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LARGE AND MODERATE DEVIATIONS OF REALIZED

COVOLATILITY

HACÈNE DJELLOUT AND YACOUBA SAMOURA

Abstract. In this note, we consider the large and moderate deviation principle of the
estimators of the integrated covariance of two-dimensional diffusion processes when they
are observed only at discrete times in a synchronous manner. The proof is extremely
simple. It is essentially an application of the contraction principle for the results given in
the case of the volatility [4].

AMS 2000 subject classifications: 60F10, 62J05, 60J05.

1. Motivation and context

Given a filtred probability space (Ω,F , (Ft),P), let (X1,t, X2,t) be a two dimensional
diffusion process given by

{

dX1,t = u1,t(X1,t)dt+ σ1,tdB1,t

dX2,t = u2,t(X2,t)dt+ σ2,tdB2,t

(1.1)

where ((B1,t, B2,t), t ≥ 0) is a two-dimensional Gaussian process with independent incre-
ments, zero mean and covariance matrix

(

t
∫ t

0
ρsds

∫ t

0
ρsds t

)

∀t ≥ 0.

In (1.1), (u1, u2) is a progressively measurable process (possibly unknown). In what
follows, we restrict our attention to the case when σ1, σ2 and ρ are deterministic functions;
the functions σi, i = 1, 2 take positive values while ρ takes values in the interval [−1, 1].
Note that the marginal processes B1 and B2 are Brownian motions (BM). Moreover, we can
define a process B∗

t such that (B1,t, B
∗
t )t≥0 is a two-dimensional BM and dB2,t = ρtdB1,t +

√

1− ρ2tdB
∗
t for every t ≥ 0.

In this note, the parameter of interest is the (deterministic) covariance of X1 and X2

〈X1, X2〉t =
∫ t

0

σ1,tσ2,tρtdt. (1.2)

In finance,〈X1, X2〉· is the integrated covariance (over [0, 1]) of the logarithmic prices X1

and X2 of two securities. It is an essential quantity to be measured for risk management
purposes. The covariance for multiple price processes is of great interest in many financial
applications. The naive estimator is the realized covariance, which is the analogue of realized
variance for a single process.
Typically X1,t and X2,t are not observed in continuous time but we have only discrete

time observations. Given discrete equally spaced observation (X1,tn
k
, X2,tn

k
, k = 1, · · · , n) in
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the interval [0, 1] (with tk = k/n), a commonly used approach to estimate is to take the
sum of cross products

Cn
t :=

[nt]
∑

k=1

(

X1,tn
k
−X1,tn

k−1

)(

X2,tn
k
−X2,tn

k−1

)

, (1.3)

where [x] denotes the integer part of x ∈ R.
When the drift is known, we can also consider the following estimator

C
n

t :=

[nt]
∑

k=1

(

X1,tn
k
−X1,tn

k−1
−
∫ tn

k

tn
k−1

u1,t(X1,t)dt

)(

X2,tn
k
−X2,tn

k−1
−
∫ tn

k

tn
k−1

u2,t(X2,t)dt

)

In the unidimensional case and in the case that X have non-jump, this question has
been well investigated see [4] for relevant references. In [4] and recently in [7], the authors
obtained the large and moderate deviations for the realized volatility. The results of [4] are
extended to jump-diffusion processes. Mancini [8] established the large deviation result for
the threshold estimator for the constant volatility. Hui [6] derived a moderate deviation
result for the threshold estimator for the quadratic variational process.

In the bivariate case, Hayashi and Yoshida [5] considered the problem of estimating the
covariation of two diffusion processes under a non-synchronous sampling scheme. They
proposed an alternative estimator and they investigated the asymptotic distributions. In
[2], the authors complement the results in [5] by establishing a second-order asymptotic
expansion for the distribution of the estimator in a fairly general setup, including random
sampling schemes and (possibly random) drift terms. Several further works have been
realized when data on two securities are observed non-synchronously, see also [1]. Here we
do not consider the asynchronous case. In the bivariate case we also mention the work
of Mancini and Gobbi [9] which deal with the problem of distinguishing the Brownian
covariation from the co-jumps using a discrete set of observations.

