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In this paper, we use the framework of functions of bounded variation and the coarea formula to give an explicit computation for the expectation of the perimeter of excursion sets of shot noise random fields in dimension n ≥ 1. This will then allow us to derive the asymptotic behavior of these mean perimeters as the intensity of the underlying homogeneous Poisson point process goes to infinity. In particular, we show that two cases occur: we have a Gaussian asymptotic behavior when the kernel function of the shot noise has no jump part, whereas the asymptotic is non-Gaussian when there are jumps.

1. Introduction. We will consider here a shot noise random field which is a real-valued random field given on R n by (1.1)

X(x) = i∈I g(x -x i , m i ), x ∈ R n ,
where g is a given (deterministic) measurable function (it will be called the kernel function of the shot noise), the {x i } i∈I are the points of a homogeneous Poisson point process on R n of intensity λ, the {m i } i∈I are called the marks and they are independent copies of a random variable m, also all independent of {x i } i∈I . Such a random field is a very common model in Physics and Telecommunications, where it has many applications [START_REF] Baccelli | On a coverage process ranging from the Boolean model to the Poisson-Voronoi tessellation with applications to wireless communications[END_REF][START_REF] Baccelli | Stochastic Geometry and Wireless Networks[END_REF]. It is a natural generalization of shot noise processes (n = 1), introduced by [START_REF] Rice | Mathematical analysis of random noise[END_REF] to model shot effect noise in electronic devices. More recently, it has also become a widely used model in image processing, mainly for applications in texture synthesis and analysis [START_REF] Galerne | Gabor noise by example[END_REF]. Geometric characteristics of random surfaces is an important subject of modern probability research, linked with extremal theory [START_REF] Adler | Random fields and geometry[END_REF][START_REF] Azaïs | Level sets and extrema of random processes and fields[END_REF] and based on the study of random fields excursion sets. The excursion set of level t of the random field X in an open subset U of R n is defined by E X (t, U ) := {x ∈ U such that X(x) > t}.

Most of the results are obtained for stationary Gaussian random fields but recent works have allowed to drop the Gaussian assumption. In particular, in [START_REF] Adler | High level excursion set geometry for non-Gaussian infinitely divisible random fields[END_REF], asymptotics for the distribution of critical points and Euler characteristics are obtained for a large class of infinite divisible stationary random fields with suitable regularity assumptions. Central limit theorem for volumes of excursion sets have also been considered in [START_REF] Bulinski | Central limit theorems for the excursion set volumes of weakly dependent random fields[END_REF] for general stationary random fields, including some shot noise and Gaussian random fields. In this paper, we will be interested in the "perimeter" of excursion sets of shot noise random fields (we will give the precise definition of it in the first section), measured as the n -1 dimensional Hausdorff measure of its boundary: L X (t, U ) := H n-1 (∂E X (t, U ) ∩ U ).

In dimension n = 1, the "perimeter" of an excursion set is the number of crossings of the considered level, in dimension n = 2 it measures the length of the boundary of the excursion set, in dimension n = 3 it measures its surface area, and so on. The shot noise random field is not necessarily smooth or differentiable (this happens for instance when the kernel function is an indicator function) and therefore we cannot use the framework of Adler et. al ([2] or [START_REF] Adler | High level excursion set geometry for non-Gaussian infinitely divisible random fields[END_REF]) to compute its geometric features (such as the Euler characteristic or intrinsic volumes). Even in the case where the shot noise random field is smooth, it may not satisfy the regularity conditions on the marginal or conditional probability densities of the field and its gradient ( [START_REF] Biermé | Crossings of smooth shot noise processes[END_REF]).

As a consequence, we will adopt a different viewpoint, and we will study the excursion sets via the whole function t → L X (t, U ), and not only its value for a particular fixed t. A convenient functional framework to define and compute these perimeters is the framework of functions of bounded variation. Our main tool will be the so-called coarea formula that relates the integral of the perimeter of all excursion sets to the integral of the differential of the function. The coarea formula has been already used in a similar situation by Wschebor [START_REF] Wschebor | Formule de Rice en dimension d[END_REF] and by Zähle in [START_REF] Zähle | A general Rice formula, Palm measures, and horizontal-window conditioning for random fields[END_REF] to obtain a general Rice formula for continuous random fields in dimension d. It has also been used by Azaïs and Wschebor in [START_REF] Azaïs | Level sets and extrema of random processes and fields[END_REF] to have a proof of the theorem that computes the expected number of crossings of a random field as a function of some of its marginal and conditional probability densities. See also Adler and Taylor [START_REF] Adler | Random fields and geometry[END_REF] p.283 for a discussion about this theorem. The coarea formula approach is in some sense a weak approach since we will obtain a formula for almost every level t (and not for a specific value of t). But the advantage is that we will be able to make explicit computations in a situation where the methods of [START_REF] Adler | Random fields and geometry[END_REF] or [START_REF] Adler | High level excursion set geometry for non-Gaussian infinitely divisible random fields[END_REF] cannot be applied. Let us also mention that in our previous paper [START_REF] Biermé | A Fourier approach for the level crossings of shot noise processes with jumps[END_REF] we started using the same approach in dimension n = 1, but we worked under a piecewise regularity assumption more restrictive than functions of bounded variation. We propose here a much more general setting, allowed for any dimension n ≥ 1. Note also that our results on coarea formula only rely on a functional assumption and not on a distribution assumption. In particular, they are valid for some processes with jumps and allow to recover partially some recent results in dimension n = 1 on Rice formula for the number of crossings for the sum of a smooth process and a pure jump process [START_REF] Dalmao | Rice formula for processes with jumps and applications[END_REF] or for piecewise deterministic Markov processes [START_REF] Borovkov | On level crossings for a general class of piecewise-deterministic Markov processes[END_REF]. However, we focus here on shot noise random fields for which we set convenient assumptions to ensure the bounded variation, derive explicit computation and obtain asymptotic regime as the underlying intensity tends to infinity.

The paper is organized as follows: we start in Section 2 to give some notations and properties of the functions of bounded variation. Then, in Section 3, we define precisely the shot noise random field and give an explicit computation of the perimeter of its excursion sets. We illustrate our results with some examples. Finally in Section 4, we derive two different asymptotic behavior for the perimeters as the intensity of the underlying homogeneous Poisson point process goes to infinity.

