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The electronic structure of recently synthesized square superlattices with atomic coherence composed of PbSe,
CdSe, or CdTe nanocrystals (NCs) attached along {100} facets is investigated using tight-binding calculations.
In experimental realizations of these systems [W. H. Evers et al., Nano Lett. 13, 2317 (2013)], NC facets are
atomically bonded, resulting in single-crystalline sheets, which, due to their nanogeometry, have an effective
dimensionality below two. We predict electronic structures composed of successive bands formed by strong
coupling between the wave functions of nearest-neighbor NCs. This coupling is mainly determined by the
number of atoms at the NC bonding plane. The band structures deviate markedly from that of the corresponding
two-dimensional (2D) quantum well; the 2D case can be recovered, however, if the effects of the nanogeometry
are gradually reduced. The width of the bands can reach hundreds of meV, ascribing highly promising transport
properties to square superlattices. The band edges are located at k = 0 except for PbSe superlattices, where
their position in k space surprisingly depends on the parity of the number of {100} atomic planes in the NCs.
Our calculations demonstrate that semiconductors with dimensionality below two have a strong potential for
(opto-)electronic, photovoltaic, and spintronic applications.

DOI: 10.1103/PhysRevB.88.115431 PACS number(s): 73.22.−f, 62.23.Kn, 81.07.−b, 73.21.Cd

I. INTRODUCTION

A. Two-dimensional semiconductors

Two-dimensional (2D) semiconductors have been exten-
sively investigated during the past few decades due to their
wide variety of applications in transistors, solar cells, photode-
tectors, light emitting diodes, and lasers [e.g., Ref. 1 and refer-
ences therein]. Recently the scientific interest in 2D systems,
in which carriers experience confinement in one dimension but
are allowed to move freely along the other two directions, has
experienced a considerable rise owing mainly to the emergence
of graphene2 and topological insulators.3,4 Up to date, most
experimental studies on crystalline 2D semiconductors have
focused on III-V and II-VI materials grown by gas phase
methods in high vacuum, such as molecular beam epitaxy.5

These approaches have been extremely successful but their
technological applications are often limited by their high cost
and technical requirements. In addition, the presence of strain
between the film and substrate materials significantly affects
their electronic properties and may hinder exploitation of their
full potential. These impediments could be surpassed by re-
cent achievements in wet-chemical semiconductor fabrication
based on nanocrystalline colloids. This is exemplified, for
instance, by the synthesis of remarkable 2D Cd-chalcogenide
platelets (suspended in solution) with a thickness controlled at
the atomic level.6,7

B. Square superlattices

In the present paper we consider planar semiconductor
sheets realized by facet-specific oriented attachment of col-
loidal nanocrystals (NCs), a new approach recently reported
by Evers et al.8 Due to atomic bonding of particular facets and

the specific truncated nanocube shape of the building blocks,
the resulting planar sheets show a square nanogeometry, i.e.,
a square periodic structure of holes, and will be hereafter
called square superlattices. Examples of square superlattices
of PbSe and CdSe are presented in Fig. 1. We should
remark here that these systems are atomically coherent and
thus show strong electronic coupling between the building
blocks.8 Quite similar superlattices with square nanogeometry
were recently reported by another group.9 The calculations
below will show that the band structure deviates from that of
genuine 2D semiconductors, and that these systems in fact
correspond to a dimensionality that can gradually decrease
below 2, depending on the nanogeometry. The synthesis
of square superlattices comprising rock-salt PbSe NCs was
accomplished through NC self-assembly and facet-specific
atomic attachment. Conversion of the rock-salt PbSe square
superlattices into zinc-blende CdSe by a Cd-for-Pb cation
exchange has also been demonstrated.8 With the same proce-
dure, formation of 2D PbTe (CdTe) superlattices is plausible.10

We should remark here that in these systems the contact
region between two nanocrystals is formed by the defect-free
lattice itself; hence there is no electronic barrier between
the nanocrystals in the system. This is different from the
well-studied self-assembled nanocrystal superlattices in which
the nanocrystals are separated by an organic or inorganic
barrier, resulting in a much weaker coupling.11–16