The purpose of this note is to furnish some further estimations about the estimator (1.3),
refining the already known central limit theorem. More precisely, we are interested in the
estimations of

P

(√
n

bn

(

Cn
t −

∫ t

0

σ1,tσ2,tρtdt

)

∈ A

)

,

where A is a given domain of deviation, (bn)n>0 is some sequence denoting the scale of the
deviation. When bn = 1, this is exactly the estimation of the central limit theorem. When
bn =

√
n, it becomes the large deviations. And when 1 ≪ bn ≪ √

n, this is the so called
moderate deviations. The main problem studied in this paper is the large and moderate
deviations estimations of the estimator. In this bivariate case things are not complicated.

We refer to Dembo and Zeitouni [3], for an exposition of the general theory of large
deviation and limit ourself to the statement of the some basic definitions. Let {µT , T > 0}
be a family of probability on a topological space (S,S) where S is a σ-algebra on S and v(T )
a non-negative function on [1,∞), such that limT→∞ v(T ) = +∞. A function I : S → [0,∞]
is said to be a rate function if it is lower semicontinuous and it is said to be a good rate
function if its level set {x ∈ S : I(x) ≤ a} is compact for all a ≥ 0. {µT} is said to satisfy a
large deviation principle (LDP) with speed v(T ) and rate function I(x) if for any set A ∈ S

− inf
x∈A◦

I(x) ≤ lim
T→∞

(

inf
sup

)

1

v(T )
log µT (A) ≤ − inf

x∈Ā
I(x).
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where A0, Ā are the interior and the closure of A respectively.

This paper is organized as follows. In the next section we present the main results of this
paper. They are established in the last section.

2. Main results

Our first result is about the LDP of P(Cn
1 ∈ ·), with time t = 1 fixed.

Proposition 2.1. Let (X1,t, X2,t) be given by (1.1).

(1) For every λ ∈ R

Λn(λ) :=
1

n
logE(exp(λnC

n

1 ))

≤ Λ(λ) :=



























∫ 1

0

−1

2
log(1− λσ1,tσ2,t(1 + ρt))−

1

2
log(1 + λσ1,tσ2,t(1− ρt))dt

if − 1

||σ1σ2(1− ρ)|| ≤ λ ≤ 1

||σ1σ2(1 + ρ)||
+∞, otherwise.

and
lim
n→∞

Λn(λ) = Λ(λ).

(2) Assume that σ1,·σ2,·(1 ± ρ·) ∈ L∞([0, 1], dt) and ul,·(·) ∈ L∞(dt ⊗ P), for l = 1, 2.
Then P(Cn

1 ∈ ·) satisfies the LDP on R with speed n and with the good rate function
given by the Legendre transformation of Λ, that is

Λ∗(x) = sup
λ∈R

{λx− Λ(λ)}. (2.1)

We now extend Proposition 2.1 to the process-level large deviations of P(Cn
· ∈ ·), which

is interesting from the viewpoint of the non-parametric statistics.
Let Db([0, 1]) be the real right-continuous-left-limit and bounded variation functions γ.

The space Db([0, 1]) of γ, identified in the usual way as the space of bounded measures dγ
on [0, 1], with dγ[0, t] = γ(t) and dγ(0) = γ(0), will be equipped with the weak convergence
topology and the σ-field Bs generated by the coordinate {γ(t), 0 ≤ t ≤ 1}. We denote
by γ̇(t)dt and dγ⊥ respectively the absolute continuous part and the singular part of the
measure dγ associated with γ ∈ Db[0, 1] w.r.t. the Lebesgue measure dt. The signed measure
γ has a unique decomposition into a difference γ = γ+ − γ− of two positive measures γ+
and γ−. In the paper, we denote by P ∗ the function

P ∗(x) =















1

2
(x− 1− log x) if x > 0

+∞ if x ≤ 0,

(2.2)

which is the Legendre transformation of P given by

P (λ) =







− 1

2
log(1− 2λ) if λ <

1

2
+∞, otherwise.

