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We study a one-dimensional totally asymmetric simple exclusion process with one special site from which
particles fly to any empty site (not just to the neighboring site). The system attains a nontrivial stationary state with
a density profile varying over the spatial extent of the system. The density profile undergoes a nonequilibrium
phase transition when the average density passes through the critical value 1 − [4(1 − ln 2)]−1 = 0.185 277 . . . ,

viz., in addition to the discontinuity in the vicinity of the special site, a shock wave is formed in the bulk of the
system when the density exceeds the critical density.

DOI: 10.1103/PhysRevE.88.042120 PACS number(s): 02.50.−r, 05.40.−a, 05.70.Ln

I. INTRODUCTION

The asymmetric simple exclusion process (ASEP) is a well-
studied model of low-dimensional transport of particles with
hard-core interactions. This model has become a standard tool
in the context of low-dimensional transport, and it is commonly
used to represent the motion of molecular motors or more
generally enzymes along cytoskeletal fibers. It is interesting
to recall that the ASEP was originally proposed in 1968 as a
model of the kinetics of biopolymerization in RNA templates
[1]. Since then, the ASEP has been extensively studied and
it has achieved the status of a paradigm in statistical physics
(see [2–7] and references therein). It is fair to say that the ASEP
is one of the simplest nontrivial models of a nonequilibrium
process: it is an interacting N -body system without detailed
balance, which reaches a non-Gibbsian stationary state with
nonvanishing currents. In the past 40 years, exact solutions for
the ASEP in various contexts have been obtained thanks to
increasingly sophisticated and elegant mathematical methods
[8–15]. Conversely, these theoretical studies together with
experimental progress in micromanipulations have triggered
a renewed interest in biophysical applications of the ASEP in
recent years [16–24] (see [25] for a review).

The presence of a nonvanishing current in a stationary state
results in the transport of information from one part of a system
to another, leading to long-range correlations. Henceforth,
the behavior of the ASEP is highly sensitive to boundary
couplings or to the presence of local defects. In particular, the
ASEP can undergo boundary-induced transitions even in one
dimension [8], which cannot occur in one-dimensional equi-
librium systems with short-range interactions. Hence, simple
deformations of the ASEP are often very challenging. These
models are important since they enable us to gain insight into
macroscopic and microscopic behaviors. One such seemingly
innocent generalization is to introduce blockages. This is easy
to realize for the ASEP on a periodic one-dimensional lattice
where particles undergo a biased nearest-neighbor hopping to
empty sites; if the ring is homogeneous, a stationary state with
all permissible configuration being equiprobable is reached
(on the macroscopic level, the density is uniform in the
stationary state). Suppose that the hopping rate between one
pair of neighboring sites is suppressed by a certain factor. This

inhomogeneous model with two parameters (the suppression
factor and the average density) is a well-known challenge that
has not been exactly solved [26–28]; see [29] for a review and
recent progress. The chief message is clear: A local change
of the environment (one special blockage bond) can result in
a global change, namely the system segregates into high- and
low-density phases. However, details of the density profiles as
well as the stationary-state correlations are still unknown [29].

In the present work, we consider a variant of the ASEP on
a one-dimensional lattice, namely on a ring with L sites. The
total number of particles N is conserved by dynamics. The
system is assumed to be homogeneous apart from one special
site from which the particle can fly to any other site. Hence,
in contrast to Refs. [26–28], we investigate the effect of a
special site rather than a special bond. Our basic motivation is
to define a simple model with a unique parameter, the average
density ρ = N/L (or equivalently the fraction of the vacant
sites v = 1 − N/L), which can exhibit different regimes with
respect to the different values of ρ. We show that introducing
one special site with global hopping generates a nontrivial
phase diagram and leads to a subtle selection mechanism of
the stationary density profile.

The outline of this work is as follows. In Sec. II, we explain
the dynamical rules of our model. In Sec. III, we write down
the governing equations characterizing large-scale stationary
hydrodynamic behavior. In Secs. IV and V, we investigate two
types of density profiles that can occur, and we show that naive
reasoning does not provide a suitable selection mechanism for
the mean-field equations. A more precise analysis (Sec. VI)
allows us to establish the phase diagram of the system, which,
despite the simplicity of the model, turns out to be rather rich.
Concluding remarks are given in Sec. VII.