Coarea formula.

2.1. The framework of functions of bounded variation. For sake of completeness, we first recall here some definitions and properties of functions of bounded variation. We will mainly use the framework and notations of Ambrosio, Fusco and Pallara in [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. We shall also sometimes refer to Evans and Gariepy [START_REF] Evans | Measure theory and fine properties of functions[END_REF]. In all the following L n will denote the n-dimensional Lebesgue measure in R n , and H k will denote the k-dimensional Hausdorff measure (we will most of the time use it with k = n -1 and keep L n for k = n). When there is no ambiguity we will simply denote dx instead of L n (dx) for the Lebesgue measure in integrals. We will also use the notation µ∠A to denote the restriction of a measure µ to a set A.

Let U be an open subset of R n . A real-valued function f ∈ L 1 (U ) is said to be a function of bounded variation in U if

V (f, U ) := sup U f divϕ dx | ϕ ∈ C 1 c (U, R n ), ϕ ∞ ≤ 1 < +∞,
where C 1 c (U, R n ) denotes the set of continuously differentiable R n -valued functions with compact support in U . We will denote by BV (U ) the space of functions of bounded variation in U . An equivalent definition ([3] p.117-120) of f ∈ BV (U ) is that f ∈ L 1 (U ) is such that its distributional derivative (i.e. its derivative in the sense of distributions) is representable by a finite Radon measure in U , i.e.

U f (x) ∂φ ∂x l (x) dx = - U φ(x) D l f (dx) ∀φ ∈ C ∞ c (U, R), ∀l = 1, . . . , n
for some R n -valued measure Df = (D 1 f, . . . , D n f ). Its total variation is the positive Radon measure denoted by Df and defined by

Df (E) = sup P ∈P(E) k∈K Df (E k ) ,
for all measurable sets E ⊂ U , with P(E) the set of finite or countable partitions P = (E k ) k∈K of E into disjoint measurable sets E k , and where Df (E k ) denotes the Euclidean norm (in R n ) of Df (E k ). Let us note S n-1 the unit sphere of R n . According to the polar decomposition, which follows from Radon-Nikodym Theorem (see Corollary 1.29 of [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]), there exists a unique S n-1 -valued function ν f that is measurable and integrable with respect to the measure Df and such that Df = Df ν f . And we also have

V (f, U ) = Df (U ).
In particular, according to [START_REF] Evans | Measure theory and fine properties of functions[END_REF] p.91, when f : U ⊂ R n → R is Lipschitz, then it is differentiable almost everywhere, and in that case if we denote ∇f (x) = ∂f ∂x 1 (x), . . . , ∂f ∂xn (x) ∈ R n the gradient of f at a point x, and ∇f (x) its Euclidean norm, then Df = ∇f L n , Df = ∇f L n and ν f = ∇f / ∇f , so that

V (f, U ) = Df (U ) = U ∇f (x) dx.
One can define a norm on BV (U ) by

(2.1) f BV (U ) = f L 1 (U ) + Df (U ), so that (BV (U ), • BV (U ) ) is a Banach space ([3] p.121).
The framework of functions of bounded variation is of special interest to study the perimeter of a set because of the following definition and property. Let E be an L n -measurable subset of R n . Then for any open subset U ⊂ R n , we say that E is a set of finite perimeter in U if its indicator function χ E is of bounded variation in U . In that case, we define the perimeter

L E (U ) of E in U as V (χ E , U ), i.e. L E (U ) := sup E divϕ dx | ϕ ∈ C 1 c (U, R n ), ϕ ∞ ≤ 1 .
The term "perimeter" meets here its usual sense in dimension n = 2 as "the length of the boundary". Indeed, it can be shown (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] p.143) that for all sets E with piecewise C 1 boundary in U and such that H n-1 (∂E ∩ U ) is finite, then by Gauss-Green theorem the distributional derivative of χ E is Dχ E = ν E H n-1 ∠∂E, where ν E is the inner unit normal to E, and that

L E (U ) = H n-1 (∂E ∩ U ).
Let f ∈ BV (U ). For t ∈ R, we can consider the excursion set (also sometimes called "upper level set" or "superlevel") of level t of f :

E f (t, U ) := {x ∈ U such that f (x) > t}.
Then for L 1 -almost every t ∈ R, the set E f (t, U ) is of finite perimeter in U . We will denote its perimeter in U by L f (t, U ). Moreover, the function t → L f (t, U ) belongs to L 1 (R) and we have the coarea formula:

(2.2) Df (U ) = R L f (t, U ) dt.
The proof of this formula can be found in [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] p.145, or also in [START_REF] Evans | Measure theory and fine properties of functions[END_REF] p.185. Now, in order to use this formula, we need to be more explicit about the pointwise properties of f and the decomposition of its distributional derivative Df . Let us recall that f is said 

approximately continuous at x ∈ U ⊂ R n if (2.3) lim ρ→0 ρ -n Bρ(x) |f (y) -f (x)| dy = 0, where B ρ (x)
(x), f -(x) ∈ R and ν f (x) ∈ S n-1 such that f + (x) > f -(x) with lim ρ→0 ρ -n B + ρ (x,ν f (x)) |f (y) -f + (x)| dy = 0 and lim ρ→0 ρ -n B - ρ (x,ν f (x)) |f (y) -f -(x)| dy = 0, where B + ρ (x, ν) (resp. B - ρ (x, ν)) denotes the half-ball determined by ν ∈ S n-1 , that is {y ∈ B ρ (x), y -x, ν > 0} (resp. {y ∈ B ρ (x), y -x, ν < 0}). The set of approximate jump points is denoted by J f , it is a Borel subset of S f . Moreover, by Federer-Vol'pert theorem ([3] Theorem 3.78 p.173), since f ∈ BV (U ), the set S f is a countably H n-1 -rectifiable set with H n-1 (S f J f ) = 0 and Df ∠J f = (f + -f -)ν f H n-1 ∠J f .
By Radon-Nikodym theorem, the distributional derivative Df can be decomposed into the sum of three terms (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] p.184):

Df = ∇f L n + (f + -f -)ν f H n-1 ∠J f + D c f.
These three terms are defined in the following way:

• D a f := ∇f L n is the absolutely continuous part of the Radon measure Df with respect to the Lebesgue measure L n . And moreover, ∇f is here the approximate differential of f (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] p.165 and Theorem 3.83 p.176).