The strict and commonly used classification of semicon-
ductors into 0D quantum dots, 1D rods, and 2D quantum
wells has overlooked the remarkable effects of a more complex
nanogeometry on the electronic structure. In the present case of
square superlattices, this electronic structure is also determined
by the nanogeometry, i.e., the periodic array of holes in
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FIG. 1. TEM images of (a) PbSe and (b) CdSe square lattices con-
sisting of atomically connected semiconductor truncated nanocubes
with a size of 6 nm. In the left insets HAADF-STEM images
along the 〈100〉 axis are shown, clearly indicating the atomically
defined crystalline connection between the NCs. The right insets
are electrodiffractograms of an area >1 μm2 demonstrating the
long-range atomic order of the crystal.

the planar structure, which depends on the size and shape
of the building blocks used in the self-assembly. Besides
the nanogeometry, the atomic structure of the semiconductor
itself (zinc-blende for CdSe and CdTe, rock-salt for PbSe)
is important. That both the nanogeometry and the atomic
lattice are important in the electronic structure has also
been demonstrated in our recent study of artificial graphene
superlattices of PbSe, CdSe, and CdTe NCs10 obtained by the
same kind of synthesis.8

In bulk, CdSe and CdTe have a direct gap above 1.5 eV at the
� point of the Brillouin zone. In contrast, bulk PbSe has a small
gap of 280 meV at 300 K17 at the L point of the Brillouin zone,
which makes it interesting for near-infrared optoelectronics
applications. From a theoretical viewpoint, the fundamental
properties of CdSe and CdTe NCs have been studied for several

decades,18–23 mostly for NCs with a wurtzite lattice. PbSe has
come under the spotlight of scientific research more recently,
with precedent investigations focusing mainly on the electronic
and optical properties of individual NCs.24–32

II. METHODOLOGY

A. Tight-binding calculations

In our current contribution, the electronic structure of
square superlattices of PbSe, CdSe, and CdTe NCs is explored
through tight-binding calculations, which allows us to treat
system sizes accessible to experiments. Each atom in the
superlattice (Pb, Cd, Se, or Te) is described by a double
set of sp3d5s� atomic orbitals including the spin degree of
freedom. Implementation of a sp3d5s� basis results in the
accurate description of the bulk band structures in comparison
with ab initio calculations and available experimental data,18,24

ensuring transferability of the parameters for investigating
the electronic structure of semiconductor nanostructures.33

Presently used tight-binding parameters for PbSe are taken
from Ref. 24, those for zinc-blende CdSe and CdTe are
given in Appendix A. Spin-orbit coupling is included. In the
case of zinc-blende CdSe and CdTe superlattices, surfaces
are saturated by pseudohydrogen atoms in order to avoid
states induced in the band gap due to surface dangling bonds.
For rock-salt PbSe nanostructures, surface passivation is not
necessary.24 Due to the large size of the systems considered
(up to 15 × 103 atoms and 3 × 105 atomic orbitals per unit
cell), the numerical methods described by Niquet et al.34 are
used to calculate near-gap eigenstates.

B. Geometry of the superlattices

Square superlattices are modeled in accordance with the
experimental realizations of Evers et al.,8 i.e., 2D lattices
of 〈001〉-oriented PbSe, CdSe, or CdTe NCs attached via
perpendicular {100} facets (Figs. 1 and 2). Each NC has the
form of a truncated nanocube, comprising 6 {100}, 8 {111},
and 12 {110} facets. The positions of the vertices of the
NC shape are given by P [±1, ± (1 − q), ± (1 − q)], where
[±1, ± 1, ± 1] indicate the position of the six corners of the
original nanocube (q = 0), q � 1 is the truncation factor, and
P represents all possible permutations. Realistic NC shapes
are considered, having truncations q between 0.25 and 0.5.8

The system unit cell includes a single NC, attached to its
periodic images along two orthogonal 〈100〉 directions. The
NC size is defined by the number of atomic biplanes along
〈100〉 directions and the length of the vectors delineating
the superlattice is na where n is an integer and a is the
lattice parameter (0.612 nm for PbSe, 0.608 nm for CdSe,
and 0.648 nm for CdTe). NC sizes ranging from 2.4 to 7.4 nm
were assessed for all materials considered.

