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Bio-Inspired Stochastic Computing Using Binary
CBRAM Synapses

Manan Suri, Student Member, IEEE, Damien Querlioz, Member, IEEE, Olivier Bichler, Giorgio Palma,
Elisa Vianello, Dominique Vuillaume, Christian Gamrat, and Barbara DeSalvo

Abstract—In this paper, we present an alternative approach
to neuromorphic systems based on multi-level resistive memory
(RRAM) synapses and deterministic learning rules. We demon-
strate an original methodology to use conductive-bridge RAM
(CBRAM) devices as, easy to program and low-power, binary
synapses with stochastic learning rules. New circuit architecture,
programming strategy and probabilistic STDP learning rule
for two different CBRAM configurations ’with-selector (1T-
1R)’ and ’without-selector (1R)’ are proposed. We show two
methods (intrinsic and extrinsic) for implementing probabilistic
STDP rules. Fully unsupervised learning with binary synapses is
illustrated with the help of two example applications: (i) real-time
auditory pattern extraction (inspired from a 64-channel silicon
cochlea emulator) and (ii) visual pattern extraction (inspired from
the processing inside visual cortex). High accuracy (audio pattern
sensitivity>2, video detection rate>95%) and low synaptic-power
dissipation (audio 0.55µW, video 74.2µW) are shown. The ro-
bustness and impact of synaptic parameter variability on system
performance is also analyzed.

Index Terms—Stochastic Neuromorphic System, CBRAM
Synapse, STDP, Auditory Learning, Visual Pattern Extraction.

I. INTRODUCTION

NEUROMORPHIC and cognitive computing research is
gaining importance in recent years. With potential ap-

plication in fields such as robotics, large-scale data analysis
and intelligent autonomous systems, bio-inspired computing
paradigms are being investigated as next generation (post-
moore) ultra-low power computing solutions. While emulation
of spiking neural networks (SNN) in software and Von-
Neumann type hardware (such as DSPs, GPUs and FPGAs)
has been around for a while, they fail to realize the true
potential of bio-inspired computing in terms of low power-
dissipation, scalability, reconfigurability and low instruction-
execution redundancy [1]. One of the main limitations of Von-
Neumann type architectures, while emulating massively par-
allel asynchronous SNN is the need for very high bandwidths
(GHz) to effectively transmit spikes between the memory and
the processor, thus leading to high power dissipation and limit-
ing the scalability. The true potential of bio-inspired learning
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rules can be realized if they are implemented on optimized
special purpose hardware which can provide direct one-to-
one mapping with the learning algorithms running on it [2].
Several research groups are actively working on implementing
bio-inspired synaptic behavior directly in hardware [3],[4].

Emerging non-volatile resistive memory (RRAM) technolo-
gies such as phase-change memory (PCM), conductive-bridge
memory (CBRAM) and oxide based memory (OXRAM) have
been shown as good candidates for emulation of synaptic
plasticity and learning rules like spike-timing dependent plas-
ticity (STDP) [5],[6],[7],[8],[9]. Most recent demonstrations
of RRAM based synaptic emulation treat the synapse as a
deterministic multi-valued programmable non-volatile resistor.
Although such treatment is desirable, it is challenging in
terms of actual implementation. Programming schemes for
multi-level operation in RRAM devices are more complicated
compared to binary operation. Gradual multi-level resistance
modulation of RRAM synapses may require generation of
successive non-identical neuron spikes (pulses with changing
amplitude or width or a combination of both), thus increasing
the complexity of the peripheral CMOS neuron circuits which
drive the synapses. Pulse trains with increasing amplitude
lead to higher power dissipation and parasitic effects on large
crossbars. In our previous work we provided a solution (called
’2-PCM Synapse’) to address the issue of non-identical neuron
spikes for multi-valued neuromorphic systems based on PCM
synapses [10]. Another issue is that aggressive scaling leads to
increased intrinsic device variability. Unavoidable variability
complicates the definition and reproducibility of intermediate
resistance states in the synaptic devices. In this paper, we
present an alternative approach to multi-level synapses. We
show a neuromorphic system which uses CBRAM devices
as binary synapses with a stochastic-STDP learning rule. At
the system level, a functional equivalence [11] exists between
deterministic multi-level and stochastic-binary synapses. In
the case of supervised NN, several works have exploited this
concept [12],[13],[14]. In this work, we use a similar approach
for a fully unsupervised SNN. Our approach is also motivated
by some works from biology [15], which suggest that STDP
learning might be a partially stochastic process in nature.

