterial. The shaded area represents

the region where both ǫ(ω) and µ(ω) are negative and disallows the existence of confined modes. We

designate the two groups of modes as TM and TE with the same notion as discussed in Fig. 9. One can

see it clearly that the resonance frequency ω0 does play a crucial role in this case. For instance, the big

hollow circle encloses the m = 0 and the m = 1 TM modes split due to the resonance frequency in the
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problem. We call this splitting occurring between respective TM modes since we can see it happening

just by plotting the m = 0 modes. If it were not for the resonance frequency the split m = 0 mode

would start from zero (just as here) and propagate smoothly to approach the asymptotic limit without

any splitting and m = 1 mode would emerge from a nonzero frequency somewhere in the radiative

region. This is to stress that such resonance splitting takes place only for the TM modes and not for

the TE modes. The latter always start from above the resonance frequency. It is noticeable that the

split modes below ω0 later become asymptotic to ω0. The TM modes’ splitting behavior will become

more transparent in the later examples on double-interface systems (see, for example, Figs. 15 and 18).
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FIG. 13: Local density of states for the system discussed in Fig. 12 and for m = 0 and ζ = 1.0. The arrows in
the panel indicate the peaks at ξ = 0.3947, ξ = 0.4581, and ξ = 0.5577. The rest of the parameters used are the
same as in Fig. 12. (After Kushwaha and Djafari-Rouhani, Ref. 115).

Figure 13 shows the local density of states for the system discussed in Fig. 12 for m = 0 and ζ = 1.0.

This value of the propagation vector lies in the non-radiative region which allows the pure confined

modes. The rest of the parameters are the same as in Fig. 12. All the three sharp peaks lying at

ξ = 0.3947, ξ = 0.4581, and ξ = 0.5577 reproduce exactly the respective TE and TM modes existing

at ζ = 1.0 in Fig. 12. The short peak and the related noise in the immediate vicinity of the resonance

frequency ω0 has no physical significance in the problem. It has been found that similar calculation of

LDOS at any value of the propagation vector and for any given m correctly reproduces all the modes

in spectrum discussed in Fig. 12. It should be pointed out that while the LDOS (and/or TDOS, for

that matter) can and do reproduce lowest (TM) split mode at the higher propagation vector where this

mode has already become asymptotic to and merged with ω0, sometimes it becomes extremely difficult

to discern such a peak inside the band of noise existing in the immediate vicinity of ω0.
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FIG. 14: Total density of states for the system discussed in Fig. 12 and for m = 0 and ζ = 1.0. The arrows in
the panel indicate the peaks at ξ = 0.3947, ξ = 0.4581, and ξ = 0.5577. The rest of the parameters used are the
same as in Fig. 12. (After Kushwaha and Djafari-Rouhani, Ref. 115).

Figure 14 depicts the total density of states for the metamaterial cable embedded in a dispersive

dielectric (vacuum) background discussed in Fig. 12 for m = 0 and ζ = 1.0. For m0, the otherwise

coupled modes are decoupled as TM and TE. The ζ = 1.0 specifies the positions of the decoupled

modes lying at ξ = 0.3947, ξ = 0.4581, and ξ = 0.5577. All of these positions of the respective modes

are correctly reproduced by the peaks marked by the arrows in the total density of states here. The

noisy band of states at ω0 and the negative peak at ωc are a consequence of these critical frequencies

involved in the problem but they carry no interesting information and bear no physical significance.

Scanning the whole range of propagation vector reveals that the TDOS reproduces all the modes in

Fig. 12 very accurately. The only exception to this is the radiative modes (towards the left of the

light line) in Fig. 12, which do not show a good correspondence with the resonance peaks in the (local

or total) DOS. This is not surprising, however, given the distinct ways of searching the zeros of the

complex transcendental function in the radiative and non-radiative regions. We did not intend to pay

much attention to the small radiative region simply because, as we all know, this region is of almost no

practical interest.