(2.3)

Theorem 2.2. Let (X1,t, X2,t) be given by (1.1). Assume that σ1,·σ2,·(1±ρ·) ∈ L∞([0, 1], dt)
and ul,·(·) = ul(·, ·) ∈ L∞(dt⊗ P), for l = 1, 2. Then
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(1) P(Cn
· ∈ ·) satisfies the LDP on Db([0, 1]) w.r.t. the weak convergence topology, with

speed n and with some inf-compact convex rate function J(γ).
(2) If moreover t → σ1,tσ2,t(1± ρt) is continuous and strictly positive on [0, 1], then

J(γ) = Jabs
+ (γ+ + β) + Jabs

− (γ− + β) + J⊥
+ (γ+) + J⊥

− (γ−), (2.4)

where β is absolutely continuous with respect to the Lebesgue measure and given by

·
β(t) =

σ1,tσ2,t(1− ρ2t )− (
·
γ+(t) +

·
γ−(t))

2

+

√

[σ1,tσ2,t(1− ρ2t )− (
·
γ+(t) +

·
γ−(t))]2 + (

·
γ+(t) +

·
γ−(t))σ1,tσ2,t(1− ρ2t )

2
,

and

J⊥
± (γ) =

∫ 1

0

1

σ1,tσ2,t(1± ρt)
dγ⊥,

and

Jabs
± (γ) =

∫ 1

0

P ∗

(

2
·
γ(t)

σ1,tσ2,t(1± ρt)

)

dt,

where P ∗ is given in (2.2).

We discuss now the moderate deviations principle. To this purpose, let (bn)n≥1 be a
sequence of positive numbers such that

bn → ∞ and
bn√
n
→ 0 as n → ∞.

Let D0[0, 1] be the Banach space of real right-continuous-left-limit functions γ on [0, 1]
with γ(0) = 0, equipped with the uniform sup norm and the σ-field Bs generated by the
coordinate {γ(t), 0 ≤ t ≤ 1}.
Theorem 2.3. Given (X1,t, X2,t) by (1.1) with ul,·(·) = ul(·, ·) ∈ L∞(dt ⊗ P), for l = 1, 2.
Assume that σ1,·σ2,·(1± ρ·) ∈ L2([0, 1], dt) and

√
nbn max

1≤k≤n

∫ k/n

(k−1)/n

σ1,tσ2,t(1± ρt)dt −→ 0. (2.5)

Then P

(√
n

bn
(Cn

· − 〈X1, X2〉·) ∈ ·
)

satisfies the LDP on D0([0, 1]) with speed b2n and with the

good rate function Jm given by

Jm(γ) =











∫ 1

0

γ̇(t)2

2σ2
1,tσ

2
2,t(1 + ρ2t )

1[t:σ1,tσ2,t>0]dt if dγ ≪ σ1,tσ2,t

√

1 + ρ2tdt

+∞ otherwise

(2.6)

Remark 2.4. In particular, P
(√

n
bn

(Cn
1 − 〈X1, X2〉1) ∈ ·

)

satisfies the LDP on R with speed

b2n and with the rate function given by

Im(x) =
x2

2
∫ 1

0
σ2
1,sσ

2
2,s(1 + ρ2s)ds

, ∀x ∈ R.
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Remark 2.5. If for some p > 2,

σ1,·σ2,·(1± ρ·) ∈ Lp([0, 1], dt) and bn = O
(

n
1

2
− 1

p

)

,

we obtain (2.5).