III. RESULTS FOR SUPERLATTICES OF CdSe

A. Band structure: Conduction bands

First, we consider square superlattices of zinc-blende CdSe
(CdTe) as these systems have a simpler band structure of the
bulk materials compared to rock-salt PbSe. In Figs. 3(a) and
3(d) the electronic structure of a CdSe NC superlattice without
truncation (q = 0), i.e., a uniform 2D film, is presented and
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FIG. 2. (Color online) Model structure of colloidal PbSe NCs,
oriented along 〈100〉 and attached via perpendicular {100} facets,
resulting in a square superlattice. An ensemble of four truncated
nanocubes is illustrated in the top view along 〈001〉 (a) and tilted
relative to 〈001〉 (b) to better visualize the nanocube shape and
attachment. The NCs present 6 {100}, 8 {111}, and 12 {110} facets.
Gray/dark colored (gold/light colored) spheres are used to indicate
Pb (Se) atoms, respectively. In (c) part of a square superlattice formed
by PbSe NCs is presented in the top view.

compared with the corresponding electronic structure of a NC
superlattice with q = 0.45 [Figs. 3(b) and 3(e)] as well as that
of individual NCs with the same truncation [Figs. 3(c) and
3(f)]. For the sake of comparison, all cases refer to the same

NC size and band structures are presented in the Brillouin zone
of the superlattice with q = 0.45.

The electronic structure of the uniform film (q = 0) is
characterized by bands which are very dispersive on a wide
energy range because carriers are totally free to move in two
directions. The bands are just folded back in the Brillouin
zone of the superlattice (see also Appendix B). When
the nanocubes are truncated, assembly results in a planar
quasi-2D system with a periodic array of holes. In that case,
the electronic structure is characterized by multiple bands, as
expected for superlattices.35 The truncations induce periodic
scattering of the electronic waves, opening gaps in particular
at the center and at the edges of the superlattice Brillouin
zone, exactly like when we consider quasifree electron bands
starting from free electron ones.33,36 We show in Appendix B
that the conduction band structure of the square superlattices
can be easily deduced from the case of the uniform film if
we define pseudopotentials which describe the effects of the
truncations on the electron waves.

On the other hand, results on the superlattices of truncated
NCs can be also interpreted starting from the limit of
individual NCs [Figs. 3(c) and 3(f)]. Each individual NC
is characterized by discrete energy levels as a consequence
of the strong quantum confinement. Facet-to-facet atomic
bonding of the NCs induces strong coupling between the wave
functions of first-nearest neighbor NCs and the system can be
perceived as a single quasi-2D crystal yet with a superimposed
nanogeometry. The bands are formed exactly like bands in
solids that are strictly 2D, arising from the coupling between
atomic orbitals.

B. Effective tight-binding model

In an alternative and more coarse fashion, the building
blocks of the square superlattices can also be seen as “artificial”
atoms. The conduction bands (CBs) can then be described us-
ing a simple effective tight-binding Hamiltonian characterized

FIG. 3. (Color online) (a) Conduction and (d) valence band structure for a superlattice of CdSe NCs with zero truncation, i.e., a uniform
2D film. (b) and (e) Corresponding plots for a square superlattice of truncated NCs (q = 0.45). (c) and (f) Equivalent plots for isolated CdSe
NCs (q = 0.45). The same NC size is considered in all cases, i.e., 4.26 nm along 〈100〉. Sixteen valence bands and 16 conduction bands are
depicted. Conduction levels of the isolated NCs are labeled according to the symmetry of the envelope wave function (1S, 1P , 1D).
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FIG. 4. (Color online) Conduction band structure of a square su-
perlattice of CdSe NCs using the effective tight-binding Hamiltonian
for two sets of parameters: (a) Es = 2.18 eV, Ep = 2.43 eV, Vssσ =
−16 meV, Vspσ = 0 meV, Vppσ = 26 meV, and Vppπ = −2.2 meV.
(b) Same but with Vspσ = 20 meV.

by a spin-degenerate electron state with a 1S envelope wave
function and by three spin-degenerate 1P excited states higher
in energy (Fig. 4). In this context, the on-site energies are Es

and Ep. All hopping terms, i.e., nearest-neighbor interactions,
can be written in the two-center approximation as functions

of four parameters (Vssσ , Vspσ , Vppσ , Vppπ ) plus geometrical
factors, following Slater and Koster.37 It should be noted that
1S and 1P bands can be separately treated if Vspσ = 0.