• D j f := (f + -f -)ν f H n-1 ∠J f is the jump part of Df .
• The last term D c f is the so-called Cantor part of Df , it has the property to vanish on sets which have a H n-1 finite measure.

2.2.

A general coarea formula. In our framework, we will be interested in functions that have no Cantor part in their distributional derivative (we will mainly study piecewise C 1 functions). These functions have been introduced by De Giorgi and Ambrosio to study variational problems where both volume and surface energies are involved, and they are called "special functions of bounded variation". Their set is denoted by SBV (U ), and it is a closed subset of (BV (U ), • BV (U ) ) (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF], Corollary 4.3 p.213).

As we already mentioned it in the introduction, our viewpoint will be to study the function t → L f (t, U ). The coarea formula (2.2) only provides the integral of t → L f (t, U ) on R, and we will extend it to the integral of t → h(t)L f (t, U ) on R for any bounded continuous function h. This is the aim of the following theorem.

Theorem 1. Let U be an open subset of R n and let f : U → R be a function in SBV (U ). Using the notations and definitions of the previous section, its distributional derivative is given by

Df = ∇f L n + (f + -f -)ν f H n-1 ∠J f . while Df = ∇f L n + (f + -f -)H n-1 ∠J f .
Let h : R → R be a continuous and bounded function.

Then R h(t)L f (t, U )dt = U h(f (x)) ∇f (x) dx + J f ∩U f + (y) f -(y) h(s) ds H n-1 (dy).
Proof. Let h : R → R be a continuous and bounded function. Let us first assume that there exists an ε > 0 such that h(t) ≥ ε for all t ∈ R. We define for all t ∈ R,

H(t) = t 0 h(s) ds.
Then H is a C 1 diffeomorphism from R to R. It is strictly increasing and since H (t) = h(t) for all t ∈ R is bounded, it is also Lipschitz on R. Now, let u be the function defined on U by u = H • f . Then by the chain-rule (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] p.164 and Theorem 3.96 p.189) we have that u ∈ SBV (U ), its jump set J u = J f , and its derivative is given by

Du = (h • f ) ∇f L n + H • f + -H • f -ν f H n-1 ∠J f .
Then by the coarea formula (2.2), we have that

R L u (s, U ) ds = Du (U ) = U h(f (x)) ∇f (x) dx + J f ∩U H(f + (y)) -H(f -(y)) H n-1 (dy) = U h(f (x)) ∇f (x) dx + J f ∩U f + (y) f -(y) h(s) ds H n-1 (dy). But for all s ∈ R, we have that E u (s, U ) = E f (H -1 (s), U ) where H -1 denotes the inverse of the C 1 diffeomorphism H.
And thus for all s ∈ R, we also have that

L u (s, U ) = L f (H -1 (s), U ).
Then by the change of variable t = H -1 (s) (see for instance [START_REF] Rudin | Real and complex analysis[END_REF] p.153), we get

R h(t)L f (t, U ) dt = R L u (s, U ) ds = U h(f (x)) ∇f (x) dx+ J f f + (y) f -(y) h(s) ds H n-1 (dy),
which is the announced formula.

In the general case, when h is not strictly positive, we simply apply the above formula to h 1 = 1 + sup(h, 0) and to h 2 = 1 + sup(-h, 0), and then we have it for h = h 1 -h 2 , which ends the proof of the theorem.

3. Shot noise random fields. Let (Ω, A, P) be a probability space and Φ

= {(x i , m i )} i∈I be a Poisson point process on R n × R d with intensity λL n ⊗ F , with F a probability measure on R d . Let g : R n × R d → R be defined such that for F -almost every m ∈ R d the function g m := g(•, m) belongs to SBV (R n ). From Section 2, it follows that for such m ∈ R d Dg m = ∇g m L n + (g + m -g - m )ν gm H n-1 ∠J gm and g m BV (R n ) = g m L 1 (R n ) + Dg m (R n ) = g m L 1 (R n ) + ∇g m L 1 (R n ) + Jg m (g + m (y) -g - m (y))H n-1 (dy) < +∞.
Under the assumption that

(3.1) R d g m L 1 (R n ) F (dm) < +∞,
one can define almost surely the shot noise random field

(3.2) X Φ = i∈I τ x i g m i , as a random field in L 1 loc (R n ), where τ x i g m i (x) := g m i (x -x i ).
In the sequel we will also consider Φ j = Φ {(x j , m j )} for j ∈ I and its associated shot noise random field

X Φ j = i∈I;i =j τ x i g m i .
Throughout the paper we make the stronger assumption that

(3.3) R d g m BV (R n ) F (dm) < +∞.
3.1. Regularity of the shot noise random fields. The aim of the following theorem is to show that the shot noise random field inherits the regularity properties of the kernel functions g m . The general idea is that if the kernel functions are special functions of bounded variation, then so is locally the shot noise. The theorem also gives the decomposition of its distributional derivative.

In the following, we will need the functional spaces L 1 loc (R n ) and SBV loc (R n ). We recall that they are defined by: a function f belongs to

L 1 loc (R n ) (resp. SBV loc (R n )) if and only if it belongs to L 1 (U ) (resp. SBV (U )) for all bounded open subset U of R n .
Theorem 2. Under Assumption (3.3), one can define almost surely (a.s.) in L 1 loc (R n ) the two shot noise random fields

X Φ := i∈I τ x i g m i and ∇X Φ := i∈I τ x i ∇g m i . Moreover, a.s. X Φ ∈ SBV loc (R n ) with DX Φ = ∇X Φ L n + (X + Φ -X - Φ )ν X Φ H n-1 ∠ J X Φ ,
and for H n-1 almost every y ∈ J X Φ , there exists a unique (x j , m j ) ∈ Φ such that y ∈ J τx j gm j = x j + J gm j and

(3.4) X + Φ (y) = τ x j g + m j (y) + X Φ j (y) and X - Φ (y) = τ x j g - m j (y) + X Φ j (y).
Proof. Let U be a bounded open set of R n . First, note that by Campbell's formula,