B. Double-interface systems

Figure 15 illustrates the plasmon dispersion for a metamaterial shell sandwiched between two identi-

cal dielectrics (vacuum) for different values of index m = 0, 1, 2, and 3. The plots are rendered in terms

of the dimensionless frequency ξ and the propagation vector ζ. The other important parameters used in
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FIG. 15: (Color online) Plasmon dispersion for a metamaterial shell sandwiched between two identical dielectrics
(vacuum) for different values of index m = 0, 1, 2, 3. The dimensionless plasma frequency used here is specified
by ωpR1/c =

√
3.5 and the radii ratio R2/R1 = 1.2. Dashed line and curve marked as LL1 and LL2 refer,

respectively, to the light lines in the vacuum and the metamaterial. The horizontal dotted line stands for the
characteristic resonance frequency (ω0) in the metamaterial. The shaded area represents the region within which
both ǫ(ω) and µ(ω) are negative and forbids the existence of the confined modes. The parameters used in the
computation are as listed in the picture. (After Kushwaha and Djafari-Rouhani, Ref. 115).

the computation are the normalized plasma frequency ωpR1/c =
√
3.5 and the ratio R2/R1 = 1.2. The

dashed line and the curve marked as LL1 and LL2 refer, respectively, to the light lines in the bounding

media (vacuum) and the metamaterial shell. The horizontal dotted line refers to the characteristic reso-

nance frequency (ω0) in the problem. The shaded area refers to the region where ǫ(ω) < 0 and µ(ω) < 0

and prohibits the existence of the truly confined modes. Since there are two interfaces involved in the

resultant structure we have a pair of modes for each of the TM and TE modes in the system. The lower

and upper group of modes together attain the same asymptotic limit characteristic of the TM or the

TE modes at large wave vectors. The resonance frequency allows the splitting of the m = 0, m = 1,

and m = 2 TM modes at ω0. The full circle encloses and shows such a resonance splitting occurring

between the respective modes in a very clear way at ζ ≃ 1.0. The scheme of assigning the modes a TM

or a TE character is the same as discussed before (see discussion of Fig. 9). Eqs. (3.53) and (3.54) in

Ref. 115 are seen to dictate the correct asymptotic limits attained both by TM and TE modes. Some

abruptness (sharp or blunt) observed by a given mode at the light line is a general tendency usually

seen when a mode crosses the junction between the two media.

Figure 16 shows the local density of states for the two-interface system discussed in Fig. 15 form = 0

and ζ = 1.0 for the interface 1 (2) in the lower (upper) panel. This value of ζ specifies five propagating

modes in total in Fig. 15: the lowest split (TM) mode below ω0, lower (split) TM mode and lower TE

19



-5

0

5

10

LO
CA

L 
D

O
S 

(a
rb

. u
ni

ts)

N=3
m=0

R
2
/R

1
=1.2

ζ=1.0

INTERFACE 2

0.4 0.6 0.8 1.0
-5

0

5

10

INTERFACE 1

N=3
m=0

R
2
/R

1
=1.2

ζ=1.0

 

LO
CA

L 
D

O
S 

(a
rb

. u
ni

ts)

REDUCED FREQUENCY  ξ

FIG. 16: Local density of states at the interface R1 (R2) in the lower (upper) panel for m = 0 and ζ = 1.0
for the system discussed in Fig. 15. We call attention to the DOS resonance peaks, indicated by the arrows,
corresponding to the five modes in total at ζ = 1.0 in Fig. 15. The interface 1 (2) refers to the one specified by
R1 (R2). The rest of the parameters used are the same as in Fig. 15. (After Kushwaha and Djafari-Rouhani,
Ref. 115).

mode within the shaded region, upper TE mode, and the uppermost TM mode lying, respectively, at

ξ = 0.3774, ξ = 0.4109, ξ = 0.4202, ξ = 0.5588, and ξ = 0.8951. In the lower panel, the five resonance

peaks (indicated by arrows) observed in the local density of states stand exactly at these frequencies.

This implies reasonably a very good correspondence between the (dispersion) spectrum and the LDOS

at interface R1. The (unmarked) second lowest peak (counting from the lowest frequency) stands at

the resonance frequency ω0 and is not considered to be a bonafide peak in the LDOS. Coming to the

upper panel, we again observe five well-defined resonance peaks lying exactly at the aforementioned

frequencies. That means that both interfaces share all the five resonances in the LDOS, albeit with

a difference of magnitude. This also implies that the two interfaces pose different preferences, and

that makes sense here because of the asymmetric nature of the configuration. In other words, the two

interfaces seem to be more sensitive to the geometry and less to the materials in the supporting media.