II. THE MODEL

We consider the totally asymmetric simple exclusion
process (TASEP) on a one-dimensional lattice with L sites,
which are labeled by j = 1, . . . ,L. Each site j is either
occupied by one particle (τj = 1) or empty (τj = 0). In an
infinitesimal time interval dt , a particle on site j (1 � j �
L − 1) attempts to hop forward to site j + 1 with probability
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FIG. 1. The TASEP with global hopping from one site.

dt ; the attempt is successful only when the target site is empty.
A particle occupying the rightmost site L can fly to any site
j = 1, . . . ,L − 1; a flying attempt is made with probability dt

and is allowed if the target site (chosen uniformly at random)
is empty; see Fig. 1. These rules define our basic model.
The total number of particles N is a conserved quantity. The
only free parameter in this model is the density ρ = N/L, or
equivalently the fraction v = 1 − ρ of vacant sites.

Monte Carlo simulations show that the system attains an
interesting stationary state which exhibits a qualitative change
when the average density passes through the critical value;
we will show below that the critical density equals 1 − [4(1 −
ln 2)]−1 = 0.185 277 . . . . Our approach can be extended to
a generalized system in which the special site is unique not
only since the hopping from this site is global, but also the
hopping rate is arbitrary. More precisely, we postulate that in
an infinitesimal time interval dt , a particle at the special site L

attempts to fly with rate βdt , where β is a positive real number,
and the target site is chosen uniformly at random among the vL

empty sites. We shall derive the phase diagram of the full model
in the (v,β) plane. The original model corresponds to the case
β = v. The goal of this article is to characterize analytically
the phase diagram of the model. We note that, by regarding
holes as particles and particles as holes, the process we study
is a many-particle generalization of the stochastic-resetting
problem [30].

III. LARGE-SCALE HYDRODYNAMIC BEHAVIOR

A macroscopic (or hydrodynamic) description is valid when
the average density slowly varies. In such situations, instead of
the density per each site ρj = 〈τj 〉, one can study the quantity
F (x), which depends on the macroscopic variable x = j/L.
The macroscopic density can be defined as

F (x) = 1

2� + 1

j+�∑
k=j−�

ρk, (1)

where 1 � � � L. We study F (x) by employing a hydrody-
namic approach, mostly the Eulerian inviscid treatment. Such
an approach cannot provide a fair description of the regions
inside shock waves and boundary layers, but it can be trusted
away from such narrow regions. In the stationary state, we
have

d

dx
F (1 − F ) = β

v
ρL(1 − F ). (2)

The average density ρL at the special point j = L requires
a special treatment: A boundary layer could appear near this
point, and the limiting hydrodynamic density (we denote it by
R) may be different from the true microscopic density, i.e., we

have generically

lim
x→1

F (x) = R �= ρL. (3)

On the left boundary, we have

F (0) = 0. (4)

This boundary condition can be understood as follows. A site
located near the left boundary can be occupied only if the
particle leaving the special site at L lands on it. This is a rare
event (of probability ∼1/L) and therefore the microscopic
density ρi (i = 1,2, . . . ) vanishes in the limit L → ∞. This
observation is also supported by numerical simulations.

Integrating (2) over the interval 0 < x < 1 and using (4),
we obtain

βρL = R(1 − R). (5)

This is the current of flying particles from the site L.
Inserting (5) back to (2), we arrive at the equation

d

dx
F (1 − F ) = R(1 − R)

v
(1 − F ), (6)

which will be our chief governing differential equation. Note
that β does not appear in this equation.

Equation (6) is akin to the one obtained by Parmeggiani,
Franosh, and Frey (PFF) in their study of the TASEP with open
boundaries and Langmuir kinetics (adsorption onto empty sites
and desorption from occupied sites) in the bulk [31,32] where
the total number of particles is not conserved. We emphasize
that in our system there is neither injection nor extraction of
particles (see also [33–36] for related models). A more precise
discussion of the relation between our system and the PFF
model will be given in Sec. VI.

In the following two sections, we shall study the possible
solutions to Eq. (6). The selection of the correct density
profile F (x) will be achieved by going beyond the simple
hydrodynamic limit (6). We shall discuss this in Sec. VI, where
the parameter β appears again.