Remark 2.6. Theorem 2.2 and 2.3 continue to hold under the linear growth condition of
the drift ul (l = 1, 2) rather than the boundedness. More precisely assume that

|ul,s(x)− ul,t(y)| ≤ αl [1 + |x− y|+ ηl(|s− t|)(|x|+ |y|)] , ∀s, t ∈ [0, 1], x, y ∈ R,

where ηl : [0,+∞) → [0,+∞) is a continuous nondecreasing function with ηl(0) = 0 and

αl > 0 is a constant. Then the LDP of Theorem 2.2 and 2.3 continue to hold for P(C̃n
· ∈ ·),

where C̃n
· is given by

C̃n
t :=

[nt]
∑

k=1

(

X1,tn
k
−X1,tn

k−1
− u1,tn

k−1
(X1,tn

k−1
)(tnk − tnk−1)

)

(

X2,tn
k
−X2,tn

k−1
− u2,tn

k−1
(X2,tn

k−1
)(tnk − tnk−1)

)

.

We introduce the following function:

Λ∗
±(x) = sup

λ∈R
{λx− Λ±(λ)}, (2.7)

which is the Legendre transformation of Λ± given by

Λ±(λ) :=

∫ 1

0

P

(

±λσ1,tσ2,t(1± ρt)

2

)

dt. (2.8)

And we denote by

α±,t =
1

2

∫ t

0

σ1,sσ2,s(1± ρs)ds. (2.9)

An easy application of deviation inequalities given in Proposition 1.5 in [4] gives

Proposition 2.7. We have for every n ≥ 1 and r > 0,

P

(

sup
t∈[0,1]

[C
n

t − EC
n

t ] ≥ r

)

≤ exp
(

−nΛ∗
+(α+ +

r

2
)
)

+ exp
(

−nΛ∗
−(α− − r

2
)
)

≤ exp

(

−n

2

[

r

‖σ1σ2(1 + ρ)‖∞
− log

(

1 +
r

‖σ1σ2(1 + ρ)‖∞

)])

+ exp

(

−n
r2

4
∫ 1

0
[σ1σ2(1− ρ)]2dt

)

,

P

(

inf
t∈[0,1]

[C
n

t − EC
n

t ] ≤ −r

)

≤ exp
(

−nΛ∗
+(α+ − r

2
)
)

+ exp
(

−nΛ∗
−(α− +

r

2
)
)

≤ exp

(

−n
r2

4
∫ 1

0
[σ1σ2(1 + ρ)]2dt

)

+ exp

(

−n

2

[

r

‖σ1σ2(1− ρ)‖∞
− log

(

1 +
r

‖σ1σ2(1− ρ)‖∞

)])

,

where Λ∗
± and α± are given in (2.7) and (2.9) respectively.
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3. Proof

In this section, we will give some hints for the proof of the main results. We have the
following

C
n

t =

[nt]
∑

k=1

(

∫ tn
k

tn
k−1

σ1,sdB1,s

)(

∫ tn
k

tn
k−1

σ2,sdB2,s

)

=

[nt]
∑

k=1

√
ak
√

a′kξkξ
′
k,

where

ξk =

∫ tn
k

tn
k−1

σ1,sdB1,s

√
ak

ξ′k =

∫ tn
k

tn
k−1

σ2,sdB2,s

√

a′k
with ak =

∫ tn
k

tn
k−1

σ2
1,tdt a′k =

∫ tn
k

tn
k−1

σ2
2,tdt.

Obviously ((ξk, ξ
′
k))k=1,··· ,n are independent centered Gaussian random vector with covari-

ance

1
√
ak
√

a′k

( √
ak
√

a′k
∫ tn

k

tn
k−1

σ1,sσ2,sρsds
∫ tn

k

tn
k−1

σ1,sσ2,sρsds
√
ak
√

a′k

)

.

Let us introduce the following notation:

Qn
±,t =

1

4

[nt]
∑

k=1

√
ak
√

a′k(ξk ± ξ′k)
2.