E i∈I τ x i g m i BV (U ) = R d R n τ y g m BV (U ) λdyF (dm) = λ R d R n τ y g m L 1 (U ) + τ y Dg m (U ) dyF (dm).
By Fubini's theorem and by the translation invariance of L n we have

R d R n τ y g m L 1 (U ) dyF (dm) = L n (U ) R d g m L 1 (R n ) F (dm).
Moreover, recalling the notation χ V to denote the indicator function of a set V , we have

R n τ y Dg m (U )dy = R n Dg m (U -y)dy = R n ×R n χ U -y (x) Dg m (dx)dy = L n (U ) Dg m (R n ),
by Fubini's theorem and the translation invariance of L n . It follows that

E i∈I τ x i g m i BV (U ) = λL n (U ) R d g m BV (R n ) F (dm) < +∞.
Hence, almost surely i∈I τ x i g m i BV (U ) < +∞. Since (SBV (U ),

• BV (U ) ) is a Banach space, it implies that X Φ = i∈I τ x i g m i is almost surely in (SBV (U ), • BV (U ) ). Now, let us identify DX Φ . First, remark that i∈I τ x i g m i BV (U ) < +∞ implies that i∈I τ x i ∇g m i L 1 (U ) + i∈I Jτ x i gm i ∩U τ x i g + m i (y) -τ x i g - m i (y) H n-1 (dy) < +∞, so that the vectorial Radon measure i∈I τ x i ∇g m i L n ∠ U + i∈I τ x i g + m i -τ x i g - m i ν τx i gm i H n-1 ∠ U ∩Jτ x i gm i
is well-defined. By uniqueness of the Radon Nikodym decomposition we get

∇X Φ L n ∠ U = i∈I τ x i ∇g m i L n ∠ U , (3.5) (X + Φ -X - Φ )ν X Φ H n-1 ∠ U ∩J X Φ = i∈I τ x i g + m i -τ x i g - m i ν τx i gm i H n-1 ∠ U ∩Jτ x i gm i . (3.6)
Note in particular that the last equality implies that

H n-1 U ∩ J X Φ ∩ ∪ i∈I J τx i gm i c = 0,
where for a set S, S c denotes the complement of S.

For a fixed point (x j , m j ) ∈ Φ, let us remark that since X Φ and τ x j g m j are both in SBV (U ) we also have X Φ j = X Φ -τ x j g m j ∈ SBV (U ). Analogously, we get

H n-1 U ∩ J X Φ j ∩ ∪ i∈I;i =j J τx i gm i c = 0.
Note that when y ∈ J τx j gm j ∩ S c X Φ j ∩ U we obtain that y ∈ J X Φ with (3.4) satisfied. Therefore, it suffices to prove that the set of points in U that belong to ∪ j∈I (J τx j gm j ∩ S X Φ j ) is H n-1 negligible. We have

E H n-1 ∪ j∈I (J τx j gm j ∩ S X Φ j ) ∩ U ≤ E   j∈I H n-1 J τx j gm j ∩ S X Φ j ∩ U   ≤ R d R n E H n-1 (J τxgm ∩ S X Φ ∩ U ) λdxF (dm),
by Mecke's formula (see [START_REF] Baccelli | Stochastic Geometry and Wireless Networks[END_REF]). Now, using Fubini's theorem, for F -a.e. m

R n E H n-1 (J τxgm ∩ S X Φ ∩ U ) dx = E S X Φ ∩U L n (y + J gm )H n-1 (dy) , since J τxgm = x + J gm for all x ∈ R n . But L n (y + J gm ) = L n (J gm ) = 0 for all y ∈ R n ,
which implies that H n-1 ∪ j∈I J τx j gm j ∩ S X Φ j ∩ U = 0 almost surely. Finally, we conclude the proof using the fact that R n is covered by a countable union of bounded open sets so that a.s.

X Φ is in SBV loc (R n ).
Under Assumption (3.3), X Φ is well-defined a.s. as a function in SBV (R n ) but we can also consider X Φ as a real random field indexed by R n . More precisely, let us define

D Φ = x ∈ R n such that X Φ (x) = i∈I τ x i g m i (x) ∩ S c X Φ .
Note that the convergence in

L 1 loc (R n ) implies that a.s. L n (D c Φ ) = 0 so that E (L n (D c Φ )) = 0. Moreover, for U a bounded open set in R n , by Fubini's theorem, one has E (L n (D c Φ ∩ U )) = U P(x ∈ D c Φ )dx = P(0 ∈ D c Φ )L n (U ),
where the last equality comes from

P(x ∈ D c Φ ) = P(0 ∈ D c Φ )
, by stationarity of the point process {x i } i∈I . It follows that for all x ∈ R n , P(x ∈ D c Φ ) = 0 and a.s. x ∈ S c X Φ and X Φ (x) = i∈I τ x i g m i (x). The same remark may be applied to

∇X Φ since L n (S ∇X Φ ) = 0 as ∇X Φ ∈ L 1 loc (R n ).
This allows to compute the finite dimensional law of the random field {(X Φ (x), ∇X Φ (x)); x ∈ R n } itself. In particular, the shot noise random fields have the nice property that their characteristic function is explicit (see for instance [START_REF] Baccelli | Stochastic Geometry and Wireless Networks[END_REF] Chapter 2). More precisely, in our framework, the shot noise field {(X Φ (x), ∇X Φ (x)); x ∈ R n } is stationary and therefore the joint characteristic function of X Φ (x) and ∇X Φ (x) is independent of x and is given for all u ∈ R and all v ∈ R n by (3.7)

ψ(u, v) := E(e iuX Φ (x)+i v,∇X Φ (x) ) = exp λ R d R n
(e iugm(y)+i v,∇gm(y) -1) dyF (dm) .

In the following we will also simply denote ψ(u) = ψ(u, 0) = E(e iuX Φ (x) ) the characteristic function of X Φ (x). Let us also mention that the real random variables X Φ (x), ∂X Φ ∂x 1 (x), . . . , ∂X Φ ∂xn (x) are integrable with

E (X Φ (x)) = λ R d R n g m (y)dyF (dm) and E ∂X Φ ∂x l (x) = λ R d R n ∂g m ∂x l (y)dyF (dm),
for all l = 1, . . . , n, implying that ∇X Φ is also integrable. Moreover, under the additional assumption that (3.8)

R d R n g m (y) 2 dyF (dm) < +∞ and R d R n ∇g m (y) 2 dyF (dm) < +∞,
the real random variables X Φ (x), ∂X Φ ∂x 1 (x), . . . , ∂X Φ ∂xn (x) are also square integrable with

Var (X Φ (x)) = λ R d R n g m (y) 2 dyF (dm) and Var ∂X Φ ∂x l (x) = λ R d R n ∂g m ∂x l (y) 2 dyF (dm),
for all l = 1, . . . , n.