Section II describes the basics of our CBRAM technology.
Experiments of multi-level and stochastic programming are
discussed. Section III discusses our simplified STDP learning
rule and the synaptic programming methodology. Finally in
section IV we present two examples of fully unsupervised
learning from complex asynchronous auditory and visual data
streams. In the following sections, we use the terms strong-
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and weak- programming conditions. However these have a
relative definition with respect to the technology and materials
used for fabricating the CBRAM devices. For the devices
presented here, a weak-condition refers to a short pulse width
(<10µs), usually 1µs or 500ns, with a voltage <2.5V applied
at the anode or the bit-line. A strong condition corresponds to
a pulse width>10µs.

II. CBRAM TECHNOLOGY

1T-1R CBRAM devices (both isolated and in 8x8 ma-
trix), integrated in standard CMOS platform [16], were tested
(Fig. 1). A Tungsten (W) plug was used as bottom electrode.
The solid electrolyte consisted of a 30nm thick GeS2 layer
deposited by RF-PVD and a 3nm thick layer of Ag deposited
by a DC PVD process. The 3nm thick Ag layer is dissolved
into the GeS2 using the photo-diffusion process [17]. Then a
2nd layer of Ag about 75nm thick was deposited to act as top
electrode.

CBRAM operating principle relies on the reversible tran-
sition from high (reset) to low (set) resistive states owing
to the formation and dissolution of a conductive filament in
the electrolyte layer. In particular, applying a positive voltage
at the Ag electrode results in the drift of Ag+ ions in the
GeS2 and discharge at the inert counter electrode (W), leading
to the growth of Ag dendrites that eventually shunt the top
and the bottom electrodes. Upon reversal of voltage polarity,
an electrochemical dissolution of the conductive bridge oc-
curs, resetting the system to the OFF (reset) state (Fig. 2).
No forming step is required for this device stack. Simple
fabrication, CMOS compatibility, high scalability, low power
dissipation, and low operating-voltages [18] make CBRAM
devices a good choice for the design of synapses in dense
neuromorphic systems.

A. Limitations of Multi-level CBRAM Synapses

In literature, CBRAM devices have been proposed to emu-
late biological synaptic-plasticity by programming the devices
in: multiple low-resistance states for emulating long term
potentiation (LTP) and multiple high-resistance states for long
term depression (LTD) [19],[20]. We demonstrate LTP-like
behavior (i.e. gradual ON-state resistance decrease) in our
GeS2 based samples by applying a positive bias at the anode
and gradually increasing the select transistor gate voltage (Vg)

Fig. 1. (Left) TEM of the CBRAM resistor element. (Right) Circuit schematic
of the 8 X 8 1T-1R CBRAM. matrix. (note: the devices used in this study had
a GeS2 layer thickness of 30nm. The 50nm TEM is for illustrative purpose
only.)

(Fig. 2a). This phenomenon of gradual resistance decrease can
be explained with our model [21], assuming a gradual increase
in the radius of the conductive filament formed during the set
process. Larger gate voltages supply more metal ions leading
to the formation of a larger conductive filament during the set
process [22].