That is to say that the situation is altogether different from a planar geometry with, for example, a

thin metallic or semiconducting film symmetrically bounded by two identical dielectrics.

Figure 17 depicts the total density of states for the two-interface system discussed in Fig. 15 for

m = 0 and ζ = 1.0. These values of m and ζ define five propagating modes in total in Fig. 15, covering

both TM and TE modes, and lying at ξ = 0.3774, ξ = 0.4109, ξ = 0.4202, ξ = 0.5588, and ξ = 0.8951.

The five resonance peaks (indicated by arrows) observed in the total density of states are seen to

substantiate these frequencies very accurately. We have seen that the similar computation of TDOS at
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FIG. 17: Total density of states for m = 0 and ζ = 1.0 for the system discussed in Fig. 15. We call attention to
the DOS resonance peaks, indicated by the arrows, corresponding to the five modes in total at ζ = 1.0 in Fig.
15. The parameters used are the same as in Fig. 15. (After Kushwaha and Djafari-Rouhani, Ref. 115).

any other value of ζ reproduces all the corresponding modes in the spectrum very correctly. The only

exception to this is the radiative region (toward the left of the light line) where the correspondence

between the DOS (local or total) and the spectrum is no so good. This is again understandable in

the view of the facts stated above (see the discussion of Fig. 14). A pile up of the states at and in

the vicinity of ω0 and a negative peak at ωc are clearly a consequence of the presence of such critical

(resonance) frequencies in the problem and we do not consider them to be of any physical significance.

Figure 18 illustrates the plasmon dispersion for a dielectric (vacuum) shell sandwiched between two

identical metamaterials for different values of index m = 0, 1, 2, and 3. The plots are rendered in

terms of the dimensionless frequency ξ and the propagation vector ζ. The other important parameters

used in the problem are the normalized plasma frequency ωpR1/c =
√
3.5 and the ratio of the radii

R2/R1 = 1.2. The dashed line and the curve marked as LL1 and LL2 stand, respectively, for the light

lines in the dielectric (vacuum) and the bounding metamaterials. The horizontal dotted line refers to

the characteristic resonance frequency (ω0) in the problem. The shaded area refers to the region within

which ǫ(ω) < 0 and µ(ω) < 0 and proscribes the existence of the truly confined modes. Again, since

there are two interfaces in the system we obtain two pairs of modes: one for the TM and the other

for the TE modes. Their asymptotic limits are governed by Eqs. (3.53) and (3.54) in Ref. 115. The

presence of the resonance frequency ω0 gives rise to the resonance splitting of all the lower group of the

pair of TM modes for different values of m. Although the lower group of the pair of TE modes cross in

between the split TM modes (inside the shaded region), the resonance splitting is clearly pronounced
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FIG. 18: (Color online) Plasmon dispersion for a dielectric (vacuum) shell sandwiched between two identical
metamaterials for different values of index m = 0, 1, 2, 3. The dimensionless plasma frequency used here is
specified by ωpR1/c =

√
3.5 and the radii ratio R2/R1 = 1.2. Dashed line and curve marked as LL1 and LL2

refer, respectively, to the light lines in the vacuum and the metamaterial. The horizontal dotted line stands for
the characteristic resonance frequency (ω0) in the metamaterial. The shaded area represents the region within
which both ǫ(ω) and µ(ω) are negative and proscribes the existence of the confined modes. The parameters used
in the computation are as listed in the picture. (After Kushwaha and Djafari-Rouhani, Ref. 115).

between the corresponding TM modes. This is shown by the big hollow circle encompassing all the

respective split TM modes in the region. Again, the scheme of assigning the modes a TM or a TE

character is the same as discussed before. Notice that the abruptness observed by the modes while

crossing the light line is relatively smoother than that seen in the other cases (cf. Figs. 9, 12, and

15). It is interesting to remark that all the illustrative examples on the plasmon spectrum presented

here reaffirm that the dispersive metamaterial components in the composite enable the structure to

support the simultaneous existence of the TM and the TE modes. This effect is solely attributed to

the negative-index metamaterials and is otherwise impossible.