3.2.

Perimeter of the excursion sets. We consider the excursion set of X Φ defined as previously by

E X Φ (t, U ) = {x ∈ U such that X Φ (x) > t},
as well as L X Φ (t, U ) its perimeter in U . According to Theorem 1, when h : R → R is a continuous and bounded function, one has a.s. the coarea formula

R h(t)L X Φ (t, U )dt = U h(X Φ (x)) ∇X Φ (x) dx + J X Φ ∩U X + Φ (y) X - Φ (y)
h(s) ds H n-1 (dy).

By (3.4), the jump part rewrites as

J X Φ ∩U X + Φ (y) X - Φ (y)
h(s) ds H n-1 (dy) = j∈I Jτ x j gm j ∩U τx j g + m j (y)+X Φ j (y)

τx j g - m j (y)+X Φ j (y)
h(s) ds H n-1 (dy) = j∈I Jτ x j gm j ∩U τx j g + m j (y)

τx j g - m j (y) h(s + X Φ j (y)) ds H n-1 (dy). (3.9)
We compute the expectation of the jump part of the coarea formula in the next proposition.

Proposition 1. Let h : R → R be a continuous and bounded function. Then,

E J X Φ ∩U X + Φ (y) X - Φ (y) h(s) ds H n-1 (dy) = λL n (U ) R d Jg m g + m (y) g - m (y) E (h(s + X Φ (0))) ds H n-1 (dy)F (dm).
Proof. From Mecke's formula (see [START_REF] Baccelli | Stochastic Geometry and Wireless Networks[END_REF]), taking the expectation in (3.9), we get

E J X Φ ∩U X + Φ (y) X - Φ (y) h(s) ds H n-1 (dy) = R n ×R d Jτ xgm ∩U τxg + m (y) τxg - m (y) E (h(s + X Φ (y))) ds H n-1 (dy)λdx F (dm) = R n ×R d Jg m ∩(U -x) g + m (y) g - m (y) E (h(s + X Φ (x + y))) ds H n-1 (dy)λdx F (dm),
by translation invariance of H n-1 . Moreover, by stationarity of X Φ , for all s ∈ R, and

x, y ∈ R n , E (h(s + X Φ (x + y))) = E (h(s + X Φ (0)))
. By Fubini's theorem, integrating with respect to x, this last integral is equal to

λL n (U ) R d Jg m g + m (y) g - m (y) E (h(s + X Φ (0))) dsH n-1 (dy)F (dm),
which is the announced result.

We can now give our main result about the mean value of the perimeter of the shot noise random field. It is a direct consequence of the coarea formula of Theorem 1, when taking for h the function h(t) = e iut , and of the computation of the expectation of the jump part of the coarea formula given in Proposition 1.

Theorem 3. Let X Φ be a shot noise random field given on R n by (3.2) and such that Assumption (3.3) is satisfied. For all t ∈ R, let us denote

C X Φ (t) = E (L X Φ (t, (0, 1) n )) .
Then the function t → C X Φ (t) belongs to L 1 (R) and its Fourier transform is given for all u ∈ R, u = 0 by

C X Φ (u) = E(e iuX Φ (0) ∇X Φ (0) ) + E(e iuX Φ (0) ) λ iu R d Jg m (e iug + m (y) -e iug - m (y) ) H n-1 (dy)F (dm)
and for u = 0, we have

C X Φ (0) = E(V (X Φ , (0, 1) n )) = E( ∇X Φ (0) ) + λ R d Jg m (g + m (y) -g - m (y)) H n-1 (dy)F (dm).
A direct consequence of Theorem 3 is the following corollary that gives a Rice formula in a weak sense (i.e. for almost every level t) and includes the "jump part".

Corollary 1. Under the assumptions of Theorem 3, and if we moreover assume that the random variable X Φ (0) admits a probability density on R, denoted by t → p X Φ (0) (t), then for almost every t ∈ R we have

C X Φ (t) = E( ∇X Φ (0) |X Φ (0) = t)p X Φ (0) (t)+λ R d Jg m g + m (y) g - m (y) p X Φ (0) (t-s) dsH n-1 (dy)F (dm).
Proof. Note that since X Φ (0) admits p X Φ (0) for density we may define the positive measurable function

C(t) := E( ∇X Φ (0) |X Φ (0) = t)p X Φ (0) (t)+λ R d Jg m g + m (y) g - m (y) p X Φ (0) (t-s) dsH n-1 (dy)F (dm), for almost every t ∈ R. Moreover, R C(t)dt = E( ∇X Φ (0) ) + λ R d Jg m g + m (y) -g - m (y) H n-1 (dy)F (dm) ≤ E( ∇X Φ (0) ) + λ R d g m BV (R n ) F (dm) < +∞,
by Assumption (3.3). Then we may compute its Fourier transform and find C = C X Φ . The result follows from the injectivity of the Fourier transform.

Let us quote that sufficient conditions for X Φ (0) to admit a probability density are given in section 3.2 of [START_REF] Biermé | Crossings of smooth shot noise processes[END_REF].

3.3. Some particular cases. In order to have explicit formulas for the mean perimeter C X Φ (t) = E (L X Φ (t, (0, 1) n )), we need to be able to compute the two terms of C X Φ (u) in the formula of Theorem 3. We will give in this section many situations in which the computations are doable. The first case is the one of piecewise constant functions g m , since in that case the first term vanishes. The second case is when E( ∇X Φ (0) 2 ) is finite, because we are then able to use the joint characteristic function of X Φ (0) and ∇X Φ (0) to have an explicit formula for the term E(e iuX Φ (0) ∇X Φ (0) ). This will be the aim of the next section.