IV. SMOOTH DENSITY PROFILE

We first suppose that the density profile is smooth in the
bulk. Solving (6) subject to (4), we obtain

2F + ln(1 − F ) = R(1 − R)

v
x. (7)

This is valid for all 0 < x < 1. Combining (7) with (3), we get

2R + ln(1 − R) = R(1 − R)

v
. (8)

It is straightforward to check that Eq. (8) may only be satisfied
for

v � vc = 1

4(1 − ln 2)
= 0.814 722 8 . . . , (9)

where v = vc corresponds to R(vc) = 1
2 . Conversely, for any

v � vc, there exists a unique smooth density profile obtained
as follows. We let R = R(v) be the unique solution of (8)
with R ∈ (0, 1

2 ]. Then, since the function 2F + ln(1 − F ) is
increasing when F ∈ (0, 1

2 ), Eq. (7) determines consistently
F (x) on the entire spatial range 0 < x < 1. [Note that, since

042120-2



ASYMMETRIC EXCLUSION PROCESS WITH GLOBAL HOPPING PHYSICAL REVIEW E 88, 042120 (2013)

x

F(x)

FIG. 2. (Color online) Smooth profiles. The top curve is the
critical profile, i.e., v = vc, and the lower curve is a subcritical profile
with v = 0.95. They are realized by Monte Carlo simulations. The
symbols � and ◦ correspond to simulation results with parameters
(v,β) = (vc,0.6) and (v,β) = (0.95,0.6), respectively. We have set
L = 105 sites and took an average over time steps 1011 � T �
2 × 1011.

2F + ln(1 − F ) decreases when F ∈ ( 1
2 ,1), a smooth solution

cannot exceed the density 1
2 .] When v = vc, we have

2F + ln(1 − F ) = x(1 − ln 2). (10)

In Fig. 2, we plot the critical profile (10) and a subcritical
profile (7) arising at a certain v > vc. Note that the critical
density profile (10) has a singularity near x = 1, viz., 1

2 −
F (x) ∼

√
1 − x . The analytical expressions (7) and (10) are

confirmed by Monte Carlo simulations (see further discussion
in Sec. VI).

We performed simulations using the following algorithm.
In each time step T , we randomly choose one site j among
L sites. If site j � L − 1 is chosen and (τj ,τj+1) = (1,0), we
move the particle at site j as (τj ,τj+1) = (0,1). If site L is
chosen and τL = 1, we make the particle at site L fly with
probability β to a randomly chosen empty site. [When β > 1,
we have to modify the strategy. If site j � L − 1 is chosen
and (τj ,τj+1) = (1,0), we move the particle at site j with
probability p. If site L is chosen and τL = 1, we make the
particle at site L fly with probability pβ. We need to choose p

such that pβ � 1.]

V. SHOCK WAVE FORMATION

When the fraction of vacant sites is below the critical value,
v < vc, the density profile is no longer described by Eq. (7) on
the entire spatial range 0 < x < 1. In principle, there may be
several patches where the density increases but remains smaller
than 1

2 , alternating with patches where the density decreases
and remains higher than 1

2 . (Note that, in the argument of this
section, we do not need to impose the restriction v < vc.)

The only consistent stationary arrangement has precisely
two such patches, a low-density patch on the left and a
high-density patch on the right. To appreciate this assertion,
we recall that in asymmetric exclusion processes, shock waves
result from jumps from low to high density, while jumps

from high to low density yield rarefaction waves which are
nonstationary (the width of the region covered by a rarefaction
wave increases linearly in time). The densities on both sides
of a stationary shock wave at position s are related by current
conservation (the Rankine-Hugoniot condition), which for the
TASEP implies that the densities before and after the shock
sum up to 1. We denote the densities before and after the shock
by r and 1 − r , respectively; from the above discussion, we
expect that r � 1

2 . We confirm this bound by Monte Carlo
simulations.