Figure 19 shows the local density of states for the two-interface system discussed in Fig. 18 for

m = 0 and ζ = 1.5 for the interface 1 (2) in the lower (upper) panel. This value of ζ characterizes five

propagating modes in total in Fig. 11: the lowest split (TM) mode below ω0, lower TE mode, lower

(split) TM mode, upper TE mode, and the uppermost TM mode lying, respectively, at ξ = 0.3673,

ξ = 0.4396, ξ = 0.4665, ξ = 0.5373, and ξ = 0.8825. In the lower panel, the five resonance peaks

(indicated by arrows) observed in the local density of states stand exactly at these frequencies. This

implies considerably a very good correspondence between the (dispersion) spectrum and the LDOS at

interface R1. The small (unmarked) noisy peaks occurring in the vicinity of the resonance frequency

ω0 are not considered to be a bonafide peaks in the LDOS. In the upper panel, we plot the LDOS for
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FIG. 19: Local density of states at the interface R1 (R2) in the lower (upper) panel for m = 0 and ζ = 1.5
for the system discussed in Fig. 18. We call attention to the DOS resonance peaks, indicated by the arrows,
corresponding to the five modes in total at ζ = 1.5 in Fig. 18. The interface 1 (2) refers to the one specified by
R1 (R2). The rest of the parameters used are the same as in Fig. 18. (After Kushwaha and Djafari-Rouhani,
Ref. 115).

the interface 2 for the same parameters as considered for interface 1 in the lower panel. We observe five

well-defined resonance peaks lying exactly at the aforementioned frequencies. That means that both

interfaces share all the five resonances in the LDOS, of course with a difference of magnitude. As to the

second small resonance peak in this panel, we think that interface 2 only slightly feels this resonance.

Other resonance peaks in this panel are almost comparable to those in the lower panel. The rest of the

remarks made with respect to Fig. 16 are also valid here.

Figure 20 depicts the total density of states for the same two-interface system as investigated in

Figs. 18 and 19 for m = 0 and ζ = 1.5. Such values of m and ζ characterize five propagating modes in

total in Fig. 18, covering both TM and TE modes, and lying at ξ = 0.3673, ξ = 0.4396, ξ = 0.4665,

ξ = 0.5373, and ξ = 0.8825. We observe that there are five well-defined resonance peaks in the total

density of states standing exactly at the aforementioned frequencies. This leads us to infer that there

is a very good correspondence between the (dispersion) spectrum and the TDOS. It has been observed

that scanning other values of the propagation vector ζ for computing the total density of states yields

same degree of correspondence with the spectrum. What is more interesting in this case is the fact that

the computation of TDOS (as well as LDOS) provides a much better correspondence with the modes

in the spectrum even in the radiative region (toward the left of the light line) than in the previous

cases. This is attributed to a relatively smoother propagation of the modes in the radiative region in

the present case of a dielectric shell bounded by (identical) metamaterials. Just as before, we do not
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FIG. 20: Total density of states for m = 0 and ζ = 1.5 for the system discussed in Fig. 18. We call attention to
the DOS resonance peaks, indicated by the arrows, corresponding to the five modes in total at ζ = 1.5 in Fig.
18. The parameters used are the same as in Fig. 18. The DOS are shown in arbitrary units throughout. (After
Kushwaha and Djafari-Rouhani, Ref. 115).

give much importance to the pile up of the states near the resonance frequency ω0 and the negative

peak at ωc. While we consider their occurrence as natural, they do not bear any physical significance

to the problem whatsoever.

C. Multicoaxial cable systems

This section is devoted to investigate the plasmon excitations in a neat and clean system comprised

of multicoaxial negative-index metamaterial cables, schematically shown in Fig. 21. The formalism of

the problem is a straightforward generalization of the theory presented in Sec. III of Ref. 115. This is

systematically illustrated in Fig. 22, with all the necessary details. Since these are, to our knowledge,

the first results on such a complex system of multicoaxial metamaterial cables (MCMC), we adhere to

the backbone simplicity and think that the complexities, such as the choice of different metamaterials,

different (conventional) dielectrics as spacers, different (irregular) radii, and geometrical defects would

(and should) come later and hence are deferred to a future publication. As such, our system is considered

to be made up of the (same) RHM and the (same) LHM in alternate shells starting from the innermost

cable of radius R1 and fix (the total number of media, including the outermost semi-infinite medium)

n = 15.