Let us start with the piecewise constant case. When the functions g m are piecewise constant then ∇X Φ (0) = 0 a.s. and therefore we simply have

C X Φ (u) = E(e iuX Φ (0) ) λ iu R d Jg m (e iug + m (y) -e iug - m (y) ) H n-1 (dy)F (dm).
Example 1: we consider a shot-noise process X Φ in R 2 made of random shapes, i.e. we assume that n = 2, that the marks m are given by m = (β, r) with β ≥ 0, r ≥ 0 and with the distribution F given by F (dm) = F β (dβ)F r (dr) (having thus β and r independent). We also assume that the functions g m are of the form g m (x) = βχ Kr (x) for all x ∈ R 2 , where for each r, K r is a compact set of R 2 with piecewise smooth boundary and such that the mean perimeter and the mean area respectively defined by

p = R + H 1 (∂K r ) F r (dr) and a = R + L 2 (K r ) F r (dr)
are both finite. Then in that case, we have

∀u ∈ R, u = 0, C X Φ (u) = λp F β (u) -1 iu e λa( F β (u)-1) ,
where F β (u) = R + e iuβ F β (dβ). • In particular if β follows an exponential distribution of parameter µ > 0 then F β (u) = µ µ-iu , and then

C X Φ (u) = λp 1 µ -iu e λa iu µ-iu .
We recognize here (thanks to tables of Fourier transforms !) the Fourier transform of a noncentral chi-square distribution, and we thus have for a.e.

t ∈ R + , C X Φ (t) = λµpe -λa-µt I 0 (2 λµat),
where I 0 is the modified Bessel function of the first kind of order 0 that is given for all t ∈ R by I 0 (t) = 1 π π 0 e t cos θ dθ. • Another explicit and simple case is when β = 1 a.s., which implies that F β (u) = e iu . Then C X Φ (u) is the product of two Fourier transforms: the one of a Poisson distribution and the one of the indicator function of the interval [0, 1]. Therefore we get

∀k ∈ N, for a.e. t ∈ (k, k + 1), C X Φ (t) = λp (λa) k k! e -λa .
We illustrate this result on Figure 1 where we show a sample of a shot-noise process made of two indicator functions of squares. We show here on the left a sample (in the square domain (0, 2000) 2 ) of a shot noise process made of two indicator functions of squares of respective side length 60 and 200, and with respective probability 1/2; with a Poisson point process intensity λ = 2.10 -4 . In the middle we show the boundaries of some of the excursion sets. And on the right we plot the empirical distribution of the perimeter of the excursion sets as a function of the level, together with the expected values of these perimeters (red stars).

3.4. Link with directional derivatives. In the general case, when the functions g m are not piecewise constant, we need to be able to compute the term E(e iuX Φ (0) ∇X Φ (0) ). In order to have an explicit formula for it in terms of the characteristic function of the shot noise (that is given by (3.7)), we will first prove the following proposition.

Proposition 2. Let X and Y be two random variables, such that X is real-valued and Y takes values in R n , n ≥ 1. Let φ be the joint characteristic function of X and Y given by

∀u ∈ R, ∀v ∈ R n , φ(u, v) := E(e iuX+i v,Y ). Assume that E( Y 2 ) < +∞, then ∀u ∈ R, E(e iuX Y ) = -1 2πω n-1 S n-1 +∞ 0 1 t 2 (φ(u, tv) + φ(u, -tv) -2φ(u, 0)) dt H n-1 (dv),
where ω n-1 is the L n-1 measure of the unit ball of R n-1 .

Proof. We first use the well-known identity:

Y = 1 2ω n-1 S n-1 | v, Y | H n-1 (dv).
Now, for any y ∈ R, we have that

-1 π +∞ 0 1 t 2 (e ity + e -ity -2) dt = 2|y| π +∞ 0 1 t 2 (1 -cos(t)) dt = |y|.
We can use this identity for each v, Y , integrate on v ∈ S n-1 , multiply by e iuX and finally take the expectation. Then, since for any t and y in R, we have |e ity + e -ity -2|/t 2 ≤ min(4/t 2 , y 2 ), and since E( Y 2 ) < +∞, we obtain by Fubini's theorem that

E(e iuX Y ) = -1 2πω n-1 S n-1 +∞ 0 1 t 2 E(e iuX+it v,Y ) + E(e iuX-it v,Y ) -2E(e iuX ) dt H n-1 (dv),
which is the announced result.

Example 2: we give here an example of the use of Proposition 2 in the particular case of radial functions g m . To have simpler formulas, we will compute only the total variation of the field. We assume here that n = 2, that the functions g m are "cone" functions (with no jumps) given by g

m (x 1 , x 2 ) = (1 -m x 2 1 + x 2 2 )χ B(0, 1 m ) (x 1 , x 2 )
, and that the marks m ∈ R + are distributed with the Γ(3, 1) distribution. In that case, the characteristic function of ∇X Φ (0) is given by

ψ(0, v 1 , v 2 ) = exp λ 2 R + B(0, 1 m ) (e -im v 1 x 1 +v 2 x 2 √ x 2 1 +x 2 2 -1)m 2 e -m dx 1 dx 2 dm = exp λ 2 R + 2π 0 1 m
0 (e -im(v 1 cos θ+v 2 sin θ) -1)m 2 e -m r dr dθ dm .

Therefore, for any v = (v 1 , v 2 ) ∈ S 1 and any t ∈ R, we have ψ(0, tv 1 , tv 2 ) = ψ(0, t, 0) and we can further compute

ψ(0, t, 0) = exp λ 2 R + 2π 0 1 m 0 (e -imt cos θ -1)m 2 e -m r dr dθ dm = exp λ 4 R + 2π 0 (e -imt cos θ -1)e -m dθ dm = exp λ 4 2π 0 ( 1 1 + it cos θ -1) dθ = exp - λπ 2 + λ 2 π 0 1 1 + t 2 cos 2 θ dθ = exp - λπ 2 + λπ 2 √ 1 + t 2 .
Finally, by Theorem 3 and Proposition 2 we can compute the expected total variation of the shot noise random field in (0, 1) 2 , and we get This last integral is related to Bessel functions, and this is not a surprise since Bessel functions are involved in systems that have cylindrical symmetries.

