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In this work we investigate, by way of experiments and theory, the Faraday instability
threshold in cylinders at low frequencies. This implies large wavelengths where effects
from mode discretization cannot be ignored. Careful selection of the working fluids
has resulted in an immiscible interface whose apparent contact line with the sidewall
can glide over a tiny film of the more wetting fluid, without detachment of its
actual contact line. This unique behaviour has allowed for a system whose primary
dissipation is defined by the bulk viscous effects, and in doing so, for the first
time, close connection is seen with the viscous linear stability theory for which
a stress-free condition is assumed at the sidewalls. As predicted, mode selection
and co-dimension 2 points are observed in the experiment for a frequency range
including subharmonic, harmonic, and superharmonic modes. While agreement with
the predictions are generally excellent, there are deviations from the theory for
certain modes and these are explained in the context of harmonic meniscus waves.
A review of previous work on single-mode excitation in cylinders is given, along
with comparison to the viscous model and analysis based upon the conclusions of the
current experiments.

Key words: Faraday waves, instability

1. Introduction

Faraday instability is a result of the parametric resonance of interfacial wave modes
with an imposed vibrational frequency. The forcing amplitude at which the mode
appears is proportional to its dissipation and the excited wavelength is generally
specified by the wave whose natural frequency is half that of the parametric excitation
frequency. Experimentally, this generalization is valid at a large frequency where the
excited wavelength is much smaller than the cell container and the system has access
to a continuum of modes. Experimental connection has been made in past work
between the onset amplitudes with the predictions of the viscous linear stability theory
in the high-frequency regime, but remains elusive in the low-frequency regime of
single-mode excitation. Aside from a scientific interest in delineating mode interaction,
low-frequency mode excitation is also of practical interest such as in Faraday-induced
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fluid mixing in narrow geometries (Zoueshtiagh, Amiroudine & Narayanan 2009;
Friend & Yeo 2011).

At low frequency, where the preferred wavelength is large, mode discretization
becomes a factor and the excitation of a mode whose natural frequency is twice that
of the forcing is no longer guaranteed. In this regime the same mode of instability can
be excited for an entire band of frequencies, whose associated threshold amplitudes
descend to a minimum amplitude near the natural frequency of that mode. The modes
excited at frequencies above and below the natural frequency are referred to as tuned
and detuned modes. Previous measurements of threshold amplitudes of these bands
of modes have used fluid systems in which viscous damping in the interior of the
wave is negligible compared to the damping effects of the sidewalls and are extremely
challenging to model. Often, however, the sidewall damping in these systems has
been taken to be linear, and the onset thresholds have therefore been described using
single degree of freedom system theory (Nayfeh & Mook 1979). To our knowledge,
no previous attempts have been made to produce an ideal experimental system in
which modes are discretized but whose damping is controlled by the interior, thereby
allowing connection to the viscous linear theory of Kumar & Tuckerman (1994). This,
therefore, is the primary goal of this work.

The complexity of the sidewall behaviour is a difficulty in both high and low-
frequency Faraday experiments. The mathematically tractable boundary condition at
the container sidewalls is the so-called stress-free condition, which places constraints
on the allowed dynamics of the interface near the sidewall. A physically realistic
interface and its contact with the sidewall suffers from complex dynamics and
additional dissipation due to meniscus formation, contact line mobility, and stresses
from sidewall fluid shearing. Due to the periodic modulation of its desired shape,
the meniscus emits a travelling wave from the sidewall to the interior for each
period of cell motion. High-frequency experiments have employed different filling
techniques to eliminate meniscus waves and the issues of contact line mobility have
been circumvented by using viscous fluids which damp out the non-ideality and
allow the interior to behave as a laterally infinite system. Bechhoefer et al. (1995)
successfully produced such a system with paraffin oils with temperature-controlled
viscosity ranging from 25 to 200 cSt and a brimful condition. Their experiments
were motivated by earlier experiments, such as those of Fauve et al. (1992), which
highlighted a need for a better understanding of the workings of viscosity, as high-
frequency matching of the thresholds was not obtained by incorporation of linear
damping in the inviscid model. The experiments of Christiansen, Alstrøm & Levinsen
(1994) are of note as they consider the model of Milner (1991) for contact line
behaviour and obtain good matching at remarkably high frequencies ranging from 100
to 500 Hz. Experiments with two immiscible liquids were performed by Kityk et al.

(2005), who attempted to verify the viscous theory.
The upper range of the experiments of Bechhoefer et al. (1995) was roughly

80 Hz, but what motivates the current work is the lower limit they explored with
frequencies as low as 6 Hz. The instability threshold matched well with the theory at
high frequencies, but at low frequencies there appeared ‘oscillations’ in the threshold,
which they attributed to the discretization of the modes available to the system.
Douady (1990) performed experiments in the regime where modes are discretized,
for both a system with a prominent meniscus and a system with a pinned contact
line using a brimful condition. With the meniscus, the critical thresholds did not show
sharp discretization, and without the meniscus these experiments showed discretization
similar to that of Bechhoefer et al. (1995). The experiments of both Bechhoefer et al.
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and Douady highlight the important effects of mode discretization, but it must be
noted that the observed thresholds for modes with a brimful condition cannot be
predicted by the viscous theory incorporating a stress-free boundary condition as the
sets of allowed eigenfunctions are different for the two cases.

While meniscus waves are deemed detrimental to the high-frequency threshold, they
have been ignored in single-mode experiments and contact line mobility has been
prioritized. The contact line motion at the sidewalls is of extreme importance as it
has been shown to introduce considerable amounts of dissipation to the system. A
model describing this dissipation is enormously complex, requiring a connection to
be made between the molecular, boundary layer, and container scales. The importance
of these scales has been revealed by experiments such as that of Keulegan (1958),
who established that sidewall surface wetting played a key factor in the decay of
water waves, as identical experiments produced far greater damping rates in Lucite
containers than in glass containers. The addition of aerosol lowered the surface
tension, bringing the damping rates in the two containers into agreement. Miles
(1967) developed a model for the damping of waves for slightly viscous fluids that
separately treated the contributions due to wall boundary layers, surface films produced
by contamination, and capillary hysteresis. Application of this model to the wave
damping results of Case & Parkinson (1957) and Keulegan (1958) yielded qualitative
explanations for their observed damping rates but not quantitative. In applying the
model to the single-mode Faraday experiments of Henderson & Miles (1990), it was
seen that the rates were correctly predicted provided that the water viscosity was taken
to be 3 cSt. Upon using this damping rate the stability model used by Henderson
& Miles (1990) was able to accurately predict the Faraday instability threshold for
the fundamental axisymmetric mode in their cylindrical cell. While it is remarkable
that this match was produced, what will be shown is that the threshold behaviour
is characteristically different from the predictions for a system whose dissipation is
controlled by the interior of the wave.

The focus of this work is therefore to produce an experiment that respects the
sidewall stress-free boundary condition, thereby permitting both a closer approximation
to the theory of Kumar & Tuckerman (1994) and isolation of the causes for the
differences. This was accomplished by using two immiscible liquids, i.e. FC70 and
silicone oil, producing an interface that could undergo apparent free motion at the
sidewalls on top of a film produced by the silicone oil. This system of fluids
has allowed us to very nearly realize both the frequencies and amplitudes at which
modes are predicted to appear by the viscous linear stability theory using a stress-free
boundary condition. Measurement of the damping rates confirms that the experiment
is controlled by the interior damping. Explanations for the deviation between the
observed and predicted threshold can be posited as being attributed to the meniscus
and the number of azimuthal nodes. First we present the linear stability theory of
Kumar & Tuckerman (1994) in a practical manner, along with the adaptation to a
cylindrical cell with mode discretization. We then analyse the previous reports of the
Faraday threshold in small cylinders in the context of this model. We finally present
the experimental results of this work and their dominant features.