Figure 23 illustrates the surface plasmon dispersion for a perfect multicoaxial cable system made

up of a dispersive negative-index metamaterials interlaced with conventional dielectrics (assumed to be
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FIG. 21: Schematics of the multi-coaxial cables: the side view showing the alignments of the cylindrical cables
of circular cross-sections of radii Rj+1 > Rj , and n media with n − 1 interfaces. The innermost circle marked
as 1 refers to the innermost cable of radius R1 enclosed by the consecutive (n − 1) shells assumed to be num-
bered as 2, 3, .... (n-2), (n-1) and cladded by an outermost semi-infinite medium n. Our exact general theory
schematically outlined in Fig. 15 allows one to consider the resultant system to be made up of negative-index
(dispersive or nondispersive) metamaterials interlaced with conventional dielectrics, metals, or semiconductors.
(After Kushwaha and Djafari-Rouhani, Ref. 116).
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FIG. 22: A graphic representation of the complete formalism for the total inverse response function g̃−1(...) for
the resultant system shown in a desired compact form. Here n refers to the total number of media comprising the
MCMC system; with m = n− 1 as the number of interfaces, l = n− 2, and k = n− 3 ..... etc. We call attention

to the fact that this is a 2(n− 1)× 2(n− 1) matrix, with all the elements outside the shaded regions being zero.
Now ‘1’ refers to the first perturbation specified by Eq. (3.8), ‘n’ stands for the second perturbation specified by
Eq. (3.15), and ‘2’, ‘3’, ‘4’, ....., ‘(n-2)’, ‘(n-1)’ correspond to the third perturbation specified by Eq. (3.23) for
the respective shells [115]. We would like to stress that our formalism is not a perturbative scheme, albeit we use
the term ‘perturbation’ — the term ‘perturbation’, in fact, implies to the step-wise operation concerned with the
problem. It is also noteworthy that this theoretical framework knows no bound with respect to the number of
media involved in the system and/or their material characteristics. The plasma modes of the system are defined
by det[g̃−1(...)] = 0. (After Kushwaha and Djafari-Rouhani, Ref. 116).
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vacuum) for n = 15 and (the integer order of the Bessel function) m = 0. The plots are rendered in

terms of the dimensionless frequency ξ = ω/ωp and the propagation vector ζ = ck/ωp. The dashed

line and curve marked as LL1 and LL2 refer, respectively, to the light lines in the vacuum and the

metamaterial. The shaded area represents the region within which both ǫ(ω) and µ(ω) are negative

and disallows the existence of truly confined modes. The thick dark band of frequencies piled up near

the resonance frequency ω0 = 0.4ωp is not unexpected. Since there are fourteen interfaces in the system,

we logically expect fourteen branches each for the TM and TE modes in the system. As we see, this is

exactly the case, except for the fact that the lower group of seven TM branches (which start from zero)

have observed a resonance splitting due the resonance frequency ω0 in the problem. The latter branches

quickly become asymptotic to ω0. All the TM and TE confined modes above ω0 have their well-defined

asymptotic limits exactly dictated, respectively, by Eqs. (3.53) and (3.54) [115]. A word of warning

about the simultaneous existence of TM and TE modes: if we search the zeros of the determinant (see

Fig. 22), as it is required, for any value of n and m, we always obtain the simultaneous existence of all

the TM and TE modes along with the resonance splittings as stated above. This is a rule as long as

m 6= 0. The only exception to this is the case of m = 0 (and very small value of n). For instance, for

n = 3 and m = 0, one has a 4×4 determinant and it is possible to separate analytically the TM and TE

modes. [We recall the well-known facts from the electrodynamics: the electrostatics claim ownership

of the p-polarized (TM) fields and the magnetostatics claim the s-polarized (TE) fields.] However,

even for these values of n and m, if we search the zeros of the full determinant, without analytically

decoupling the modes, we obtain both TM and TE modes together.

Figure 24 shows the local density of states (LDOS) as a function of reduced frequency ξ for the

multicoaxial cable system discussed in Fig. 23, for the propagation vector ζ = 1.0. The rest of the

parameters used are the same as those in Fig. 23. Notice that each of these interfaces is seen to share

most of the peaks supposed to exist and reproduce most of the discernible modes at ζ = 1.0 (in Fig.