Nevertheless, this approach implies that each neuron must
generate pulses with increasing amplitude while keeping a his-
tory of the previous state of the synaptic device, thus leading
to additional overhead in the neuron circuitry. Moreover, we
found it difficult to reproducibly emulate a gradual LTD-like
effect using CBRAM. Fig. 2b shows the abrupt nature of the
set-to-reset transition in our devices. Precisely controlling the
dissolution of the conductive filament was not possible during
the pulsed reset process. Note that for emulating a spiking
neural network (SNN) it is essential that both LTP and LTD
be implemented by pulse-mode programming of the synaptic
devices. Pulse based synaptic programming is an analogue for
the neuron spikes or action-potentials.

B. Deterministic and Probabilistic Switching

Fig. 3 shows the On/Off resistance distributions of an
isolated 1T-1R CBRAM (during repeated cycles with strong
set/reset conditions). The OFF state presents a larger dis-
persion compared to the ON state. This can be interpreted
in terms of non-uniform breaking of the filament during the
reset process, due to the unavoidable defects [23],[24] close
to the filament which act as preferential sites for dissolution.
By fitting the Roff-spread data with our physical model [21],
the distribution of the left-over filament-height was computed.
Using the computed distribution of the left-over filament
height and the equations in [21] we estimated the spread on
the voltage (Vset) and time (Tset) needed for a successful
consecutive set operation (Fig. 4). Moreover, when weak-set
programming conditions are used immediately after a reset, a
probabilistic switching of the device may appear as seen in
fig. 5. In fig. 5 the set operation fails in several cycles as the
set-programming conditions are not strong enough to switch
the device in those cycles.

In a large-scale system, such stochastic switching behavior
at weak conditions will get compounded with the inclusion of
’device-to-device’ variations. To take into account the device-
to-device variability, we performed similar analysis on the ma-
trix devices. Fig. 6 shows the On/Off resistance distributions
for all devices cycled 20 times with strong conditions. As
expected, the spread on Roff values is larger compared to the
Roff spread for a single device shown in fig. 3.

To quantify the trend of probabilistic switching (both
set/reset) we designed two simple experiments: a cycling
procedure with a strong-set condition and progressively
weakening-reset condition was used to determine reset prob-
ability (fig. 7a) while a strong-reset condition and progres-
sively weakening set condition was used to determine the set-
probability (fig. 7b). As shown in fig. 7, the overall switching
probability (criterion for successful switch: Roff/Ron>10),
for 64 device matrix, increases with stronger programming
conditions. It is thus conceivable to tune the CBRAM device
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(a) (b) 

Fig. 2. (a) On-state resistance modulation using current compliance. Fitting
using model [21] is also shown (extracted filament radius are indicated). (b)
Resistance dependence on gate voltage during the set-to-reset transition.

Fig. 3. On/Off resistance distribution of an isolated 1T-1R device during 400
cycles when strong programming is used.

switching probability by using the right combination of pro-
gramming conditions.

III. STOCHASTIC STDP AND PROGRAMMING
METHODOLOGY

Fig. 8 shows the core circuit of our architecture. It is similar
to the one that we proposed for deterministic synapses in
[10],[25] but is adapted for bipolar-devices and stochastic
learning rule. The core consists of three main blocks- (i)
Input/Output CMOS-neuron circuits (ii) CBRAM synapse-
crossbar connecting the neurons. This may be implemented
without (1R) or with (1T-1R) selector devices (Fig. 8(a) and
(b), respectively), and (iii) Pseudo-random number generator

Fig. 4. Computed distributions (generated using Roff data from fig. 3 and
model [21], of: (a) Tset and (b) Vset (Inset) values for consecutive successful
set operation (mean and sigma are indicated). For computing (a) the applied
voltage is 1V and for (b) a ramp rate of 1V/s is used in the quasi-static mode.

Fig. 5. Stochastic switching of 1T-1R device during 1000 cycles using weak-
conditions (switch-probability=0.49).

Fig. 6. On/Off resistance distributions of the 64 devices of the 8x8 matrix
cycled 20 times. Inset shows Ron and Roff values in log scale with dispersion
for each cycle.