Using reasonable parameters, this simplified scheme
explains quite well the results of sp3d5s� tight-binding
calculations [Fig. 3(b)]. The lowest CB stems mainly from
the 1S wave functions of the NCs, while the bands higher in
energy originate mostly from the 1P states. Comparing Fig. 4
with full tight-binding calculations [Fig. 3(b)], it is evident that
weak hybridization between 1S and 1P orbitals takes place in
the superlattices, the agreement being better when Vspσ �= 0
[Fig. 4(b)]. In addition, the almost dispersionless bands
observed under full tight-binding calculations at ≈2.5 eV are
due to weak coupling (Vppπ ) between 1Pz states perpendicular
to the lattice.

Based on the above, we conclude that the significant
dispersion of the 1S (1P ) CBs in the uniform film is slightly
reduced in NC superlattices due to the truncation which leads
to a reduction in the number of atoms at the junction between
neighbor NCs and enhanced scattering of the electronic waves.
As a consequence, an opening of the gap between the 1S and
1P states in all high symmetry k points is recorded as we pass
from the uniform film to the square superlattice. The truncation
also induces a vertical shift of the bands due to increased
quantum confinement. We have found that each CB is approx-
imately centered on the energy of the corresponding states of
the isolated NCs. Moreover weak hybridization between 1S

and 1P orbitals is evident for both q → 0 and q �= 0 cases.

C. Band structure: Valence bands

The above discussion is focused mainly on the CBs of CdSe
NC superlattices since the valence bands (VBs) have a more
complex behavior due to coupling between the anisotropic
heavy-hole and light-hole bands induced by confinement.
Hence their interpretation, especially starting from the limit of
isolated NCs assembly is less trivial. However, an important

FIG. 5. (Color online) Bandwidth of the (a)1S and (b) 1P CBs, (c) highest and (d) second VBs of square superlattices of CdSe NCs versus
the number of atoms (Nat) at the NC bonding plane. In all cases NC size, indicated in the legends, increases from left to right. In (b) black, red,
and green lines (darker to lighter color lines) are used to indicate the first, second, and third 1P CB states, respectively.
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FIG. 6. (Color online) Energy gaps at X, �, and M between the two highest VBs (a), (c), and (e) and between the two lowest CBs (b),
(d), and (f) versus the number of atoms (Nat) at the NC bonding plane, for square superlattices of CdSe. In all cases NC size, indicated in the
legends, increases from left to right.

feature revealed for both valence and conduction bands in
square NC superlattices is their substantial dispersion, which
indicates that bandlike transport of electrons as well as holes
could be realized in such systems. Hence square superlattices
are promising systems for photodetectors, solar cells, and
field-effect transistors.

D. Bandwidths and energy gaps

The full bandwidths of 1S and 1P CBs are presented in
Figs. 5(a) and 5(b) versus the number of atoms at the NC
bonding plane. The NCs with the smallest truncation, having
the maximum number of atoms at the NC bonding plane,
exhibit in general maximum dispersions. The bandwidths of
the topmost and second VBs [Figs. 5(c) and 5(d)] exhibit
a similar trend but they are smaller due to heavier effective
masses. The evolution of the energy gap between the two low-
est CBs or between the two highest VBs at the high symmetry
k points (X, �, M) is given in Fig. 6. Superlattices of NCs
with the smallest truncation exhibit minimum gaps. Moreover
maximum dispersions and gaps are recorded for the smallest
size NC systems due to stronger confinement. Gap values in
the VBs [Figs. 6(a), 6(c), and 6(e)] are always smaller than in
the CBs [Figs. 6(b), 6(d), and 6(f)], as a consequence of bands
derived from both heavy- and light-hole bands of bulk CdSe.

IV. RESULTS FOR SUPERLATTICES OF CdTe

The electronic structure of square superlattices of CdTe
NCs (Fig. 7) resembles that of CdSe. However, the strong
intrinsic spin-orbit coupling in CdTe results in a considerable
spin splitting not only in the VBs but also in the CBs, away
from the high symmetry k points of the Brillouin zone. This
momentum-dependent splitting may be due to the combined
effect of bulk inversion asymmetry (BIA)38 in the underlying
zinc-blende lattice and asymmetry of the structure perpendicu-
lar to the superlattice, the so-called Rashba effect.39 Such large
spin splittings are not a special effect of the nanogeometry but

occur similarly pronounced in CdTe quantum wells40 and may
be attractive for spintronic applications.41 The BIA term is
induced by the lack of a center of inversion in zinc-blende
binary semiconductors,38,42,43 whereas the structure inversion
asymmetry term as already stated originates from the inversion
asymmetry of the confining potential in, e.g., asymmetric
quantum wells or bulk semiconductors under strain.39,41

FIG. 7. (Color online) (a) Conduction and (b) valence band
structure of a square superlattice of CdTe NCs (NC size = 4.54 nm,
q = 0.45).
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FIG. 8. (Color online) Spin splitting of the second CB at k =
0.5 �M for square superlattices of CdTe NCs versus the number
of atoms (Nat) at the NC bonding plane. NC sizes are indicated in
the legend. Symmetric (solid lines) and asymmetric (dashed lines)
superlattices are considered for comparison.