E(V (X Φ , (0, 1) 2 )) = E( ∇X φ (0) ) =
Example 3: we consider a shot-noise process in R 2 made of a deterministic function with random amplitude. More precisely, we assume that n = 2 and that the marks m are in R (i.e. d = 1) with the distribution F (dm) given by the exponential distribution with parameter 1 so that F (u) = 1 1-iu . We consider the function g

(x) = g(x 1 , x 2 ) = e -x 1 χ R + (x 1 )χ [0,1] (x 2 ) and g m = m × g. Note that g ∈ SBV (R 2 ) with J g = ({0} × [0, 1]) ∪ (R + × {0}) ∪ (R + × {1}) and ∇g(x 1 , x 2 ) = -e -x 1 0 χ R + (x 1 )χ [0,1] (x 2
). It follows that the joint characteristic function of X Φ (x) and ∇X Φ (x) is given by In the middle we show the boundaries of some of the excursion sets. And on the right we plot the empirical distribution of the perimeter of some excursion sets as a function of the level (blue circles), together with the expected values of these perimeters (red curve) given by Formula (3.10). Now, we notice that here the gradient ∇g is non-zero only in the x 1 direction, and that moreover it is always non-positive in that direction. Therefore we have

ψ(u, v 1 , v 2 ) = exp λ +∞ 0 1 0 F e -y 1 (u -v 1 ) -1 dy 1 dy 2 = (1 -i(u -v 1 )) -λ .
E(e iuX Φ (0) ∇X Φ (0) ) = -E e iuX Φ (0) ∂X Φ (0) ∂x 1 = i ∂ψ ∂v 1 (u, 0, 0) = λ (1 -iu) -λ-1 .
By Theorem 3, it remains to compute the second term corresponding to the jump part to get an explicit expression for C X Φ . In this example, for u = 0, we have

1 iu R d Jg m (e iug + m (y) -e iug - m (y) ) H n-1 (dy)F (dm) = F (u) -1 iu + 2 +∞ 0 F (ue -t ) -1 iu dt.
Therefore,

C X Φ (u) = 2λ (1 -iu)) -λ-1 -2λ log(1 -iu) iu (1 -iu) -λ .
The second term corresponds to the Fourier transform of the function

f (t) = 2λ Γ(λ) χ R + (t) t 0 s λ-1 e -s (κ(λ) -log(s)) ds,
where κ is the logarithmic derivative of the Γ function and thus finally we get

(3.10) for a.e. t ∈ R + , C X Φ (t) = 2λt λ e -t Γ(λ + 1) + f (t).
This example is also illustrated by Figure 2, where we show a sample of such a shot noise random field together with the empirical and the theoretical expected length of its excursion sets.

4. Asymptotic Gaussian behaviour. We assume in this section that

R d R n g 2 m (y) dyF (dm) < +∞.
As the intensity λ of the Poisson point process goes to infinity, it is well-known (see for instance [START_REF] Heinrich | Normal convergence of multidimensional shot noise and rates of this convergence[END_REF] or [START_REF] Papoulis | High density shot noise and Gaussianity[END_REF]) that the shot noise random field converges (after normalization) to a Gaussian random field. More precisely, if we denote by X λ the shot noise field defined by Equation (3.2) with a homogeneous Poisson point process {x i } i∈I of intensity λ, then the random field Z λ defined by

(4.1) ∀x ∈ R n , Z λ (x) = X λ (x) -λ g m (y) dyF (dm) √ λ
converges, in the sense of finite dimensional distributions, to a stationary Gaussian random field B of mean 0 and covariance function E(B(x)B(0)) = g m (y -x)g m (y) dyF (dm). The aim of the following theorem is to give the asymptotic behavior of the mean perimeter of the excursion sets of Z λ as λ goes to infinity. It shows in particular that when there are no jumps, we have a finite Gaussian asymptotic whereas when there are jumps, the mean perimeters are not bounded anymore and behave like √ λ.

Theorem 4. Let Z λ be the normalized shot noise random field defined by Equation (4.1). Assume that the functions g m satisfying condition (3.3), also satisfy the following conditions:

σ 2 := g 2 m (y) dyF (dm) < +∞ , σ 2 ∇ := ∇g m (y) 2 dyF (dm) < +∞ , and 
(g + m (y) -g - m (y))(|g + m (y)| + |g - m (y)|) H n-1 (dy)F (dm) < +∞ .
Then we have two different asymptotic behaviors:

(a) If there are no jumps, that is if (g + m (y) -g - m (y)) H n-1 (dy)F (dm) = 0 then as λ goes to +∞, we have for any fixed u ∈ R:

C Z λ (u) = 1 ω n-1 √ 2π e -u 2 σ 2 /2 S n-1 v, ∇g m (y) 2 dyF (dm)H n-1 (dv) + o(1). (b) If there are jumps, that is if (g + m (y) -g - m (y)) H n-1 ( 
dy)F (dm) > 0 then as λ goes to +∞, we have for any fixed u ∈ R:

C Z λ (u) = √ λe -u 2 σ 2 /2 ∇g m (x) dxF (dm) + (g + m (y) -g - m (y)) H n-1 (dy)F (dm) +o( √ λ).
Proof. Let us denote µ := g m (y) dyF (dm), and let us recall that

E(X λ (0)) = λµ and Var(X λ (0)) = λ g 2 m (y) dyF (dm) = λσ 2 ,
and for all v ∈ S n-1 ,

E( v, ∇X λ (0) ) = λ v, ∇g m (y) dyF (dm) =: λµ ∇ (v) and Var( v, ∇X λ (0) ) = λ v, ∇g m (y) 2 dyF (dm) =: λσ 2 ∇ (v). Since Z λ = (X λ -λµ)/ √ λ, the function C Z λ is related to the function C X λ by the rela- tionship C Z λ (u) = 1 √ λ e -iuµ √ λ C X λ ( u √ λ ).
And therefore, for u = 0, we have

C Z λ (u) = 1 √ λ E e iu X λ (0)-µλ √ λ ∇X λ (0) + √ λE(e iu X λ (0)-µλ √ λ ) e i u √ λ g + m (y) -e i u √ λ g - m (y) iu/ √ λ H n-1 (dy)F (dm),
and when u = 0, the expected total variation of Z λ is

E(V (Z λ , (0, 1) n )) = C Z λ (0) = 1 √ λ E( ∇X λ (0) ) + √ λ (g + m (y) -g - m (y)) H n-1 (dy)F (dm).
We have then two cases, depending on whether there are jumps or not.