In the region before the shock, we have, by (6) and (4),

2F + ln(1 − F ) = R(1 − R)

v
x (0 < x < s). (11)

The location of the shock s and the density r just before the
shock are related via

2r + ln(1 − r) = R(1 − R)

v
s. (12)

In the complementary spatial interval (s,1), the solution to
Eq. (6) subject to the boundary condition limx↓s F (x) = 1 − r

is

2(F − 1 + r) + ln
1 − F

r
= R(1 − R)

v
(x − s). (13)

Combining this solution with the boundary condition (3), we
obtain

2(R − 1 + r) + ln
1 − R

r
= R(1 − R)

v
(1 − s). (14)

We thus have two equations, (12) and (14), for three
variables s,r,R. We must also keep in mind the bounds on
these variables (following from the above discussion):

0 � s � 1, 0 � r � 1
2 � R � 1 − r. (15)

Adding (12) and (14), we obtain

4r + ln
1 − r

r
= �(R,v), (16)

where we have used the shorthand notation

�(R,v) = R(1 − R)

v
+ 2(1 − R) − ln(1 − R). (17)

The variable s can then be recovered from either (12) or (14).
The left-hand side of Eq. (16) is a monotonically decreasing

function of r , thus r is determined according to a given value
of R. Then s is fixed by inserting the values of R and r into (12)
or (14). On the other hand, the right-hand side � of Eq. (16) is
not always monotonic. For v � 1

2 , � monotonically increases,
where the maximal r is achieved by R = 1

2 . For v < 1
2 , �

decreases on the interval 1
2 < R < 1 − v and increases on

the interval 1 − v < R < 1. Thus r takes its maximal value
at R = 1 − v. For example, the dotted lines for v = 0.1 in
the top and middle graphs of Fig. 3 show that � takes the
minimal value and r takes the maximal value at R = 1 −
v = 0.9. In both cases (v � 1

2 and v < 1
2 ), the infimum r = 0

is achieved by the limit R → 1, where the shock position s

approaches v. In the middle and bottom graphs of Fig. 3, we
notice that the dashed curves for v = 0.9 reach r = 0.5 and
s = 1, respectively. There exists a minimum Rm such that r
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R

r

R

s

R

FIG. 3. The right-hand side of Eq. (16) (top), the density just
before the shock r (middle), and the position of the shock s (bottom)
are determined by R. The fraction of the vacant sites is chosen as
the following four values: v = 0.1 (dotted), 0.5 (bold), vc, and 0.9
(dashed).

and s satisfy the condition (15): for v < 1
2 , Rm is 1

2 , and for
v � 1

2 , Rm is the solution to

2(1 − Rm) + ln Rm = Rm(1 − Rm)

v
. (18)

We have seen that the density r before the shock and the
shock position s are specified by R. In other words, once
one gives a value for R ∈ [Rm,1], the shape of the density

x

F(x)

FIG. 4. (Color online) The density profiles [Eqs. (11) and (13)]
with a shock arising at v = 0.6 and R = 0.9,0.7,0.5. They are realized
by simulations with β = 0.1 (�),0.3 (◦),0.7 (
), respectively, where
L = 105 and the averages over time steps 1011 � T � 2 × 1011 were
taken.

profile is uniquely fixed. In this sense, shock profiles construct
a one-parameter (R) family of solutions. Figure 4 provides
shock profiles with v = 0.6 fixed and R varied. These profiles
arise in Monte Carlo simulations, as we will demonstrate in
Sec. VI.

The results of the previous section tell us that the shape
of the smooth profile is uniquely determined when v � vc.
However, in this region, one can also construct shock profiles
by patching two smooth solutions. For v < vc, we have shown
that the smooth profile ceases to exist and the solution ought to
have a shock. Shock profiles are characterized by the parameter
R. A selection mechanism has to be found to explain when
and why the system “prefers” a continuous or discontinuous
profile, and how the parameter R is determined by (v,β).

We have argued that the correct solution either has no
shock or a single shock. Multiple shocks may arise in different
models: for instance, in a system with open boundaries and
Langmuir kinetics in the bulk, solutions with two shocks have
been detected for a certain exclusion process with interaction
between neighboring particles [34].

VI. THE SELECTION MECHANISM

We have obtained a smooth solution and a one-parameter
family of shock solutions of the Euler equation (6). In a certain
range of filling fractions, we also have a competition between
smooth and discontinuous profiles.

First, we remark that the analysis carried out in the previous
sections was based on the differential equation (6) with the
boundary condition (4); in particular, the flying rate β has
played no role in discussing the two types of solutions.
Therefore, we must incorporate in our analysis the boundary
condition in the vicinity of the site L by taking into account
the sum rule (5).