In order to identify the origin of the spin splitting in our
systems, we have calculated the band structures for two types
of superlattices, respectively, symmetric and asymmetric with
respect to the z axis. The asymmetric structure is just obtained
from the symmetric one by removing the lowest plane of atoms.
The spin splitting of the second CB at k = 0.5 �M (where it
is the largest) is displayed in Fig. 8 for the two configurations.
It has a weak dependence on the number of atoms at the NC
bonding plane but strongly increases at decreasing NC size. A
large part of the spin splitting is already present in symmetric
superlattices showing that it mainly comes from the BIA. The
Rashba contribution, only present in the asymmetric case, is
smaller but tends to increase for smaller size.

V. RESULTS FOR SUPERLATTICES OF PbSe

The case of square superlattices of rock-salt PbSe NCs
is more complicated as evidenced in Fig. 9 where the band

structures are presented for two NC sizes, 4.89 nm [Figs. 9(a)
and 9(c)] and 4.28 nm [Figs. 9(b) and 9(d)]. However, there is
clear mirror symmetry between CBs and VBs, even if it is not
perfect. This is easily explained by a similar (approximate)
symmetry of the bands in bulk PbSe.24,27 In addition, the
overall behavior of the lowest CBs shown in Fig. 9(a) is
similar to that of CdSe superlattices except that there is a
manifold of four bands instead of one in CdSe. Like in
CdSe, these bands are mainly formed by the coupling (Vssσ )
between 1S conduction wave functions of nearest neighbor
PbSe NCs. The four 1S NC wave functions originate from
the fourfold-degenerate CB of bulk PbSe at the L point of the
Brillouin zone (eightfold degeneracy including the spin), the
situation being symmetric in the VB.24,27 Higher energy CBs
and lower energy VBs are due to the 1P and 1D NC wave
functions (only four bands are shown in Fig. 9 for clarity). The
evident splitting between all the 1S (1P ) bands indicates that
the energy and coupling of NC wave functions are not only
defined by the symmetry of the envelope function 1S (1P )
but also by the underlying Bloch function which depends on
the originating valley (intervalley splitting24). The absence
of translational symmetry due to the reduced dimensionality
in the square superlattices induces coupling between states
which originate from the different L valleys, whereas they are
degenerate in bulk PbSe. The effect of intervalley coupling has
been discussed in Refs. 24 and 28 for PbSe NCs, and has been
extensively investigated in the case of Si nanostructures and
Si/Ge heterostructures,34,44–49 where an oscillating behavior of
the intervalley splitting was found with well width, NC size.

The importance of valley effects on the band structure of
the PbSe superlattices is also demonstrated when we compare
Figs. 9(b) and 9(d) with Figs. 9(a) and 9(c) corresponding to
two different NC sizes. We have found that, depending on
the number n of {100} biplanes, being either an even or odd
number, the position of the CB minimum and VB maximum
alternates between � and M . In fact, the 1S bands both in
the CB and VB are completely reversed between the two
situations, meaning that the sign of Vssσ changes with the

FIG. 9. (Color online) (a) CB and (c) VB structure for a superlattice of 4.89 nm PbSe NCs (n = 8, q = 0.45). (c) and (d) Corresponding
plots for 4.28 nm NCs (n = 7, q = 0.45).

115431-6



ELECTRONIC STRUCTURE OF ATOMICALLY COHERENT . . . PHYSICAL REVIEW B 88, 115431 (2013)

parity of n. This can be elucidated by considering two atoms
positioned at a distance na along a 〈100〉 direction. The phase
of the Bloch function on the two atoms at the L point of the
Brillouin zone (at kL) is alternating for odd and even n as
exp[ikL · (na,0,0)] ∝ cos(πn). This unusual behavior cannot
take place in superlattices of semiconductors with band edges
at � and could be exploited for band engineering in superlat-
tices of PbSe. Besides this surprising feature, the qualitative
characteristics of the bands are the same for odd and even n.