2. The model

2.1. Spatially infinite systems

To analyse the stability of a flat immiscible interface subjected to an oscillatory
vertical motion of A cosωt with stress-free sidewalls we first follow the method of
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Kumar & Tuckerman (1994), who consider a horizontally infinite fluid bilayer of
mean depths h1 and h2 separated by an interface whose interfacial tension is denoted
by γ . We then observe that the case of stress-free sidewalls can be adapted from
the horizontally infinite fluid analysis. The equations of motion for the flow in the
bulk domains are written in a reference frame that moves with the imposed motion,
resulting in the grouping of the forcing acceleration Aω2 cosωt with the gravitational
acceleration, g. Thus we have

ρj

(

∂Vj

∂t
+ Vj ·∇Vj

)

= −∇Pj + µj∇
2
Vj + ρj(g + Aω2 cosωt)ez (2.1)

∇ ·Vj = 0, (2.2)

where j = 1 indicates the lower layer and j = 2 the upper. The vector V is the velocity
of the fluids of pressure P, of density ρ and of viscosity µ. No-slip conditions apply
at the top and bottom walls, and continuity of velocity is applied at the interface. The
interface is a material surface, thus the kinematic condition leads to

(V − U) ·n = 0 at z = Z(x, y, t), (2.3)

where U · n is the speed of the interface, n being the surface normal pointing into the
light fluid, and z = Z(x, y, t) is the position of the deflecting interface. The continuity
of velocity components holds at the interface. The stress balance at the interface,

[[−PI + µ(∇V + (∇V)T)]] ·n = γ 2Hn at z = Z(x, y, t), (2.4)

states that the pressure and viscous tangential stress differences between the two
phases are balanced by the forces arising from surface curvature, where γ is the
interfacial tension and 2H is twice the mean surface curvature. Here the braces
represent a jump quantity, evaluated as [[Q]] = Q2 − Q1.

The system velocities, pressures, and the free surface variables are expanded in
powers of a small parameter, ǫ. The solution to the zeroth-order problem is the base
state, where the velocities are zero and the interfacial deflection is also zero. What
is learnt is that the vertical base pressure gradient is balanced by the oscillating
acceleration. The linear stability of the entire system can then be cast into the normal
component of the stress balance at first order, written at the reference surface, z = 0, as

[[p − 2µ∂zw]] − (ρ2 − ρ1)(g + Aω2 cosωt)ζ + γ (∂xx + ∂yy)ζ = 0 (2.5)

where p is the perturbed pressure, w is the perturbed vertical component of velocity,
and ζ is the perturbed free surface. In the above, the subscripts x, y and z on ∂

represent the partial derivative operator. It may be noted that the linearized domain
equations and the kinematic conditions relate p and w to ζ , thereby yielding a
homogeneous problem in ζ .

The perturbed system is analysed by considering horizontally periodic modes with
wavenumber k. Observe that the perturbed equations would contain time derivatives
arising from (2.1) and the kinematic condition, (2.3). A term with two derivatives in
time therefore arises from the perturbed pressure field using (2.5), but the appearance
of cosωt via the base pressure gradient prevents us from expressing the state variables
in pure exponential time modes. Instead the periodicity of the system must be taken
into account by including a Floquet exponent, σ , possibly complex, in the infinite
Fourier series. The Fourier series is written in modes of the basic frequency, ω, for
convenience. Accounting for both the horizontal spatial and temporal dependence of
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the system, for every dependent variable, ψ , we write

ψ = eik·r

∞
∑

n=−∞

e[σ+i(α+nω)]tψ̂n(z). (2.6)

To evaluate the z-derivatives of w in (2.5), the velocity profile must be calculated.
After elimination of pressure from the linearized equations of motion and substituting
(2.6) into them and dropping the ˆ , the fourth-order ordinary differential equation
governing each Fourier mode, n, for w is

[σ + i(α + nω)− νj(∂zz − k2)](∂zz − k2)wjn = 0, (2.7)

to which the solutions are

wjn = ajnekz + bjne−kz + cjneqjnz + djne−qjnz (2.8)

with

q2
jn = k2 +

σ + i(α + nω)

νj

(2.9)

where ν is the kinematic viscosity. In the case of σ + i(α + nω) = 0 the functions
containing qjn are replaced with zekz. The boundary conditions determine the
coefficients in (2.8). The no-slip boundary conditions on the bottom and top surfaces
are

w1n = ∂zw1n = 0 at z = −h1, (2.10a)

w2n = ∂zw2n = 0 at z = h2, (2.10b)

and at the interface z = 0 we have

w1n = w2n, (2.11)

∂zw1n = ∂zw2n, (2.12)

µ1(∂zz + k2)w1n = µ2(∂zz + k2)w2n, (2.13)

and

w1n = w2n = (σ + i(α + nω))ζn. (2.14)

The pressure p in 2.5 can be replaced with an expression including the vertical
velocity component w using the x and y components of the perturbed equations of
motion along with continuity. The final form of the normal component of the stress
balance for each Fourier mode is

[[(ρj(σ + i(α + nω))+ 3µjk
2)∂zwn − µj∂zzzwn]] + (1ρg − γ k2)k2ζn

= Aω21ρk2

2
(ζn+1 + ζn−1). (2.15)

Here 1ρ = ρ2 − ρ1 is used. The identity cosωt = (eiωt + e−iωt)/2 has also been used,
resulting in the coupling of the nth Fourier mode ζn to the n + 1 and n − 1 modes.
The linear stability of the system is solely governed by the infinite series of equations
given by (2.15), and substitution of the derivatives calculated from (2.8) gives a series
of coupled linear equations homogeneous in ζn. The series of equations are truncated
to a finite number of modes, N, with the growth constant, σ set to zero. The linearized
problem can then be cast as an eigenvalue problem to obtain the solutions for neutral
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FIGURE 1. Linear stability threshold for a horizontally infinite bilayer of FC70 (1880 kg m−3,
12 cSt) and silicone oil (846 kg m−3, 1.5 cSt) with h1 = h2 = 0.5 cm, and frequency f =
ω/2π= 9 Hz. Interfacial tension estimated to be 7 dyn cm−1 (Someya & Munakata 2005).

stability. The eigenvalues are the amplitudes, A, and the eigenvalue problem takes
the form

Dζ = ABζ . (2.16)

Here the matrix D is generated by the left-hand side of (2.15) and operates on the
eigenvector ζ . The response frequency α is set to zero in (2.15) for harmonic solutions
and to ω/2 for subharmonic solutions. The matrix B has two non-zero diagonals,
which couples the modes ζn, but differs slightly for the n = 0 mode. Truncation from
n = 0 to N results in the inclusion of the ζ−1 coefficient in the matrix B for the n = 0
mode, and is replaced with the conjugate ζ1 for α = 0 and ζ0 for α = ω/2, to ensure
reality of the expansion (2.6). The solution of (2.16) yields a set of eigenvalues, A, for
which the lowest real eigenvalue corresponds to the first excited mode in a physical
system when the forcing amplitude is gradually increased from zero upward.