23). Of course, one has to take into consideration the degeneracy and the hodgepodge that persists near

the resonance frequency ξ = 0.4 in Fig. 23. Let us, for instance, look at top panel: the highest, second

highest, third highest, fourth highest, fifth highest, sixth highest, seventh highest, and eighth highest

peaks lie, respectively, at ξ = 0.9490, 0.9428, 0.9299, 0.9061, 0.8667, 0.8046, 0.7298, and 0.6232. The

highest peak (at ξ = 0.9490) remains indiscernible at this scale. Similarly, the lowest, second lowest,

third lowest, fourth lowest, fifth lowest, sixth lowest, and seventh lowest peaks (below the resonance

frequency) are seen to lie, respectively, at ξ = 0.2877, 0.2999, 0.3197, 0.3452, 0.3663, 0.3763, and 0.3967.

All these peak positions exactly substantiate the modes at ζ = 1.0 in the spectrum in Fig. 23. One has

to notice that as the name local DOS suggests, every interface has its own choice (with respect to the

geometry and/or the material parameters) and there does not seem to be a rule that may dictate the
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FIG. 23: Plasmon dispersion for a perfect multicoaxial cable system made up of a dispersive negative-index
metamaterial interlaced with conventional dielectrics (assumed to be vacuum) for N = 15 and m = 0. The
dimensionless plasma frequency used in the computation is specified by ωpR1/c =

√
3.5 and the dimensionless

thicknesses of the shells are defined by ∆rj,j+1 = 0.35. Dashed line and curve marked as LL1 and LL2 refer,
respectively, to the light lines in the vacuum and the metamaterial. The (dark) thick band of frequencies is
piled up at the characteristic resonance frequency (ω0) in the metamaterial. We call attention to the resonance
splitting of the lower TM confined modes due to the resonance frequency (ω0) in the problem. The shaded area
represents the region within which both ǫ(ω) and µ(ω) are negative and disallows the existence of truly confined
modes. The system as a whole is represented by RLR...RLR design. (After Kushwaha and Djafari-Rouhani, Ref.
116).

modes’ counting. This is, in a sense, different from the total DOS where one obtains exactly the same

number of peaks as the modes in the spectrum for a given value of ζ. It should be pointed out that

the shorter-wavelength modes do not interact much with the neighboring ones and remain spatially

confined to the immediate vicinity of the respective interfaces. Such strongly localized modes are thus

easier to be observed in the experiments than their longer-wavelength counterparts.

Figure 25 depicts the surface plasmon dispersion (right panel) and total density of states (left panel)

for a multicoaxial cable system made up of a nondispersive negative-index metamaterials interlaced

with conventional dielectrics (assumed to be vacuum) for n = 9 and (the integer order of the Bessel

function) m = 0. The plots are rendered in terms of the dimensionless frequency ωR1/c and the

propagation vector kR1. The dimensionless thicknesses of the shells are defined by ∆rj,j+1 = 0.25. The

material parameters are listed inside the left panel. Right panel: The dashed line refers to the light

line in the vacuum. As expected, there are eight TM modes — four of them starting from the nonzero

propagation vector k and the other four emerge from the light line. The shaded area is the radiative

region which encompasses radiative modes (not shown) towards the left of the light line. We notice in

passing that the slope of these TM modes in the asymptotic limit is defined by ω/ck = 0.7817. An
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index metamaterial interlaced with conventional dielectrics (assumed to be vacuum) for n = 9 and (the integer
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LWL. Left panel: the total density of states as a function of reduced frequency ωR1/c for the dimensionless wave
vector kR1 = 21.5. (After Kushwaha and Djafari-Rouhani, Ref. 116).
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important issue remains to be answered: Why do we obtain only TM modes up to the asymptotic limit?

In order to answer this question, one has to look carefully at the analytical diagnoses presented in Sec.

III.G [115]. To be brief, the answer lies in the fact that, for the material parameters chosen here, while

Eq. (3.43) is fully satisfied, Eq. (3.47) or (3.48) is not [see Ref. 115 for the analytical diagnosis]. The

former condition justifies the existence of the TM modes and the latter rules out the occurrence of TE

modes. One remaining curiosity: What do these (almost) vertical lines, hanging downwards from the

light line, indicated by arrows refer to? The succinct answer is that these are the ill-behaved TE modes

which exist only in the long wavelength limit (LWL). It is interesting to note that if we interchange the

values of ǫL and µL, (i.e., the parameters that define the nondispersive LHM), we obtain well-behaved

TE modes and the ill-behaved TM modes. The reason is simple: the aforesaid conditions that govern

the nature of the modes in the asymptotic limit are then reversed. Left panel: The computation of the

total density of states plotted as a function of reduced frequency shows clearly eight peaks for the given

value of the propagation vector kR1 = 21.5. Starting from the lowest frequency, we observe that these

peaks lie at ωR1/c = 14.69, 14.99, 15.40, 16.20, 17.99, 18.53, 19.37, and 20.18. These peak positions

exactly substantiate the frequencies of the TM modes in the right panel at kR1 = 21.5.