VI. CONCLUSION

In summary, we have investigated the electronic structure
in square superlattices of rock-salt PbSe or zinc-blende CdSe
(CdTe) NCs attached via {100} facets. We have used a sp3d5s�

tight-binding method, which allows the examination of NC
sizes accessible to experiment. In all cases, a rich electronic
structure consisting of multiple dispersive bands is observed,
which can be directly attributed to the nanogeometry imposed
to the 2D crystalline sheets. The number of atoms at the
neighboring NCs bonding plane, defined by their shape and
size, is established as the critical parameter determining the
width of the bands. These planar systems form a new class of
semiconductor materials with a dimensionality that decreases
gradually below two if the effects of the nanogeometry, i.e.,
the periodic array of holes, becomes more important. Still, a
significant dispersion of both conduction and valence bands
is predicted for all compounds, promising efficient bandlike
transport of electrons and holes. This is unlike carrier transport
in nanocrystal superlattices in which the nanocrystals are sep-
arated by an organic or inorganic barrier, resulting in a much
weaker coupling. Our results designate square superlattices as
a highly attractive template for photodetectors, solar cells, and
field-effect transistors. Our calculations further reveal large
spin splitting in the electronic structure of square superlattices
of CdTe NCs. In the case of PbSe superlattices, the position
in k space of the conduction and valence band edges depends
on whether the number of biplanes of atoms in the NCs is odd
or even. These results should stimulate further work on the
topic including theoretical and experimental investigation of
the transport properties of these systems. In particular, local
scanning tunneling microscopy and spectroscopy should give
important information on their electronic structure.
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APPENDIX A: TIGHT-BINDING PARAMETERS

We consider a double basis of sp3d5s� atomic orbitals for
each Pb, Cd, Se, or Te atom, including the spin degree of

TABLE I. Tight-binding parameters (notations of Slater and
Koster37) for zinc-blende CdSe in an orthogonal sp3d5s� model. �

is the spin-orbit coupling. (a) and (c) denote the anion (Se) and the
cation (Cd), respectively.

Parameters for CdSe (eV)

Es(a) −8.065657 Es(c) −1.857148
Ep(a) 4.870028 Ep(c) 5.613460
Edxy

(a) 15.671502 Edxy
(c) 16.715749

Ed
x2−y2 (a) 15.232107 Ed

x2−y2 (c) 20.151047

Es∗ (a) 15.636238 Es∗ (c) 20.004452
�(a) 0.140000 �(c) 0.150000
Vssσ (ac) −1.639722 Vs∗s∗σ (ac) −1.805116
Vss∗σ (ac) 1.317093 Vss∗σ (ca) 0.039842
Vspσ (ac) 3.668731 Vspσ (ca) 1.885956
Vs∗pσ (ac) 0.978722 Vs∗pσ (ca) 1.424094
Vsdσ (ac) −0.890315 Vsdσ (ca) −1.007270
Vs∗dσ (ac) 0.906630 Vs∗dσ (ca) 2.472941
Vppσ (ac) 4.430196 Vppπ (ac) −0.798156
Vpdσ (ac) −2.645560 Vpdσ (ca) −1.296749
Vpdπ (ac) 0.028089 Vpdπ (ca) 2.295717
Vddσ (ac) −2.480060 Vddπ (ac) 2.393224
Vddδ −1.373199

Parameters for Cd-H and Se-H (eV)
EH 0.000000
Vssσ −35.69727 Vspσ 61.82948

freedom. For PbSe, we use the tight-binding parameters of
Ref. 24. Due to the lack of sp3d5s� tight-binding parameters for
zinc-blende CdSe and CdTe, corresponding data were derived
and are presented in Tables I and II, respectively. They were

TABLE II. Same as Table I but for zinc-blende CdTe. These
parameters have already been used in Ref. 18.