(PRNG) circuit. The PRNG block is only used for imple-
menting optional extrinsic stochasticity as explained later. All
neurons are modeled as leaky-integrate and fire (LIF) type.

Our stochastic-STDP rule (Fig. 9) is a simplified version of
the deterministic biological STDP rule [26]. The optimization
of the LTP window and neuron parameters is performed using
genetic-evolution algorithm [27]. The STDP rule functions as
follows: when an output neuron fires, if the input neuron was
active recently (within the LTP time window) the correspond-
ing CBRAM synapse connecting the two neurons, has a given
probability to switch into the ON-state (probabilistic LTP).
If not, the CBRAM has a given probability to switch to the
OFF-state (probabilistic LTD).

Synaptic programming can be implemented using specific
voltage pulses. The case without selector device is straightfor-

Fig. 7. Overall switching probability for the 64 devices of the matrix
(switching being considered successful if Roff/Ron>10) using (a) weak-
reset conditions and (b) weak-set conditions. Vg of 1.5V was used in both
experiments.
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Fig. 8. (a) Circuit schematic with CBRAM synapses without selector
devices, LIF neurons, in the external probability case. (b) Circuit schematic
with CBRAM synapses with selector devices, LIF neurons, in the external
probability case. In both cases, the presented voltages waveforms implement
the simplified STDP learning rule for the CBRAMs.

Fig. 9. Probabilistic STDP learning rule (used for audio application). X-axis
shows the time difference of post-and pre-neuron spike.

ward (Fig. 8(a)). After an output neuron spikes, it generates a
specific voltage waveform (signal (3)). Additionally, the input
neurons apply signal (1) if they were active recently (within the
LTP time window), else they apply signal (2). The conjunction
of the input and output waveforms implements STDP. In the
case with selector devices (Fig. 8(b)), the gates are connected
to the output neurons as shown. When an output neurons
spikes (fires), it applies a specific voltage waveform to the
gates of the selector devices (signal (3)), while non-spiking

Fig. 10. (a) Single-layer SNN simulated for auditory processing.(b) 2-layer
SNN for visual processing.(Right) AER video data snapshot with neuron
sensitivity maps.

Fig. 11. (a) Full auditory-data test case with noise and embedded repeated
patterns. (b) Auditory input data and (c) spiking activity for selected time
intervals of the full test case of the output neuron (shown in Fig.16b).

Fig. 12. (a) Pattern Sensitivity (d’) for the test case shown in fig. 11. The
system reaches a very high sensitivity (d’>2). (b) Number of false detections
by the output neuron during the auditory learning.

output neurons will apply signal (4) on the corresponding
gates. The input neurons apply pulses similar to the case
without selector devices (i.e. signals (1) and (2)). The above
described signaling mechanism leads to change in synaptic
conductance but does not account for probabilistic or stochas-
tic switching. Probabilistic switching can be implemented in
two ways:

• Extrinsically, by multiplying the signal of the input
spiking neuron with the PRNG output, whose signal
probability can be tuned by combining with logical AND
and OR operations several independent PRNGs, that can
be implemented for example with linear feedback shift
registers (LFSR) [28]. This approach is illustrated in
Fig. 8. The PRNG output allows or blocks the input
neuron signals according to the defined probability levels.

• Intrinsically, by using weak programming conditions
(Figures 5 and 7). In this case, the input neuron applies
a weak programming signal, which leads to probabilistic