Solving the linearized problem for all wavenumbers k yields a set of tongues
of instability similar to the fins produced by the Mathieu equation (Benjamin &
Ursell 1954), but with the tips smoothed by viscosity and not descending to zero
amplitude: see figure 1. For these calculations N was taken to be 12. The linear
system response arising from these tongues alternates between subharmonic (α = ω/2)
and harmonic (α = 0), where the first tongue is subharmonic. We refer to the first
tongue as subharmonic, the second as harmonic, and the third as superharmonic,
as the waves excited in these regions execute one-half, one, and one-and-a-half
periods per cell period, respectively. In an experimental system that approaches the
laterally infinite limit, such as that of Bechhoefer et al. (1995), the wavenumber
with the lowest threshold amplitude would be excited first in a series of trials
of increasing vibrational amplitudes. In figure 1 the minimum threshold occurs at
A = 0.104 cm with a wavenumber k of 258.1 m−1. The first excited mode, typically,
is a subharmonic mode in the first tongue, but it has been seen that lowering a fluid
layer height can result in a bicritical amplitude where modes in the first harmonic
and subharmonic tongues can be excited simultaneously. Further lowering of the height
excites the harmonic mode (Kumar 1996). The harmonic response with a thin layer
was confirmed experimentally by Müller et al. (1997), and a nonlinear pattern-forming
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FIGURE 2. Frequency-dependent predictions for (a) threshold amplitude and (b)
wavenumber selection for FC70–silicone oil bilayers of h1 = h2 = 0.5, 0.75, 1.5 and 2.5 cm.
Physical parameters are the same as in figure 1. Circled point denotes the first excited mode
from figure 1. Hereon, frequency and amplitude denote the parametric conditions, unless
otherwise noted.

study near the co-dimension 2 point was done by Wagner, Müller & Knorr (2003).
The theoretical curve matched by Bechhoefer et al. (1995) can be generated by
calculating the minimum point in figure 1 for a range of frequencies, noting that
their curves depict forcing acceleration, Aω2, instead of forcing amplitude, A. An
example of this calculation is given in figure 2(a) for several different layer heights,
while the corresponding wavenumber selection is shown in figure 2(b). It can be seen
that the general behaviour of these curves depends upon the layer height. At low
forcing frequency the minimum threshold increases without bound as the frequency is
decreased, agreeing with intuition that a light over heavy system is stable. Increasing
the forcing frequency causes a sharp drop in the minimum threshold amplitude. For
the systems of large layer height the threshold can drop to a minimum value before
rising and then dropping again. The wavenumber selection in figure 2(b) shows that
for lower layer heights, the selected wavenumber is higher. The shift toward higher
wavenumbers arises from a diminished gravitational effect when the layer heights are
small. We note that resonance is obtained on account of a gravitational as well as
capillary contribution. It is therefore apparent that a reduced gravitational effect leads
to a greater capillary contribution. Higher wavenumbers are associated with greater
viscous effects and this is seen in the rises in the threshold present in the systems
of h1 = h2 = 1, 1.5 and 2.5 cm in figure 2(a). For the h1 = h2 = 0.75 cm case, the
height is sufficiently low such that the viscous effects are important at much lower
frequencies than in the other cases, and a local minimum in the threshold curve is
therefore barely seen.

2.2. Spatially finite systems

Extension of this model to the case of a cell with finite lateral dimension that
permits separation of horizontal cell modes was outlined by Benjamin & Ursell (1954)
for both rectangular and cylindrical cross-sections. They applied these conditions to
their stability results generated by the Mathieu equation, and the application to the
viscous model is much the same. For the case of a cylinder of radius R, the allowed
eigenfunctions ζm = ζ(r, θ), which are compatible to the stress-free condition on the

7



FIGURE 3. Spatial forms and dimensionless wavenumbers of various cylindrical cell modes
satisfying the stress-free boundary condition.

vertical walls, are given by the functions satisfying
(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂

∂θ
+ k2

m

)

ζm = 0, (2.17)

which can then be decomposed as

ζm = Jl(kl,mr) sin lθ ζ̂l,m, (2.18)

where kl,m is the mth zero of J′
l(kl,mR). The indices l and m indicate the number of

azimuthal and radial nodes, respectively. The spatial forms and non-dimensionalized
values kl,mR of various cylindrical linear modes ζl,m, are presented in figure 3
(Abramowitz & Stegun 1964).

The critical thresholds corresponding to these allowed modes (in addition to higher
index modes) have been labelled on stability diagrams of two different frequencies
in figure 4(a,b). Here it is apparent that the wavenumber corresponding to the
subharmonic minimum threshold is excited only in the case where it coincides with
one of the allowed modes. Harmonic and superharmonic excitation is uncommon at
high frequencies, but at low frequencies in a discretized system one can possibly skip
the first subharmonic tongue and excite harmonic and superharmonic modes, as in
figure 4(a), where the (2, 1)h mode would be excited first at an amplitude of 0.92 cm.
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parameters are the same as in figure 1.

The stability diagram of figure 4(b) was calculated for a carefully chosen frequency
to highlight the appearance of a co-dimension 2 point, a set of conditions where two
modes are both neutrally stable for the same amplitude and frequency. Here, both
(2, 1)sh and (0, 1)sh modes are simultaneously excited at an amplitude of 0.123 cm.

Figure 5 shows all of the previously discussed aspects of discretization, where
the minimum amplitudes of instability from calculations such as figure 4 are plotted
versus a multitude of frequencies for a cylindrical system. The figure depicts the
overlapping dips of instability for each mode, descending to minimum thresholds.
Each dip corresponds to a single-mode ζl,m specified by (2.18). When positioned at
one of the local minima, slight adjustment to a lower or higher frequency causes the
threshold to rise as the resonant transfer of energy to the wave becomes less efficient.
The modes excited at frequencies higher than the minima are referred to as tuned
modes, and those at lower frequencies as detuned modes. This distinction is important
because Benjamin & Ursell and many others have noted different nonlinear behaviour
near the threshold for tuned and detuned modes, which will be discussed later in
the context of determining the experimental threshold. Further departure from a local
minimum results in the intersection with an adjacent mode. These intersections, or
cusps, are the co-dimension 2 points highlighted by figure 5. The general ordering
of the modes is dictated by the wavenumber, where at low frequencies harmonic and
superharmonic modes are prevalent, followed by subharmonic modes at the higher
range. The physical parameters used to calculate figure 5 are the same as in one
of the experiments of this study, and one result of this is the viscous damping of
sharp resonances at low frequencies entering from the higher harmonic tongues. One
of the benefits of using a viscous system is a series of well-spaced modes, resulting
from the damping of resonances with the harmonic and superharmonic tongues. It
will be shown in the next section that the use of less viscous systems, typical of
previous work, makes individual modes more difficult to discern due to the appearance
of sharp resonances with these tongues. The infinite system threshold, depicted by a
dashed line, is included for comparison in figure 5; its origin is figure 2(a). At large
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frequencies the finite system threshold is very nearly identical to the infinite threshold,
and continued increase in frequency causes the merging of the two.

These predictions constitute a model for single-mode excitation in which dissipation
arises only from the interior, and what will now be shown is that prior single-mode
experiments do not satisfy the ideality of this model, thereby providing motivation for
the current work.

3. Previous experiments in small cylinders

One of the central purposes of this work is to reproduce the thresholds predicted
in figure 5. Several Faraday experiments were performed in small cylinders with the
aim of measuring the onset of instability, in the regime where mode discretization
is important. Most often the experiments investigated the stability boundary for only
one or two modes in a system with limited interior viscous effects. In contrast large
dissipation arising from the sidewalls results in systems exhibiting non-ideal behaviour.
Comparison of the data from these experiments to the predictions of the Kumar &
Tuckerman model highlights many of the discrepancies in previous experiments, to
which the current study will provide new insight. In figure 6(a–f ) the results of these
works have been compared to this model and will be discussed.