To determine the phase diagram of the system, we shall
keep a subleading viscosity term to the mean-field equation,
construct the right boundary layer, and apply a stability
analysis to it. The stationary hydrodynamic equation with
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viscosity is given by (see the Appendix for a derivation)

1

2L

d2

dx2
F − d

dx
F (1 − F ) + β

v
ρL(1 − F ) = 0. (19)

We are interested in what happens in the neighborhood of
x = 1. Defining the local variable x = 1 − ξ

2L
and writing

f (ξ ) = F (1 − ξ

2L
), we get

d2

dξ 2
f + d

dξ
f (1 − f ) = 0 (20)

as L → ∞ (after neglecting terms of order L−1). Integrating
this equation with the condition f (+∞) = R, we obtain

df

dξ
= R(1 − R) − f (1 − f ) = (R − f )(1 − R − f ). (21)

This is the boundary layer equation that has to be solved subject
to the initial condition f (0) = ρL = R(1−R)

β
. We note that (21)

has two fixed points R and 1 − R. Setting f = R + h (with
h � 1), we have

d

dξ
h = (2R − 1)h. (22)

Therefore, if R < 1/2, the fixed point f = R is stable and
f = 1 − R is unstable. If R > 1/2, the fixed point f = R is
unstable and f = 1 − R is stable. We also recall (Secs. IV
and V) that smooth profiles are characterized by the fact that
R � 1/2, whereas for shock solutions we always have R �
1/2.

To determine the phase diagram, consider first the situation
in which a shock profile is selected (R � 1

2 ). If R > 1
2 , then,

according to Eq. (22), f = R is unstable and no boundary
layer matching f (0) = ρL = R(1−R)

β
with R can exist. Only

one possibility remains: R = ρL = R(1−R)
β

. This implies

R = 1 − β, (23)

which is realized only when β < 1
2 because of the assumption

R > 1
2 .

If the bulk value is R = 1
2 , it can be connected to the

boundary value ρL = 1
4β

through a boundary layer. Using
Eq. (21), we observe that f (ξ ) is increasing with ξ , i.e.,
ρL < R = 1/2, which in turn implies β > 1

2 ; thus, for β

greater than 1/2, the selected shock profile is the one with
R = 1

2 .
To summarize, when the selected profile has a shock, the

parameter R is given by

R =
{

1
2 (β > 1

2 ),

1 − β (β � 1
2 ),

(24)

where the true density of the rightmost site is given by

ρL =
{

1
4β

�= R (boundary layer)
(
β > 1

2

)
,

1 − β = R (no boundary layer)
(
β � 1

2

)
.

(25)

To understand when the shock profile with parameter R

given by (24) can be selected, we set the shock position s = 1
and we observe that a shock can be found only when v < vc(β),

R =   ,    =

v

β

0 1

1
2

1

1
4(1–ln2)

Shock

Sm
oo

th

Shock

R =    =1  βL

L
1
2

1
4β

FIG. 5. The phase diagram of the model. The full lines represent
the boundaries between the three phases of the model: a phase with
a smooth density profile and two domains where a shock appears.
The two shock phases differ at the right boundary: When R �= ρL, a
boundary layer is formed; when R = ρL = 1 − β, the solution of the
inviscid hydrodynamic equation provides an excellent description of
the density profile of the entire system.

with

vc(β) =
{

vc = 1
4(1−ln 2)

(
β > 1

2

)
,

β(1−β)
2β+ln(1−β)

(
β � 1

2

)
,

(26)

which is drawn in Fig. 5.
By contraposition, only the smooth profile is selected for

v � vc(β). As we have shown in Sec. IV, a smooth profile
cannot exist for v < vc. Hence, at this stage, we have not yet
determined which profile is selected in the region vc < v <

vc(β), and β < 1
2 . We now show that a smooth profile is not

allowed for v < vc(β), β < 1
2 . Let us assume, by reductio ad

absurdum, that a smooth profile exists. The parameter R <

1/2 is a stable fixed point of (21), and must be connected to
ρL = R(1−R)

β
through a boundary layer satisfying Eq. (21). But

Eq. (21) has two fixed points R and 1 − R. Because this is a
first-order equation, no solution can cross a fixed point, i.e.,
the boundary layer that connects R and ρL cannot pass through
the value 1 − R. This implies ρL � 1 − R, i.e., R � β. This
condition gives v � vc(β). In other words, a smooth profile
cannot exist when v < vc(β).