The proof relies on the following decomposition

C
n

t = Qn
+,t −Qn

−,t.

Proof of Proposition 2.1 By the independence of Qn
+,1 and Qn

−,1, we obtain that

Λn(λ) =
1

n
logE(exp (λnC

n

1 )) =
1

n
logE(exp(λn(Qn

+,1 −Qn
−,1)))

=
1

n
logE(exp(λnQn

+,1)) +
1

n
logE(exp(−λnQn

−,1)) := Λn,+(λ) + Λn,−(λ).

Let us deal with Λn,+. We have that

Λn,+(λ) =
1

n
logE(exp (λnQn

+,1))

=
1

n

n
∑

k=1

P

(

n
λ

2

(√

∫ tn
k

tn
k−1

σ2
1,sds

√

∫ tn
k

tn
k−1

σ2
2,sds+

∫ tn
k

tn
k−1

σ1,sσ2,sρsds

))

=

∫ 1

0

P

(

λ

2
fn(t)

)

dt,

where P is given in (2.3) and

fn(t) :=
n
∑

k=1

1(tn
k−1

,tn
k
](t)

√

∫ tn
k

tn
k−1

σ2
1,sds

√

∫ tn
k

tn
k−1

σ2
2,sds+

∫ tn
k

tn
k−1

σ1,sσ2,sρsds

tnk − tnk−1

.

Let us remark that we have

fn(t) =

√

√

√

√

n
∑

k=1

1(tn
k−1

,tn
k
](t)

∫ tn
k

tn
k−1

σ2
1,sds

∫ tn
k

tn
k−1

σ2
2,sds

tnk − tnk−1

+
n
∑

k=1

1(tn
k−1

,tn
k
](t)

∫ tn
k

tn
k−1

σ1,sσ2,sρsds

tnk − tnk−1

.
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Clearly, fn(t) is a dtmartingale w.r.t. the partially directed filtration (Bτn := σ((tnk−1, t
n
k ], k =

1, · · · , n))n.
By the convexity of P and Jensen inequality, we obtain that

∫ 1

0

P

(

λ

2
fn(t)

)

dt ≤
∫ 1

0

P

(

λσ1,tσ2,t(1 + ρt)

2

)

dt = Λ+(λ).

On the other hand, by the classical Lebesgue derivation theorem, we have that

fn(t) −→ f(t) := σ1,tσ2,t + σ1,tσ2,tρt, dt− a.e. on [0, 1].

The continuity of P : R → (−∞,+∞] gives

P

(

λ

2
fn(t)

)

−→ P

(

λ

2
f(t)

)

, dt− a.e. on [0, 1].

As P
(

λ
2
fn(t)

)

≥ − |λ|
2
σ1,tσ2,t ∈ L1([0, 1], dt), we can apply Fatou’s lemma to conclude that

lim inf
n→∞

Λn,+(λ) = lim inf
n→∞

∫ 1

0

P

(

λ

2
fn(t)

)

dt ≥
∫ 1

0

lim inf
n→∞

P

(

λ

2
fn(t)

)

dt = Λ+(λ).

Doing the same calculations with Λn,−, we obtain that

Λn,−(λ) ≤
∫ 1

0

P

(

−λσ1,tσ2,t(1− ρt)

2

)

dt = Λ−(λ),

and

lim inf
n→∞

Λn,−(λ) ≥ Λ−(λ).

From below, we conclude that

Λn(λ) ≤ Λ+(λ) + Λ−(λ) := Λ(λ),

and

lim inf
n→∞

Λn(λ) ≥ Λ(λ),

which implies that

lim
n→∞

Λn(λ) = lim
n→∞

(Λn,+(λ) + Λn,−(λ)) = Λ(λ).

Which ends the proof of first part of Proposition 2.1.