The early experiments of Benjamin & Ursell (figure 6a) utilized a deep layer of
water as the operating fluid in a test cylinder of diameter 5.4 cm. Using the nodal
indexing of this work, they investigated the (1, 2)sh mode, appearing with a natural
frequency at 15.82 Hz, in contrast to the inviscid natural frequency of 15.87 Hz.
Respectable agreement with their inviscid model was found after shifting the natural
frequency to the observed frequency, but the amplitudes are noticeably higher at the
tongue minimum, a result of system dissipation. Upon fitting the data with the viscous
model, it is seen that the stability tongue is modified only slightly, indicating that the
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FIGURE 6. Past experimental threshold data and viscous model predictions for: (a) Benjamin
& Ursell (1954), water and air, ρ = 1000 kg m−3, ν = 1 cSt, γ = 72.5 dyn cm−1, R =
2.70 cm, h = 25.4 cm; (b) Dodge, Kana & Abramson (1965), water and air, R = 14.5, h = 29
and 7.25; (c) Ciliberto & Gollub (1985), water and air, R = 6.35, h = 1; (d) Henderson &
Miles (1990), water/surfactant and air, γ = 42.3, R = 3.725, h = 2.04; (e) Tipton & Mullin
(2004), water and silicone oil, ρ1 = 997.5 and ρ2 = 766, ν1 = 1.033 and ν2 = 0.670, γ
unreported and set to 21.5, R = 1.76, h1 = 5.31 and h2 = 0.739; (f ) Das & Hopfinger (2008),
FC72 and air, ρ = 1690, ν = 0.406, γ = 11, R = 5, h = 6. All theoretical comparisons
are made to the model of Kumar & Tuckerman (1994), assuming stress-free sidewalls and
no interfacial dissipative effects. The dashed lines in figures (d,f ), however, are the linear
damping predictions of the original works and are reproduced here for comparison to the case
of stress-free sidewalls. All units are the same as listed for (a).

viscous contribution of the interior is negligible. One therefore can only conclude that
the hidden dissipation comes from either sidewall or from interfacial dissipative effects.
A finding of the current work is that experimental agreement with the theory improved
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 with the increase of the Bond number

Bo =
1ρg

γ k2
, (3.1)

a measure of the relative importance of the capillary effects. For the experiments
of Benjamin & Ursell, the Bond number was 3.47. Careful inspection of all the
predictions shows that the (4, 1)sh mode occupies nearly the same stability space
as that of the (1, 2)sh mode, which is explained by noting that the dimensionless
wavenumbers k41R and k12R are identical to each other within 1 % (see figure 3).
Therefore the selection of the (1, 2)sh mode in the experiment is an important
observation to make and we will present arguments later that this is a result of
sidewall effects. Also, the first two data points fall well inside the region of instability
for the (3, 1)sh and (0, 1)sh modes, but these modes have apparently been damped
entirely and instead the (1, 2)sh mode remains.

Dodge et al. (1965) ran experiments, also using water, in a cylinder with a
rather large diameter of 14.5 cm, measuring critical thresholds and wave amplitudes.
Figure 6(b) shows their onset measurements for the (1, 1)sh mode for two different
layer heights, along with the predicted viscous thresholds. Their thresholds observed
better agreement at the tongue minima than that of Benjamin & Ursell, probably due
to the large tank dimensions and the relatively smaller sidewall contribution to the
overall dissipation. A quantitative indicator is the Bond number of 839, which is the
largest of all the previous experiments. However, as acknowledged by Dodge et al.,
the shifting of the experimental natural frequencies to higher frequencies is surprising.
This is in contrast to the shift toward lower frequencies, observed by Benjamin &
Ursell. Notably, the frequency bandwidths of 0.5 and 0.9 Hz were rather small, in part
due to the large tank dimensions. A shift toward higher frequencies (and amplitudes)
than predicted is also encountered with the thresholds of Ciliberto & Gollub (1985)
(figure 6c, Bo = 3.39), who explored chaotic behaviour near the co-dimension 2 point
of a (4, 3)sh and a (7, 2)sh mode. Their frequency bandwidths of 0.4 and 0.3 Hz were
also notably small. Comparison of the predictions for the systems of Dodge et al.

(1965) and Ciliberto & Gollub (1985) also illustrates how the viscous damping of
the thresholds can differ for systems of the same working fluid when the heights and
mode are different.

Of great significance are the experiments of Henderson & Miles (1990), who made
the first attempt at matching single-mode experiments to a theory incorporating viscous
effects. Henderson & Miles performed experiments in a R = 3.725 cm cylindrical cell
with water as the operating fluid, using a surfactant to minimize the pinning of the
interface to the sidewalls. Viscous damping was modelled using the theory of Miles
(1967), assuming that the effects were constrained to laminar boundary layers along
the interface and the sidewalls. However, in the damping model, the water viscosity
had to be taken to be 3 cSt to produce the experimentally observed damping rates in
the cylinder. Nonetheless, incorporation of this damping rate into the model for the
thresholds produced respectable agreement with the experiment for the (0, 1)sh mode
in the cylinder. The negative shift in the observed natural frequency was accounted
for, as was the damping of the thresholds. The predictions of this linear damping
model and their data are reproduced alongside the predictions of the viscous model
in figure 6(d). In comparison, it is seen that the region of instability is only slightly
damped for the viscous theory, much like the systems of Benjamin & Ursell and
Dodge et al., implying that again bulk viscous effects were not the primary source of
damping in these experiments. The linear damping coefficient due to viscous effects
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in the bulk phases, given by Kumar & Tuckerman (1994) and derived by Landau & 

Lifshitz (1987), ignoring interfacial effects, is given by

γvisc = 2k2µ1 coth kh1 + µ2 coth kh2

ρ1 coth kh1 + ρ2 coth kh2

. (3.2)

It follows that the linear contribution to the bulk viscous effect in these experiments
was γvisc = 0.0216 s−1, only ∼5 % of the measured damping rate of 0.44 s−1, implying
that the system’s dissipation was dominated by the wall and interfacial dissipative
effects. The frequency shift and slight deviation of the (0, 1)sh thresholds in the work
of Henderson & Miles (1990) (Bo = 21.9) is also seen in the experiments of Das
& Hopfinger (2008), who also measured the threshold of the (0, 1)sh mode, but in a
large R = 5 cm cell (Bo = 257). Figure 6(f ) reveals the deviation of the data from
the viscous model to be qualitatively the same although arguably less than that of
Henderson & Miles for both the (0, 1)sh mode and its neighbouring (3, 1)sh mode.
Negative frequency shifts were observed along with threshold damping. The damping
of the tuned (3, 1)sh thresholds appears to be greater than the tuned thresholds of the
(0, 1)sh mode, a result consistent with the findings of our experiments.

Other experiments of note are those of Ito, Tsuji & Kukita (1999) and Tipton &
Mullin (2004), because, like the experiments in this work, both were run for liquid
bilayers as opposed to a liquid with a passive air layer. The experiments of Ito
et al. are qualitatively different from traditional single-mode experiments, as they were
interested in modelling the effect of sidewall flow perturbations on the instability. In
their experiment, a column of water with kerosene lying on top of it was pumped in
an oscillatory manner using a piston, producing a moving interface like the Faraday
problem. However, base flow perturbations arose from shear flows at the sidewalls.
They observed the growing cell modes at different frequencies much like the Faraday
experiment, but in general the data do not agree with the viscous Faraday model
and are not shown here. Of note, however, are the observations by Ito et al. of the
development of a film produced by kerosene on the sidewalls. Qualitatively, this film
was the same as observed in this work, and Ito et al. provide excellent discussion of
its dynamics. Additionally, Ito & Kukita (2008) further study the effect of the film on
the nonlinear dynamics of the instability.