The full phase diagram of the system is represented in
Fig. 5. There are three phases: a phase with a smooth density
profile and two domains where a shock appears. The shock
phases differ with respect to the boundary layer. When β >

1/2, a boundary layer is formed; for β < 1/2, the profile is
smooth in the vicinity of x = 1 (see Fig. 6). The dotted line in
the smooth phase is v = β(1−β)

2(1−β)+ln β
, which corresponds to the

accidental case in which there is no boundary layer ρL = R =
1 − β. Hence, generically, in the smooth phase a boundary
layer always exists.

From this full phase diagram, we can deduce the phase
diagram of the original problem in which we were interested.
There, the particle at site L attempts to hop to a randomly
chosen site with rate unity, and the jump is accepted if the
target site is empty. This corresponds to the diagonal line
β = v in the phase diagram in Fig. 5. We observe that there
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x

F(x)

FIG. 6. (Color online) A smooth profile and a shock profile are
solutions to Eq. (6) with v = 0.85 (solid lines). For the shock profile,
we have set the parameter R = 0.75. The symbols ◦ correspond to the
simulation result with (v,β) = (0.85,0.25), where L = 105 and the
average over time steps 1011 � T � 2 × 1011 was taken. We observe
from the simulation that the shock profile is selected with R = 1 − β.

are also three phases for this special problem: for v � vc =
[4(1 − ln 2)]−1 = 0.814 722 8 . . . , the profile is smooth; for
1/2 < v < vc, the profile is of shock type with R = 1/2 and
there exists a boundary layer; for 0 < v � 1/2, the profile is
of shock type with R = 1 − v and there is no boundary layer.
We notice that R is chosen so that r is maximized.

Finally, we mention a relation between our system and the
PFF model [31,32]. The PFF model is defined on a finite open
lattice by the following rules:

10 → 01 at rate 1 ,

0 → 1 at rate �a/L ,

1 → 0 at rate �d/L

in the bulk, and

0 → 1 at rate α, 1 → 0 at rate β

at the left and right boundaries, respectively. The rates α and
β are related to the densities of the left and right reservoir,
respectively. We note that the hydrodynamic equation that
describes the macroscopic density profiles of our model can be
formally mapped into the one corresponding to the PFF model
by setting

α = �d = 0, �a = R(1 − R)

v
. (27)

This ensures that at the hydrodynamic level [Eq. (6)], the
models coincide. However, we emphasize that the factor
R(1−R)

v
is not determined by external conditions but rather by

R = F (1) and by Eq. (6). Besides, the system we consider is
conservative and therefore the mapping to the PFF model can
only be approximate at the mean-field level. This fact can be
observed in Monte Carlo simulations, which show significant
differences between the shock profiles of the two models for a
given system size; see Fig. 7. Thus, it would be therefore of in-
terest to explore further the connection between our model and
the PFF model [31,32]. We emphasize that whereas the number
of particles is strictly conserved in the process we study,

x

F(x)

FIG. 7. (Color online) Comparison with a special case of the PFF
model. The parameters of our model are chosen as (β,v) = (0.6,0.95)
(◦, smooth profile) and (β,v) = (0.6,0.3) (�, shock profile), corre-
sponding to the PFF model with (β,�a) = (0.6,0.096 45 . . . ) (×) and
(0.6,0.8) (+), respectively. In both models we have set L = 103 (and
we took an average over time steps 5 × 108 � T � 5 × 109), but we
observe a difference around the shock position.

the PFF model exchanges particles with its surroundings.
The correspondence cannot be perfect and it is also that for
nonequilibrium systems, where the equivalence of ensembles
(such as canonical versus grand-canonical) is a subtle issue, es-
pecially when shocks or phase separation are involved [37,38].
In particular, fluctuations can be significantly different.

VII. CONCLUDING REMARKS

We studied an exclusion process with a special site from
which nonlocal hoppings are allowed. We showed that a shock
is formed when the average density exceeds the critical value.
We established a phase diagram of the model by using a
hydrodynamic approach, a boundary layer analysis, and an
asymptotic matching. It would be interesting to devise a
physical principle, perhaps reminiscent to the extremal current
principle suggested by Krug [3] (see also [39–42]), that would
lead to the same phase diagram. Overall our model provides
another manifestation of a remarkable phenomenon, namely
that a single defect can have a drastic effect on nonequilibrium
steady states.