Parameters for CdTe (eV)

Es(a) −8.716293 Es(c) −1.269161
Ep(a) 2.362764 Ep(c) 5.739082
Edxy

(a) 11.204600 Edxy
(c) 15.107061

Ed
x2−y2 (a) 13.061473 Ed

x2−y2 (c) 17.014361

Es∗ (a) 13.802893 Es∗ (c) 17.908140
�(a) 0.385000 �(c) 0.065000
Vssσ (ac) −1.372451 Vs∗s∗σ (ac) −1.768994
Vss∗σ (ac) 0.177593 Vss∗σ (ca) 0.171087
Vspσ (ac) 2.464283 Vspσ (ca) 2.010538
Vs∗pσ (ac) 0.299617 Vs∗pσ (ca) 0.299793
Vsdσ (ac) −0.999978 Vsdσ (ca) −0.947854
Vs∗dσ (ac) −0.231393 Vs∗dσ (ca) −0.047237
Vppσ (ac) 3.633352 Vppπ (ac) −0.770868
Vpdσ (ac) −0.994358 Vpdσ (ca) −0.166481
Vpdπ (ac) 1.364603 Vpdπ (ca) 2.200983
Vddσ (ac) −2.100122 Vddπ (ac) 1.714043
Vddδ −0.727556

Parameters for Cd-H and Te-H (eV)
EH 0.000000
Vssσ −35.69727 Vspσ 61.82948
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obtained by fitting the experimental effective masses and a ref-
erence band structure at the main points of the Brillouin zone
and in a large energy range. The reference band structure was
calculated using the ab initio pseudopotential code ABINIT50

in the local density approximation. The pseudopotentials of
Ref. 51 were used. The gap was corrected using a scissor
operator to fit with its experimental value.

APPENDIX B: EFFECTIVE EMPIRICAL
PSEUDOPOTENTIAL MODEL

In this Appendix we show that we can recover the band
structure of the square superlattices starting from the limit
of the uniform film (q = 0) if we introduce pseudopotentials
which describe the effect of the periodic truncation. We
consider for simplicity the case of the CB characterized in the
bulk by an effective mass m�. In the uniform film, minibands
are formed due to the confinement. Their energy dispersion
is given by Ec

n + h̄2k2/(2m�), where Ec
n is the bottom of the

miniband n and k is the modulus of the in-plane wave vector
k. We write k = K + G, where K is the wave vector in the
reduced Brillouin zone of the superlattice and G is a reciprocal
lattice vector [G = (i,j )2π/L, where L is the length of the
square supercell, and i and j are integers]. The eigenvalues
and eigenstates of the Hamiltonian H0 for the uniform film are
given, respectively, by

En,G(K) = Ec
n + h̄2|K + G|2

2m�
, (B1)

�n,G(K) = χn(z) exp[i(K + G) · r‖], (B2)

where r‖ is the in-plane position vector and χn(z) is the
wave function along the transverse direction z. Figure 10(a)
shows that Eq. (B1) reproduces quite well the results of the
tight-binding calculations of Fig. 3(a).

The potential V induced by the truncation (q �= 0) on the
electrons is periodic and therefore can be written in Fourier
series as

V (r‖,z) =
∑

G

V (G,z) exp[iG · r‖]. (B3)

We deduce that the matrix elements of V in the basis of the
eigenstates for the uniform film [Eq. (B2)] can be simplified
into

〈�n,G(K)|V |�n′,G′ (K)〉 = Vn,n′ [|G − G′|] (B4)

FIG. 10. (Color online) (a) Conduction band structure of a
uniform film of CdSe assuming free-electron dispersion of Eq. (B1)
(m� = 0.1m0, Ec

1 = 1.91 eV, Ec
2 = 2.20 eV, L = 4.53 nm). (b) Same

but for a square superlattice, including pseudopotential terms describ-
ing the scattering of electrons induced by the periodic truncations:
V1,1[0] = 0.15 eV, V1,1[2π/L] = 0.15 eV, V1,1[2

√
2π/L] = 0.02 eV,

V1,1[4π/L] = 0.04 eV, V2,2[0] = 0.70 eV, V2,2[2π/L] = 0.35 eV,
V2,2[2

√
2π/L] = 0.08 eV, V2,2[4π/L] = 0.08 eV, where the quantity

in the brackets denotes the value of |G − G′|.

which only depend on n, n′ and |G − G′|. In addition, by
symmetry, V only couples bands n and n′ with the same parity.
If we look at the low-energy part of the band structure, we
can write the matrix of H0 + V in a limited basis of states
�n,G(K) (e.g., n = 1,2) and the terms Vn,n′

[|G − G′|] can
be seen as parameters. Figure 10 shows that we can obtain a
band structure behaving as in Fig. 3(b) for reasonable values
of these parameters. A similar pseudopotential approach could
be developed for holes using for example a k · p Hamiltonian.
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