Tipton & Mullin (2004) probed the bifurcation structure of the (0, 1)sh mode in a
closed stainless steel cylinder containing water and silicone oil for a variety of liquid
heights, and observed a non-dimensionalized collapse to the predictions of a linearly
damped Mathieu equation. They noted that their damping parameter was eight times
the value predicted by (3.2), suggesting that wall effects were important in their cell.
The interfacial tension between their oil and water was also not measured, requiring
guesses to be made to fit the viscous model to their data. Due to the small density
difference between water and oil, this system stands out for being the only set of
previous experiments where the surface tension made a significant contribution to the
mode dispersion. Taking the interfacial tension to be 21.5 dyn cm−1, a match can
be made between the observed and predicted natural frequencies, but is lost when
the value is adjusted slightly. At an interfacial tension of around 19 dyn cm−1 (a
value suggested in private communication with Tipton & Mullin), the discrepancy is
significant: see figure 6. It appears that the thresholds lay above the viscous prediction
regardless of the exact value chosen, and the cell diameter of 35.22 mm, the smallest
of the reviewed experiments, suggests that the dissipation due to wall effects was
controlling. Additionally, the Bond number here of 2.4 was the lowest of all of the
reviewed experiments.
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FIGURE 7. (Colour online) Test cell and the electromechanical shaker.

Application of the viscous model to the past results clearly shows that there have
been many experimental unknowns which are not accounted for in the linear stability
model. This has resulted in different forms of mismatch between experiments and
theory, including mode shifts toward both higher and lower frequencies, increases
in the threshold amplitudes and the complete absence of predicted modes. Broader
interpretation of these systems cannot be given due to the limited scope of these
studies, often limited to only one or two modes. Thus, in addition to a better
replication of the assumptions of the linear theory, another important goal of this work
is to study an entire range of modes, as presented in figure 5, where the interaction
between the sidewall and the instability can be more deeply understood.

4. Experimental method

Experiments were performed using an electromechanical shaker capable of
independent adjustment of frequency and amplitude, producing maximum accelerations
of 3g at frequencies of up to 15 Hz. All cell and interfacial motion were examined
using time–space data of the images, obtained from high speed digital imaging with
frame rates of up to 2000 fps. Fourier transform analysis of the cell motion determined
the frequency control to be precise to within 0.1 % of the setpoint. Accuracy in
the imposed vibrational amplitude was estimated to be better than 1 % and interface
deflection amplitude was estimated to be comparable, albeit slightly less precise due to
optical bending through the cell.

The experimental cell was constructed with two Plexiglas plates with machined
trenches to produce an o-ring seal at the ends of glass cylinders of R = 2.55 cm
producing two effective heights of 4.1 and 6.4 cm. To prevent leaks or bubble
generation caused by thermal effects, a 1 mm channel in the top plate was connected
to an external reservoir into which the cell fluid could either expand or contract: see
figure 7. Perturbations due to flow into or out of the channel were assumed to be
insignificant, and this allowed the creation of a completely filled system with which
experiments could be run continuously over the course of weeks. A square cage was
built around the cell with thin Plexiglas plates and filled with water to improve the
optics of the cell wave motion. The external cell motion was tracked using marks
made on the cell exterior.

Experiments were performed with 3MTM Fluorinert electronic fluid FC70 (ν =

12 cSt) and silicone oils. Densities were measured using a pycnometer with a
calibrated volume of 51.490 mL. The density of FC70, listed as 1940 kg m−3, was
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found to vary from bottle to bottle, and therefore the density used for theoretical
predictions is noted with the figures. Silicone oils of 10 cSt (ρ = 944 kg m−3) and
1.5 cSt (ρ = 846 kg m−3) were used. A lower viscosity silicone oil of 0.65 cSt was
removed from consideration because it was found to be slightly miscible with FC70.
The density difference between the two phases plays a large role in the positioning
of the thresholds in the discretized regime, considering that the excited modes are
primarily gravity waves with little capillary contribution. The range of frequencies for
which discretization is important increases for a system with larger density difference,
since the wavenumber selected is always lower and the same mode appears at
higher frequencies. At low frequencies the instability threshold is also lowered for
large density differences, meaning that harmonic and superharmonic modes are more
easily accessed. The density difference in these experiments of nearly 1000 kg m−3 is
quite similar to a water and air system, but the difference in behaviour is different
considering the higher viscosities.

It was found that FC70 and silicone oils produced a nearly flat interface with only
a slight meniscus (less than 1 mm). Upon tilting of the filled cell, the interface was
seen to move with great ease along the sidewalls in contrast to the sluggish interface
between oil and water, which exhibits stick–slip-type behaviour, even when different
wetting agents were applied to the sidewalls. Neither viscosities nor interfacial tensions
were measured. Slight adjustment of viscosity above or below the assumed values
has very little effect on the predicted threshold curves. Additionally, interfacial tension
shows virtually no effect on the theoretical predictions, as the large density difference
between FC70 and silicone oils dominates the capillary contribution in the considered
frequencies. Interfacial tension between FC70 and silicone oil is estimated to be
7 dyn cm−1 (Someya & Munakata 2005).

A valuable and common measurement in the single-mode experiments is the rate at
which an excited mode decays once the excitation has been stopped. These damping
rates can be used to model the dynamics as a single degree of freedom system,
first done by Henderson & Miles (1990). However, in the case of the experiments
in this study the rates will primarily be used to gauge the amount of dissipation in
the system due to bulk viscous effects not included in (3.2). The exponential rate of
decay is determined by the slope of the logarithm of the ratio of the wave amplitude
scaled by the initial value plotted against time. This was done for both harmonic and
subharmonic (0, 1) modes, for which the maximum wave height occurs at the z-axis.
Imaging of the mode and selection of the time space of this central position produces
a decay. The wave amplitude was then measured as half of the difference between
the maximum wave amplitude and the apparent contact line. Extensive details on this
method can be found in Keulegan (1958) and Henderson & Miles (1990) and Das &
Hopfinger (2008).

5. Results of experiments

5.1. Sidewall behaviour

The key results are connected to the behaviour of the interface close to the sidewalls,
the source of the non-ideality. Filling of the cell with FC70 and silicone oil produced
a convex down meniscus in the glass cylinders, a result of the preferential wetting
of the glass by the silicone oil. Upon vibration of the cell either below or above the
Faraday threshold, the harmonic modulation of the gravity field causes adjustment to
the desired meniscus profile, resulting in harmonic emission of an axisymmetric wave
from the sidewall. In a system, after the commencement of oscillation, there exists a
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(a)

(b)

(c)

FIGURE 8. Experimental visualization of the static FC70 and 1.5 cSt silicone oil interface
and meniscus (a), initial meniscus wave emission (b), depicted by the bending of the gridlines,
and a steady-state meniscus wave profile (c). Parametric conditions are 6 Hz and 3.0 mm.
The wave profile generated by the meniscus dynamics remains axisymmetric throughout the
period of induction prior to growth of the instability. See supplementary movie 1 available at
http://dx.doi.org/10.1017/jfm.2013.324.

transient period during which the emission of the meniscus wave and the reflection of
the wave through the cylinder’s z-axis equilibrates to a steady-state wave that appears
as concentric ripples. The quiescent state, initial emission of a wave, and a steady-
state meniscus profile are depicted in figure 8. The magnitudes and characteristic
wavelengths of these ripples are very much a function of the parametric amplitude and
frequency. Finally, although the temporal behaviour of the interior profile is complex
due to the persistent emission and reflection of meniscus waves, the alteration of the
meniscus remains axisymmetric and harmonically periodic with the cell motion. This
periodicity is suspected to interact with the harmonic modes of instability, which will
be presented and discussed further on.