To conclude with, we estimate that if νp = ωp/2π = 10 GHz, the radius of the innermost cable

is defined as R1 = 8.93 mm for the parameter ωpR1/c = 1.87 used for the dispersive negative-index

metamaterials (see Figs. 23 and 24). It is interesting to notice that this size scale is almost the same as

the dimensions of the sample (the lattice spacing d = 9.53 mm and inner size of the tubes a = 6.96 mm)

used in the experiment in Ref. 111, which had verified the prediction of Pendry and coworkers [103] that,

if textured on a subwavelength scale, even perfect conductors can support the surface plasmon modes.

The surface plasmon modes predicted here should be observable in the inelastic electron scattering

(EELS) or inelastic light (Raman) scattering experiments. The EELS is already becoming known to

be a powerful probe for studying the plasmon excitations in single- and multi-wall carbon nanotubes.

IV. TIDBITS OF THE APPLICATIONS OF METAMATERIALS

To this point, we hope to have become sufficiently familiar with what, how, and why about the

metamaterials. Yet it is interesting to add that metamaterials are periodic arrangements of individual

elements made up of conventional (microscopic) materials such as metals or plastics. Metamaterials

gain their properties from their exactingly-designed structures rather than from their composition.

Their precise shape, size, geometry, orientation, and arrangement can affect the waves of interest, cre-

ating material properties which are unattainable with conventional materials. The structural elements

making up the metamaterials are chosen to be of subwavelength sizes – the features that are actu-
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ally smaller than the wavelength of the waves they are intended to affect. The primary goal of the

research in metamaterials is to investigate the negative-index materials (NIMs), which appear to have

allowed the creation of superlenses with a spatial resolution beyond the diffraction limit [24]. The

research in metamaterials is interdisciplinary and involves fields such as electromagnetics, electrical

engineering, electronics, classic optics, material sciences, solid state physics, semiconductor sciences,

and nanoscience. Potential applications of metamaterials are diverse and include areas such as high-

frequency communication, remote aerospace, sensor design and detection, smart solar power, public

safety, shielding structures from temblor, superlenses for high-gain antennas, just to name a few.

In ordinary materials solid, liquid, or gas; transparent or opaque; conductor or insulator the conven-

tional refractive index predominates. This means that ǫ and µ are both positive resulting in an ordinary

(positive) index of refraction. However, metamaterials have the capability to exhibit a state where both

ǫ and µ are negative, resulting in an extraordinary (negative) index of refraction. Depending upon the

type of the waves and the frequency range of interest, the designed metamaterials are becoming known

and being distinguished by the wide variety of qualifiers such as single-negative (SNG) metamaterials,

which include ǫ-negative (ENG) media and µ-negative (MNG) media, and negative-index metamaterials

(NIMs), which include metamaterials with both ǫ and µ negative and hence the name double-negative

(DNG) materials. Note that the nature encompasses materials with ǫ and µ both positive, which are

becoming known as double positive media (DPS). Artificial materials have been fabricated which have

DPS, ENG, and MNG properties combined [124].

A further classification of metamaterials is based on the types of designed materials, which in-

teract at different frequencies such as microwave, gigahertz, terahertz, and later, optical frequencies.

The corresponding metamaterials are given the nicknames such as acoustic, elastic, seismic, photonic,

plasmonic, superlens, chiral [125-126], bi-isotropic and bi-anisotropic [127-129], GHz, and THz meta-

materials. The literature is witnessing a relatively greater attention being paid to the designing of the

cloaking devices, however. The real challenge of cloaking lies in devising a theoretical scheme for the

optical properties of the cloak and even more challenging is realizing those properties in a material.