For the second part of Proposition 2.1, at first we will reduce the study to the case ul = 0
for l = 1, 2. Let β = max(|| u1 ||∞, || u2 ||∞). Since

∣

∣Cn
1 −Cn

1

∣

∣ ≤ β2

n
+

β

n

n
∑

k=1

∣

∣

∣

∣

∣

∫ tn
k

tn
k−1

σ1,sdB1,s

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ tn
k

tn
k−1

σ2,sdB2,s

∣

∣

∣

∣

∣

.

For l = 1, 2, we have for all λ > 0 and all δ > 0

1

n
logP

(

1

n

n
∑

k=1

∣

∣

∣

∣

∣

∫ tn
k

tn
k−1

σl,sdBl,s

∣

∣

∣

∣

∣

≥ δ

)

≤ −δλ+
λ2

2n

∫ 1

0

σ2
l,sds.

Letting n go to infinity and then λ to infinity we get that for all δ > 0

lim
n→∞

1

n
logP

(

1

n

n
∑

k=1

∣

∣

∣

∣

∣

∫ tn
k

tn
k−1

σl,sdBl,s

∣

∣

∣

∣

∣

≥ δ

)

= −∞.
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By the approximation technique (Theorem 4.2.13 in [3]), we deduce that P (Cn
1 ∈ ·) sat-

isfies the same LDP as P
(

Cn
1 ∈ ·

)

. Hence we can assume that ul = 0 for l = 1, 2.
Now, by inspection of the proof of Theorem 1.1 in [4], we deduce that the sequence

P
(

Qn
±,1 ∈ ·

)

satisfies the LDP on R with speed n and rate function given by

Λ∗
±(x) = sup

λ∈R
{λx− Λ±(λ)}.

By the independence of the sequences Qn
+,1 and Qn

−,1, and the contraction principle, see

Exercise 4.2.7 in [3], we deduce that P
(

C
n

1 ∈ ·
)

satisfies the LDP with rate function

Λ∗(x) = inf
x=x1−x2

{

Λ∗
+(x1) + Λ∗

−(x2)
}

.

As we have also determined explicitly the logarithm of the moment generating function
Λ, the rate function is also given by (2.1).
Proof of Theorem 2.2 The proof of the first part is very similar to Proposition 2.1. It is

a consequence of Theorem 1.2 in [4] and the contraction principle. For the second part of
Theorem 2.2, the same arguments give the large deviation with the rate function

I(γ) = inf
γ=γ1−γ2

{I+(γ1) + J−(γ2)} ,

where

I±(γ) =

∫ 1

0

P ∗

(

2
·
γ(t)

σ1,tσ2,t(1± ρt)

)

dt+

∫ 1

0

1

σ1,tσ2,t(1± ρt)
dγ⊥.

An easy variational calculus gives the identification of the rate function in (2.4).

Proof of Theorem 2.3 As before, we treat only the case ul = 0 for l = 1, 2. We have the
following decomposition

Cn
· − 〈X1, X2〉· = (Qn

+,· − α+,·)− (Qn
−,· − α−,·),

where the definition of α± is given in (2.9).

Now using Theorem 1.3 in [4], we deduce that the sequence P

(√
n

bn
(Qn

±,· − α±,·) ∈ ·
)

satisfies the LDP on D0([0, 1]) with speed b2n and with the good rate function J±,m given by

J±,m(γ) =











∫ 1

0

γ̇(t)2

σ2
1,tσ

2
2,t(1± ρt)2

1[t:σ1,tσ2,t>0]dt if dγ ≪ σ1,tσ2,t(1± ρt)dt

+∞ otherwise.

By the same argument as before, we deduce that P

(√
n

bn
(Cn

· − 〈X1, X2〉·) ∈ ·
)

satisfies

the LDP on D0([0, 1]) with speed b2n and with the good rate function Jm given by

Jm(γ) = inf
γ=γ1−γ2

{J+,m(γ1) + J−,m(γ2)} .

An easy calculation gives the identification of the rate function in (2.6).
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