Figure 9 depicts the excitation of a (0, 1)sh mode after it has saturated to a
steady amplitude. While the nonlinear growth is not the main focus of this work,
the transition to this state is essential to be able to reproduce the linear thresholds. The
emission of meniscus waves does not alter the contact position of the interface at the
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(a)

(b)

FIGURE 9. Experimental visualization of the excitation of a (0, 1)sh mode for the
(a) maximum and (b) minimum cycle in an FC70 and 1.5 cSt silicone oil system, excited
at 7.5 Hz and 1.0 mm. The double-headed white arrow denotes the z-direction difference
between the apparent and actual contact lines of the interface. This difference is emphasized
in figures 10 and 11, where time series of images of the film dynamics are presented for
systems with upper phase viscosities of both 50 and 1.5 cSt. Cell radius R = 2.55 cm. See
supplementary movie 2.

sidewalls, but excitation of a Faraday wave results in a motion that begins to separate
the apparent contact position from the actual position. As the Faraday wave begins
to grow, the first downward motion of the interface at the sidewall causes both the
apparent and the actual contact line to be pushed downward. For the reverse upward
motion of the interface, the apparent contact line moves upward, while the actual
contact line remains fixed to the lowest position the interface had reached, as indicated
in figure 9. While the actual and apparent contact lines coincide for the upward cycle,
the actual contact line lies 0.66 cm below the apparent contact line in the downward
cycle, evidenced by the slight optical deformations of the back grid in the far left and
right sides of the image. After saturation of the Faraday wave to a finite amplitude,
the interface remains tethered to this low position, stretching and contracting vertically
as the bulk FC70 glides up and down over a tiny film of silicone oil. This is clearly
visualized in figures 10 and 11, with sets of images showing the film dynamics during
a period of a saturated (0, 1)sh mode, like figure 9. A system with silicone oil viscosity
50 cSt is shown in figure 10, and the film formation is evidenced by the deformation
of the grid as the apparent contact line advances above the pinned position. Temporal
asymmetry is seen when the apparent contact line begins to recede, and the profile
of the interface more closely represents a 90◦ angle with the wall. Both the grid
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FIGURE 10. Film dynamics for a period of (0, 1)sh motion excited at 6.7 Hz in an FC70 and
50 cSt silicone oil system. The distinction between the apparent and actual contact line is
seen moving from left to right and then top to bottom with temporal spacing between each
image of 0.299 s. The white arrow focuses on a region where the back grid is most distorted,
indicating the presence of a film. Images are presented such that the interface contact line
remains constant in each image. See supplementary movie 3.

deformation (film thickness) and asymmetry are more subtle in figure 11, where a set
of images has been shown for a (0, 1)sh mode when the upper viscosity is 1.5 cSt.
The formation of this film is believed to be critical to the realization of the stress-free
boundary condition. Obviously there are stresses introduced through this mechanism,
but we shall argue that it is less significant than the viscous stresses arising from bulk
fluid motion. The dependence on the upper phase viscosity will be established by first
presenting the experimental thresholds for a (2, 1)sh mode when 10 cSt oil is used as
the upper phase, followed by the results using 1.5 cSt oil.

5.2. Experimental thresholds and dependence upon the upper phase viscosity

Figure 12 presents the experimental onsets of the (2, 1)sh mode and the corresponding
theoretical predictions for two FC70–silicone oil systems of identical layer heights
in which the upper phase viscosity is (a) 10 cSt and (b) 1.5 cSt. The data points
correspond to sets of conditions at which the instability was observed. A separate
experiment performed at an amplitude slightly lower than that of the data points
resulted in a system at which the instability did not appear and only the meniscus
waves were present. Hysteresis effects have been reported (Benjamin & Ursell 1954;
Henderson & Miles 1990; Tipton & Mullin 2004; Das & Hopfinger 2008) on the
detuned branch of the curve, where the instability disappears at a frequency or
amplitude lower than the onset conditions. This phenomenon, however, was not
studied in this work. The end points of the data set correspond to co-dimension
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FIGURE 11. Film dynamics for a period of (0, 1)sh motion excited at 7.5 Hz in an FC70 and
1.5 cSt silicone oil system. Moving from left to right and then top to bottom, the temporal
spacing between each image is 0.267 s, and the image length scale is the same as figure 9.
Images are presented such that the interface contact line remains constant in each image. See
supplementary movie 4.
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FIGURE 12. Experimental thresholds of and predictions for FC70 (1916 kg m−3) and silicone
oil bilayers (h1 = 2.1 cm, h2 = 2.0 cm) in a R = 2.55 cm cylinder for (a) 10 cSt oil
(944 kg m−3) and (b) 1.5 cSt oil (846 kg m−3). Open circles represent single-mode thresholds,
black dots represent co-dimension 2 points.

2 points: in this case, for both sets of results the left co-dimension 2 point is a
superposition of the (2, 1)sh with a (1, 1)sh mode, while the right co-dimension 2
point is a superposition of the (2, 1)sh with (0, 1)sh modes. The latter co-dimension 2
point in the 10 cSt system is visualized in figure 13, exhibiting the same contact line
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(a)

(b)

FIGURE 13. Experimental visualization of the (a) maximum and (b) minimum cycle of the
growth of the co-dimension 2 point consisting of a (2, 1)sh mode with a (0, 1)sh mode from
the data set in figure 12. See supplementary movie 5.

behaviour as in figure 9. In the case of this instability it should be noted that the film
is not azimuthally uniform due to the presence of the (2, 1)sh mode.

Of great interest is the deviation between the thresholds and the predictions in
both data sets; the observed 1.5 cSt thresholds clearly provide better agreement with
the predictions compared to those of the 10 cSt oil. In fact the sidewall film was
much smaller and difficult to notice in the 1.5 cSt oil systems, and therefore, in
addition to lower stresses arising from sidewall boundary layers, we concluded that
the total sidewall contribution to the overall system dissipation was much smaller
when using 1.5 cSt oil. At the end of the section, this will be quantitatively justified
by comparison of the predicted interior viscous contribution with the experimental
damping rates. Thus, in the interest of ideality, the remainder of the experiments
presented used 1.5 cSt oil, which allows us to more carefully pinpoint the interaction
between the non-ideality and the instability. Before presenting more threshold data, the
nonlinear behaviour of the wave growth will be discussed using figure 12(a,b) as it is
characteristic of all the observed modal behaviour and has a tendency to obscure the
linear threshold.

5.3. Nonlinear growth and saturation

The nonlinear behaviour changes considerably as one moves from the detuned branch
of the (2, 1)sh mode to the tuned branch in figure 12. It has also been reported that
the bifurcation is subcritical for frequencies below the natural frequency, i.e. detuned
modes, and supercritical for frequencies above the natural frequency, i.e. tuned modes
(Miles 1984; Douady 1990). In this work, the experimental observations are consistent
with this, given that there exists a ‘jump’ in the saturated amplitude of the excited
mode for the data points at frequencies less than the natural frequency, while at
frequencies above the natural frequency the mode saturation is nearly zero at the
critical threshold. In fact, for many of the points below the natural frequency, the
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excited mode grows until the interface ruptures for imposed amplitudes slightly above
the threshold. Because such a marked change can be observed by such slight changes
in the imposed amplitude, detection of the instability is quite easy for the subcritical
branch. The instability is more difficult to detect on the supercritical branch, because
a slight increase in the imposed amplitudes past the threshold results in only a slight
increase in the saturated wave amplitude. This difficulty is compounded for tuned
harmonic modes, as it becomes more difficult to differentiate the instability from the
meniscus waves, whose emission is also harmonic.

Finally, the temporal dynamics of the growth of detuned modes is very interesting.
In the excitation of detuned modes, there were periods of time during which the
interface showed no instability well after initialization of the cell motion. Only the
meniscus waves persisted during these induction periods, and suddenly the interface
would begin to deflect and grow in a rapid manner. These induction times increased
with proximity to the critical threshold, sometimes approaching four or five minutes, as
noted by Das & Hopfinger (2008).