Transformation optics [130] provides the analytical background and metamaterials provide the means

of achieving the prescribed parameters. The work on designing optical [72], acoustic [85], and plasmonic

[98] cloakings continues to be escalating. Even though a working, practical cloak is still far from the

sight, the design and debate seem to be wildly optimistic.

30



V. THE CLOSING REMARKS

To conclude with, we have gathered and reviewed the fundamental aspects related to the concepts,

nomenclature, fabrication, and applications of the metamaterials. In particular, we have stressed upon

the propagation characteristics of plasmon polaritons and their density of states in the coaxial cables

in the absence of an applied magnetic field. The illustrative numerical examples in Sec. III follow the

brief strategy of working within the Green-function theory for the plasmon propagation in any planar,

cylindrical, or spherical geometries in Sec. II. We have sagaciously attempted to refer the interested

reader to the derivations of the general results and details of their analytical diagnoses within the

theoretical framework given in Ref. 115. As to the illustrative examples, we have also successfully

attempted to substantiate our results on plasmon dispersion through the computation of the local and

total density of states. While we considered the effect of retardation, the absorption was neglected

throughout, except for a small imaginary part needed to be added to the frequency for the purpose of

giving a width to the peaks in the DOS. We believe that the present methodology for coaxial cables will

also prove to be a powerful theoretical framework for studying, for example, the intrasubband plasmons

in the multi-walled carbon nanotubes.

An experimental observation of the radiative as well as non-radiative plasmons in such coaxial cables

would be of great interest. Such experiments could possibly involve the well known attenuated total

reflection, scattering of high energy electrons, or even Raman spectroscopy. The electron energy loss

spectroscopy (EELS) is already becoming known as a powerful technique for studying the electronic

structure, dielectric properties, and plasmon excitations in single- and multi-wall carbon nanotubes

and carbon onions, for example. Our preference for plotting the illustrative numerical results in terms

of the dimensionless frequency and propagation vector leaves free an option of choosing the plasma

frequency lower or higher, just as the radii of the cables.

Future dimensions worth adding to the problem remain open in this context. The important issues,

which need to be considered and which could give better insight into the problem, include the role

of absorption, the effects of the spatial dispersion, the coupling to the optical phonons, effect of an

applied electric field, and most importantly the effect of an applied magnetic field in order to study,

for example, the edge magnetoplasmons in the concentric cylindrical cables, to name a few. Choosing

the unidentical dielectrics and/or unidentical metamaterials will only alter the asymptotic limits in the

short wavelength limit. Given a decade of intense research on the metamaterials – from electromagnetics

to acoustics to plasmonics – it is now time to devise a serious theory for the inelastic electron and light

(or Raman) scattering from the structures fabricated of metamaterials.

It is by now well-known that proposal of negative refraction burst out as a theoretical concept
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rather than an experimental discovery. So, the challenge posed to experiment was to find materials

with negative values of ǫ and µ. Concurrently, the theory had to defend itself regarding the validity of

the concept. It is fair to say that 2003 marked the beginning of the optimism on the theoretical schemes

as well as the experimental realization of the metamaterials. The real progress made in the subject -

both theoretical and experimental – during the past decade is remarkable: the opportunities for the

response in all frequency ranges such as rf, microwave, gigahertz, terahertz, and optical region beyond

are being exploited rigorously. The early excitement in electromagnetism has already impregnated the

acoustics and plasmonics in the quest of analogous goals.

Experimental challenge, particularly in the territory of optics and plasmonics, now is to improve

the design of the metamaterials, especially by reducing loss, but also by moving from the laboratory

scale to the industrial scale. While both theory and experiments have made considerable progress in

the microwave range, attempts to explore the THz and visible ranges are obstructed due, in fact, to

the inherent losses in the NIMs. Generally, the loses are orders of magnitude too large for the proposed

applications, particularly at the shorter wavelengths, and the schemes for minimizing such losses with

optimized designs do not seem to have had much luck in the past. A recent proposal to incorporate gain

media into NIM designs is reported to have achieved a significant success in fabricating an extremely

low-loss, active optical NIM in order to probe the optical spectral range [131]. The issue related with

the loss is even more solicitous for the plasmonic phenomena at optical frequencies where the aim is

to design devices structured on a subwavelength scale. By and large, a lossless NIM is still a dream

seemingly hard to come true. Giving up is not an option, however!

The greatest glory lies not in never falling, but in rising every time we fall.

— Confucius
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