Although our analysis relies on a mean-field approximation,
the results appear asymptotically exact and they are in excellent
agreement with Monte Carlo simulations. We performed
simulations for large sizes (up to L = 105) at over 100 points
(v,β) in the phase diagram. Our model demonstrates again
that localized defects in far-from-equilibrium systems can
produce global effects that drastically alter the phenomenology
of a model. Systems far from equilibrium are therefore very
sensitive to boundary conditions and to defects.

Models with periodic and open boundaries have been
studied extensively, yet little is known about inhomogeneous
systems [26–29]. We believe that the interplay of impurities
and currents can lead to rich and unexpected behavior (note
that even in thermal equilibrium, the presence of a magnetic
impurity can result in the highly nontrivial Kondo effect).
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In biological applications, inhomogeneities are unavoidable,
and various semirealistic inhomogeneous extensions of the
TASEP have been analyzed; see, e.g., [43–45]. It would
be very interesting to find and to analyze exactly solvable
extensions of the TASEP that are both far from equilibrium
and nonhomogeneous.
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APPENDIX: DERIVATION OF THE
HYDRODYNAMIC EQUATIONS

Here we explain how the hydrodynamic limit (2) and
the viscosity correction can be obtained starting from the
microscopic dynamics. This is a standard procedure (see,
e.g., [3,6]) which we recall for the sake of completeness.

Exact dynamical equations can be written for the expecta-
tion value ρj = 〈τj 〉 of τj (i.e., the density of site j ) at time t as

dρj

dt
= 〈τj−1(1 − τj )〉 − 〈τj (1 − τj+1)〉

+ β

Lv
〈τL(1 − τj )〉 (j = 2,3, . . . ,L − 1), (A1)

dρ1

dt
= β

Lv
〈τL(1 − τ1)〉 − 〈τ1(1 − τ2)〉, (A2)

dρL

dt
= 〈τL−1(1 − τL)〉 − βρL. (A3)

As usual, Eqs. (A1)–(A3) are part of a hierarchy that couples
correlations of a given order to higher-order correlations.
Here, this hierarchy will be closed by assuming that in the
hydrodynamic limit L → ∞, the local density profile F (x)
defined in (1) satisfies a mean-field equation. This may sound
like a very bold assumption, but it is known to lead to sound
results for exclusion processes.

However, we shall go beyond the Eulerian inviscid treat-
ment by keeping track of viscosity terms that scale as
L−1. These higher-order contributions will have an important
physical role within the boundary layers.

In the bulk, we have

∂F

∂t
= 1

2L2

∂2F

∂x2
− 1

L

∂

∂x
F (1 − F ) + β

Lv
ρL(1 − F ), (A4)

where x = j/L and ρL ≡ 〈τL〉. Rescaling the time as t → Lt

and going to the stationary limit, we obtain

1

2L

d2F

dx2
− d

dx
F (1 − F ) + β

v
ρL(1 − F ) = 0. (A5)

The viscosity term is a singular perturbation that can be
neglected in the regions where F varies smoothly (i.e., outside
the shock regions and the boundary layers); Eq. (2) is then
recovered. Near x = 1, a boundary layer may exist and this
fact plays a crucial role in selecting the global density profile:
this is precisely what is studied in Sec. VI. Near x = 0,
we observe F (0) = 0 and there is no boundary layer. This
is supported by the fact the stationary current near x = 0
vanishes in the limit L → ∞. For example, from Eq. (A2)
one indeed finds that the current from site 1 to site 2 vanishes
as the system size diverges, viz., 〈τ1(1 − τ2)〉 ∼ L−1 → 0
when L → ∞.
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[5] G. M. Schütz, Exactly Solvable Models for Many-Body Systems

Far From Equilibrium, in Phase Transitions and Critical
Phenomena, edited by C. Domb and J. L. Lebowitz (Academic,
London, 2000), Vol. 19.

[6] R. A. Blythe and M. R. Evans, J. Phys. A 40, R333 (2007).
[7] B. Derrida, J. Stat. Mech. (2007) P07023.
[8] B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, J. Phys. A

26, 1493 (1993).
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[12] G. M. Schütz, J. Stat. Phys. 88, 427 (1997); R. J. Harris,
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