5.4. FC70 and 1.5 cSt silicone oil instability thresholds

Figures 14 and 15 show the sets of threshold data for cells filled with large and small
heights of FC70 and 1.5 cSt silicone oil. Frequency bands and threshold amplitudes
were found for modes ranging from 2 to ∼8 Hz. Above 8 Hz the wavefield was
excited at considerably smaller amplitudes and the system behaved more like a
laterally infinite system as the effects of mode discretization began to vanish. In
both systems, superharmonic and harmonic modes were observed in addition to the
traditional subharmonic response. Co-dimension 2 points, predicted theoretically by the
model as the cusps in the stability curve, were found throughout the frequency range
by careful actuation of both frequency and amplitude. The experimental thresholds
for both layer heights are predicted quite well by the model, especially from the
perspective of mode selection. For only a handful of points is the observed mode
different from the theoretical prediction. However, there are certainly some noticeable
trends of the data not matching the predictions, and for this reason, the results of each
cylinder will be discussed separately.

The experimental data are grouped together according to mode. The system
presented in figure 14 is the large height system with an FC70 layer of 3.1 cm and a
1.5 cSt silicone oil layer of 3.3 cm. The modes observed in this system, in increasing
frequency, are (1, 1)h, (1, 2)su, (2, 1)h, (0, 1)h, (3, 1)h, (1, 2)h, (1, 1)sh, (2, 1)sh, and
(0, 1)sh, for which the Bond numbers ranged from ∼50 to 400. The observed modes,
denoted by the enclosing boxes in the figure, match the predicted mode except when
noted. The threshold amplitudes show good agreement, save for the points near the
tongue minima for the subharmonic and superharmonic modes, due to residual wall
dissipation. On the other hand, for the (0, 1)h and (1, 2)h tongues, it can be clearly
seen that the thresholds of the experiment lie below the predicted thresholds. This is a
noteworthy result, and the best explanation seems to be the interaction of the harmonic,
axisymmetric meniscus waves with the instability, lending itself to thresholds below
the prediction.

A similar set of modes were observed for experiments with reduced layer heights,
where an FC70 layer of h1 = 2.1 cm and a 1.5 cSt layer of h2 = 2.0 cm were used
(see figure 15). The effect of layer heights from the inviscid theory for two liquids
was shown by Kumar & Tuckerman (1994) where height dependence in the dispersion
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FIGURE 14. Experimental and predicted thresholds of instability for a bilayer of FC70
(h1 = 3.1 cm, ρ1 = 1888 kg m−3) and 1.5 cSt silicone oil (h2 = 3.3 cm, ρ2 = 846 kg m−3).
Data points enclosed by a box indicate the excited mode. Black dots represent co-dimension 2
points.

relation arises via the expression

ρ1 + ρ2

ρ1 coth kh1 + ρ2 coth kh2

,

which shows saturation toward unity when kh1 and kh2 are greater than ∼3. In this
system, the expression leads to values of 0.89 for the (1, 1) modes, 0.98 for the (2, 1)
modes, and 0.99 for the (0, 1) modes, indicating only a moderate effect of height.
Still, the resulting shift of the harmonic and subharmonic (1, 1) modes are observed
as predicted by the viscous theory. However, it should be noted that the (1, 2)h mode
observed between 4 and 4.4 Hz just above threshold is not the predicted mode. The
predicted threshold for the (1, 2)h mode is shown in figure 15 and is predicted to be
higher than the (1, 1)sh mode. The early presence of the (1, 2)h mode observed in the
small and large height systems gives further reason to believe in the existence of an
interaction with the meniscus waves. The ordering of the modes in figure 15 is largely
the same as seen for the large height system, save for the region from 3.8 to 4 Hz,
where instead of only (3, 1)h modes a (4, 1)h mode was also observed. The predicted
(3, 1)h mode was damped considerably. Also absent from the experimental system are
the (4, 1)h modes, predicted around 2.6 Hz. The trend here appears to be that wall
damping increases substantially with the number of azimuthal nodes and therefore also
a decrease in the Bond number. It is clearly noticeable in the low height system that
the (0, 1)h thresholds are again much lower than predicted, for the same reason as
given earlier for the large height system.
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FIGURE 15. Experimental and predicted thresholds of instability for a bilayer of FC70
(h1 = 2.1 cm, ρ1 = 1916 kg m−3) and 1.5 cSt silicone oil (h2 = 2.0 cm, ρ2 = 846 kg m−3).
The dashed line represents the predicted (1, 2)sh threshold.

5.5. Saturated interface amplitudes

Figure 16(a,b) presents the saturated wave amplitude with respect to the imposed
vibrational amplitude in the large height system (see figure 14) for two different
frequencies, roughly corresponding to the natural frequencies of the (1, 1)h and (0, 1)h
modes. Here the wave amplitude has been taken as half the difference between the
maximum and minimum interfacial heights. The general shapes of the response of
figure 16(a,b) resemble those of Henderson & Miles (1990) and Das & Hopfinger
(2008), but what is intended to be shown is smoothing of the response near the critical
threshold as opposed to a sharp bifurcation. This smoothing of the response near the
threshold represents an imperfect bifurcation. This was first observed and described as
a ‘tailing’ by Virnig, Berman & Sethna (1988), who reported similar behaviour for
the wave response of (1, 1)sh modes in a rectangular cell using water. Addition of
surfactant minimized the tailing in their experiments. In contrast to their observation
of this behaviour for a subharmonic mode, the tailing in the current work seems be
characteristic of the interaction with the meniscus waves, as was additionally noticed
for the (2, 1)h mode, but was nearly absent for the (1, 1)sh, (2, 1)sh and (0, 1)sh modes.

5.6. System damping study

To quantify the damping in the system, the (0, 1) mode was both harmonically and
subharmonically excited in the FC70 and 10 cSt silicone oil system and also in
the large and small height FC70 and 1.5 cSt silicone oil systems. A total of eight
measurements of the decay of an excited (0, 1)h mode for the 10 cSt system were
taken at excitation frequencies of 3.3 and 3.4 Hz with imposed amplitudes of 15
and 16 mm. Analysis of the time series of the wave amplitudes at the centre of
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FIGURE 16. Wave amplitude responses for the large height system (see figure 14) for
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the cell yielded an average damping rate of 1.15 s−1. Measurements for the (0, 1)sh

mode were taken at frequencies of 7 and 7.1 Hz with imposed amplitudes of 2.2
and 2.3 mm, yielding an average rate of 1.12 s−1. Calculation of the linear viscous
contribution from the interior with (3.2) predicts a rate of 0.51 s−1 for both the
harmonic and subharmonic modes, suggesting that the remainder might be attributed
to wall effects. Damping measurements for similar forcing parameters in the 1.5 cSt
silicone oil systems yielded harmonic and subharmonic damping rates of 0.65 and
0.67 s−1 in the large height system and 0.58 and 0.57 s−1 in the small height systems.
Here the interior contributions from (3.2) are 0.397 and 0.395 s−1 for the small and
large height systems, respectively. Comparison of the interior viscous damping to the
overall measured damping reveals the sidewall effects of roughly 0.6 s−1 in the 10 cSt
system and 0.18–0.25 s−1 in the 1.5 cSt systems. We can therefore conjecture that an
upper fluid viscosity has a great effect on the dissipation owing to the film formation,
as the thickness of this film was noticeably smaller for the experiments with 1.5 cSt
silicone oil as opposed to the 10 cSt oil. Henderson & Miles (1990) and Das &
Hopfinger (2008) report measured (0, 1)sh decay rates of ∼0.38 and 0.45 s−1, whereas
the interior contributions are 0.022 and 0.0049 s−1.