• We first consider the case (a), when there are no jumps, which means that (g + m (y)g - m (y)) H n-1 (dy)F (dm) = 0. Then for F -almost every m, the function g m is such that its distributional derivative is given by Dg m = ∇g m L n . And since g m ∈ L 1 (R n ), we necessarily have R n ∇g m (x) dx = 0. (Indeed a way to see this is to consider the function t ∈ R → R n g m (x+tw) dx for any vector w ∈ R n . This function is constant equal to g m and therefore its derivative at t = 0 that is equal to R n w, ∇g m (x) dx is equal to 0). We then have, using the result of Proposition 2 and the change of variable t → t/ √ λ,

C Z λ (u) = 1 √ λ E e iu X λ (0)-µλ √ λ ∇X λ (0) = -e -iuµ √ λ 2πω n-1 S n-1 +∞ 0 1 t 2 (ψ λ ( u √ λ , tv √ λ ) + ψ λ ( u √ λ , - tv √ λ ) -2ψ λ ( u √ λ , 0)) dtdv, where ψ λ ( u √ λ , tv √ λ ) = E(e i u √ λ X λ (0)+i t √ λ v,∇X λ (0) ).
On the one hand, using Formula (3.7) for ψ λ , we have for any fixed t, u and v:

e -iuµ √ λ ψ λ ( u √ λ , tv √ λ ) -→ λ→+∞ e -u 2 σ 2 /2-t 2 σ 2 ∇ (v)/2 .
And on the other hand, using the fact that |e ix + e -ix -2| ≤ min(4, x 2 ) for any x real, we get

ψ λ ( u √ λ , tv √ λ ) + ψ λ ( u √ λ , - tv √ λ ) -2ψ λ ( u √ λ , 0) ≤ min(4, t 2 1 λ E( v, ∇X λ (0) 2 )).
Now since E( v, ∇X λ (0) ) = 0, we have E( v, ∇X λ (0) 2 )) = Var( v, ∇X λ (0) ) = λσ 2 ∇ (v) ≤ λσ 2

∇ . Therefore, we can use the dominated convergence theorem and obtain

C Z λ (u) -→ λ→+∞ -e -u 2 σ 2 /2 2πω n-1 S n-1 +∞ 0 1 t 2 (2e -t 2 σ 2 ∇ (v)/2 -2) dtdv = e -u 2 σ 2 /2 ω n-1 √ 2π S n-1 σ 2 ∇ (v) dv,
which ends the proof of case (a).

• For the second case (b), when there are jumps, which means that (g + m (y)-g - m (y)) H n-1 (dy)F (dm) is strictly positive, then ∇g m (x) dxF (dm) is not necessarily equal to 0 anymore. In that case, we will consider C Z λ (u)/ √ λ and we will show that it converges to a finite strictly positive limit. To begin with, we use again Proposition 2 and the change of variable t → t/λ, to have: v) .

On the other hand, we have

ψ λ ( u √ λ , tv λ ) + ψ λ ( u √ λ , - tv λ ) -2ψ λ ( u √ λ , 0) ≤ min(4, t 2 1 λ 2 E( v, ∇X λ (0) 2 )).
Now here E( v, ∇X λ (0) 2 )) = Var( v, ∇X λ (0) ) + E( v, ∇X λ (0) ) 2 = λσ 2 ∇ (v) + λ 2 µ ∇ (v) 2 . Therefore, we can again use the dominated convergence theorem and get to obtain, thanks to the hypothesis in the statement of the theorem, that Using additional assumptions on the order-three moments of X λ and ∇X λ it is possible to obtain bounds of convergence for C Z λ (u) in a way similar to the technical result of our previous paper [START_REF] Biermé | Crossings of smooth shot noise processes[END_REF] in the framework of smooth functions g m .

Example: Assume we are considering a shot noise random field on the plane (i.e. n = 2) and such that there are no jumps. Then if we denote for i, j = 1 or 2, This shows that we have a weak convergence of C Z λ (t) to the formula for the length of level curves in the Gaussian case (that is exactly the formula obtained through Rice formula and probability density functions of Gaussian fields in [START_REF] Azaïs | Level sets and extrema of random processes and fields[END_REF]).
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  Fig 1.We show here on the left a sample (in the square domain (0, 2000) 2 ) of a shot noise process made of two indicator functions of squares of respective side length 60 and 200, and with respective probability 1/2; with a Poisson point process intensity λ = 2.10 -4 . In the middle we show the boundaries of some of the excursion sets. And on the right we plot the empirical distribution of the perimeter of the excursion sets as a function of the level, together with the expected values of these perimeters (red stars).
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 2 (ψ(0, t, 0) + ψ(0, -t, 0) -2ψ(0, 0, 0)) dt = e -

Fig 2 .

 2 Fig 2. On this figure we show a sample of the shot noise random field of example 3 (exponential in the horizontal direction, with random amplitudes). The sample here (left image) is shown on the square domain (0, 10) 2 and we have taken λ = 4.In the middle we show the boundaries of some of the excursion sets. And on the right we plot the empirical distribution of the perimeter of some excursion sets as a function of the level (blue circles), together with the expected values of these perimeters (red curve) given by Formula (3.10).

  the one hand, for any fixed t, u and v we have 2 σ 2 /2+itµ ∇ (
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 2 (e itµ ∇ (v) + e -itµ ∇ (v) -2) dtdv + o(1) = e -u 2 σ 2 /2 2ω n-1 S n-1 |µ ∇ (v)| dv + o(1)= e -u 2 σ 2 /2 ∇g m (x) dxF (dm) + o(1).For the jump part, we use the inequalitye m (y) -g - m (y))(|g + m (y)| + |g - m (y)|)

( 4 . 2 )

 42 1 (dy)F (dm) = e -u 2 σ 2 /2 (g + m (y) -g - m (y)) H n-1 (dy)F (dm) + o(1).

γ

  11 cos 2 θ + γ 22 sin 2 θ + 2γ 12 cos θ sin θ dθ.

  is the Euclidean ball of radius ρ and centered at x. The set S f of points where this property does not hold is a L n negligible Borel set called approximate discontinuity set (see[START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] Proposition 3.64 p.160). A point x ∈ S f is called an approximate jump point of f if there exist f +
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