6. Discussion and conclusions

We have designed and presented the results of a discrete-mode Faraday system
whose dissipation arises primarily from the interior bulk domains. Previously, low-
viscosity fluids resulted in systems whose damping was controlled by sidewall and
interfacial dissipative behaviour, resulting in linear thresholds that exhibit various
forms of mismatch with a viscous fluid model when the walls are taken to be
stress-free: see figure 6. The results of the current work, however, show remarkable
agreement with this theory, especially with regard to mode selection and the
positioning of the co-dimension 2 points. This stands in contrast to a statement of
Henderson & Miles (1990), who did experiments in both circular and rectangular
cylinders, and who concluded that the linear stability theory may not be valid in the
region where two modes are unstable. We simply find this not to be true, evident by
the accuracy of the viscous linear theory’s prediction of the co-dimension 2 points
in figures 14 and 15. Their conclusion was drawn with regard to the excitation of
neighbouring (4, 0)sh and (3, 1)sh modes in a rectangular cylinder. In the region of the
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stability diagram where the two modes intersect, Henderson & Miles (1990) observed
only the emergence of the (4, 0)sh. They attributed this to the lower measured damping
rate of the mode when compared to the rate of the (3, 1)sh mode. This result was,
however, obtained from experiments in a rectangular cell and therefore it is difficult to
say whether or not it coincides with our claim that increasing azimuthal nodes causes
the suppression of a mode.

The threshold amplitudes at which certain modes appear in the current work do,
however, show deviation from the predictions, and the deviation can separately be
attributed to the sidewall damping and meniscus waves. Past reports have struggled
to model and provide description of the sidewall behaviour, and we believe that the
film behaviour observed in this work is unique in its simplicity. Ito & Kukita (2008)
attempted to model the nonlinear relationship between the contact angle and the
contact line speed in such a film, given the effects of hysteresis and non-uniform
wetting of the two phases, and applied it to the excitation of the fundamental
axisymmetric mode. Creation of such a film appears to be dependent upon the
preferential sidewall wetting of one of the two phases and minimization of the
associated stresses can be achieved if this phase is of low viscosity. Furthermore,
it is our belief that a low interfacial tension encourages the film forming process, as
the energy requirement to bend the surface from its actual contact position and then
stretch it vertically over the silicone oil film, is high: see figures 10 and 11.

The other aspect of the non-ideality is the meniscus waves, whose effect on the
linear threshold has not been previously observed and is most simply thought of
as forced oscillations, which interact with the parametric wave. Figures 14 and
15 clearly show how the threshold can be altered due to the interaction of the
meniscus waves with the instability for the (0, 1)h and (1, 2)h modes. This alteration
is mathematically interesting, as the forced oscillations owing to the meniscus could
possibly be modelled using a periodic inhomogeneity in (2.15). This approach was
taken by Tipton (2003), who numerically showed that the neutral curves were adjusted
when the linearly damped Mathieu equation was forced with such an inhomogeneity.
This study, however, was done for destabilization of the base harmonic solution
(i.e. meniscus waves) to a subharmonic solution, whereas our experiments showed
measurable interaction for only harmonic modes. A periodic inhomogeneity was also
incorporated by Ito et al. (1999) with their model for their Faraday experiment. Recall
that their experiment used a piston to oscillate a column of water and kerosene up and
down in a pipe, generating both a sidewall film and sidewall fluid shearing in their
base state, thereby preventing a classical Faraday description. However, the system
remains qualitatively similar and the periodicity of these perturbations is identical to
that of the meniscus waves. Their final equation is a linearly damped Mathieu equation
with the addition of such a periodic inhomogeneity, but analysis was not performed to
show how the harmonic modes interact with the inhomogeneity.

A concern in applying such a model to these experiments includes the vanishing of
this interaction due to the mismatch of the spatial forms of the axisymmetric meniscus
waves and the cell modes of higher azimuthal index. This is seen as one compares
the experimental thresholds for the (0, 1)h, (1, 2)h, (1, 1)h, and the (2, 1)h modes
in figures 14 and 15. The interaction remains present in the (1, 2)sh mode but has
apparently vanished with the (2, 1)h mode. We argue that the interaction is still present
for the (1, 1)h mode, considering that the thresholds appear to hit the tongue minimum
predicted by viscous linear stability theory, in contrast to the analogous (1, 1)sh mode,
for which this does not happen (due to wall dissipation). Thus it appears that the
diminishing magnitude of the interaction can be attributed to the increasing number
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of azimuthal nodes. This description is easiest for the (0, 1)h mode due to agreement
of the spatial symmetry with the meniscus waves. Another important consideration is
the imperfect bifurcation presented in figures 16(a) and 16(b), which emphasize the
varying amplitudes of the meniscus waves near the thresholds.

Further discussion of the previous work can now be made and much of the
disagreement between the experiments of these earlier works and the theory can
be explained. The absence of the (4, 1)sh mode in the experiments of Benjamin &
Ursell (1954) is probably due to the large wall dissipation relative to the observed
(1, 2)sh mode, and the same reason applies to the absence of the (3, 1)sh mode in
the experiments of Tipton & Mullin (2004). We find the experiments of Dodge et al.

(1965) to be interesting due to the large diameter system used and the seemingly
minimal amount of tongue damping observed in their (1, 1)sh thresholds, especially
when compared to (1, 1)sh thresholds of this work. The failure of the Kumar &
Tuckerman model to predict the thresholds of Henderson & Miles (1990), Tipton &
Mullin (2004) and Das & Hopfinger (2008) further highlights both the complexity
of damping in single-mode Faraday experiments and also therefore the advantages
of designing a system whose damping is linear. We believe the use of a viscous
system and the comparison with a rigorous model that incorporates viscosity has been
instrumental in pinpointing the meniscus wave interaction.

A final note ought to be given regarding the nonlinear behaviour of the system, as
its presence pervaded and sometimes obscured the precise measurement of the linear
thresholds. Mode amplitudes in single-mode systems have been measured by Dodge
et al. (1965), Tipton & Mullin (2004) and Das & Hopfinger (2008). The most common
observations are the transitions from a subcritical to supercritical bifurcation as the
parametric frequency increases past the tongue minima. Both Virnig et al. (1988)
and Henderson & Miles (1990) compared the measured wave amplitudes to weakly
nonlinear phenomenological theories which include dissipation. The most complete
weakly nonlinear theory is that of Skeldon & Guidoboni (2007), who rigorously
extended the Kumar & Tuckerman model into the nonlinear regime with interest in
pattern formation. Adapting their work to a cylindrical discretized system for the
prediction of mode amplitudes and branching behaviour could offer further insight into
this unique experimental system. The last and perhaps least understood phenomenon,
indescribable by a weakly nonlinear theory, are the induction times observed on
the subcritical branches of the instability. Das & Hopfinger (2008) present data for
which the temporal growth of a mode can be modelled by an exponential behaviour
with a time lag, this time lag corresponding to the induction period where no cell
activity is observed. In light of the present discussion of the sidewall non-ideality, one
possible explanation may be that the cell dynamics induced by the meniscus wave
perturbations, which, once shaking is initialized, are required to reach a certain state
before a jump to Faraday resonance can occur.

In summary, the Faraday linear stability theory adapted for a confined cylindrical
geometry has been shown to be excellent for predicting both the experimental
threshold and mode of instability for a wide range of subharmonic, harmonic, and
superharmonic responses. This agreement was achieved using a two-liquid immiscible
system characterized by its generation of a sidewall film, and the minimization of the
viscosity of the fluid forming this film improved the agreement. Persistent deviation
between the observed and predicted thresholds appears only for the modes harmonic
with the parametric forcing, owing to an interaction with the harmonic capillary waves
emitted from the sidewall meniscus.
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