Fig. 13. Final sensitivity map of 9 output neurons from the 1st layer of the
neural network shown in Fig.17b. Average detection rate for 5 lanes was 95%.
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switching in the CBRAM devices.
Exploiting the intrinsic CBRAM switching probability

avoids the presence of the PRNG circuits, thus saving im-
portant silicon footprint. It also reduces the programming
power, as the programming pulses are weaker compared to
the ones used for deterministic switching. However it might
be difficult to precisely control the switching probability of
individual synapses using weak-conditions in a large-scale
system. When weak programming conditions are used, both
’device-to-device’ and ’cycle-to-cycle’ variations contribute to
probabilistic switching. Decoupling the effect of the two types
of variations is not straightforward in filamentary type of
devices (due to the spread on left-over filament height post-
reset). In order to precisely control the switching probability a
better understanding and modeling of the device phenomena at
weak programming conditions is required. If precise values of
switching probability are desired then extrinsic PRNG circuits
should be used. For instance a 2-bit PRNG control signal as
shown in Fig. 8 can be used to separately tune the LTP and
LTD probability. The core with and without selector devices
are equivalent from a functional point of view. Selector-free
configuration is the most compact (4F2) and highest CBRAM
integration density can be obtained with it. Although adding
selector element consumes more area (>4F2), it helps to
reduce the sneak-path leakage and unwanted device disturbs
during the STDP operation which are difficult to control with
just 1R devices. Since we did not fabricate a full test chip
to measure the leakage and disturb effects in the 1R case,
the simulations described in Section IV are based on synaptic
programming methodology with-selector devices (1T-1R).

IV. AUDITORY AND VISUAL PROCESSING SIMULATIONS

We performed full system-level simulations with our special
purpose event-based Xnet simulator tool [10],[27],[25]. The
neuron circuits are modeled with behavioral equations as in
[25],[27]. The synapses are modeled by fitting data of Fig. 3
and Fig. 6 with a log-normal distribution, in order to take into
account the experimental spread in the conductance param-
eters. Effect of both ’device-to-device’ and ’cycle to cycle’
variations are captured in the synapse model. Two different
SNN were used to process auditory and visual data. Fig. 10a
shows the network designed to learn, extract, and recognize
hidden patterns in auditory data. Temporally encoded auditory
data is filtered and processed using a 64-channel silicon
cochlea emulator (similar to [29], simulated within Xnet).
The processed data is then presented to a single layer feed-
forward SNN with 192-CBRAM synapses (i.e. every channel
of the cochlea is connected to the output neuron by 3 CBRAM
synapses). Initially (from 0 to 400s), gaussian audio noise
is used as input to the system, and the firing pattern of the
output neuron is completely random (as seen in Fig. 11).
Then (from 400 to 600s), an arbitrarily created pattern is
embedded in the input noise data and repeated at random
intervals. Within this time frame, the output neuron starts to
spike predominantly when the pattern occurs, before becoming
entirely selective to it at the end of the sequence. This is well
seen on the sensitivity d’ (a standard measurement in signal

detection theory) presented in Fig. 12a, which grows from 0
to 2.7. By comparison, a trained human on the same problem
achieves a sensitivity of approximately 2 [30]. During the same
period, the number of false positives also decreases to nearly
0 (Fig. 12b). At the end of the test case (from 600 to 800s),
pure noise (without embedded patterns) is again presented to
the system. As expected, the output neuron does not activate
at all, i.e. no false positive is seen (Fig. 11,12). The total
synaptic learning power consumption (i.e. the power required
to read, write and erase the CBRAMs) was extremely low
(0.55 µW in the extrinsic probability case, 0.15 µW in the
intrinsic probability case). The estimation of synaptic learning
power is described in detail in Tab.1[6], following equations
were used:

Eset/reset = Vset/reset×Iset/reset×tpulse

Etotal = (Eset×total set events) + (Ereset×total reset events)
Powersynaptic learning = Etotal/Durationlearning

In the extrinsic probability case, about 90% of the energy
was used to program the CBRAM devices, and about 10%
to read them (while in the case of intrinsic probability it was
about 81% and 19% respectively). The sound pattern extrac-
tion example can act as a prototype for implementing more
complex applications such as speech recognition and sound-
source localization. Fig. 10b shows the network simulated
to process temporally encoded video data, recorded directly
from an artificial silicon retina [31]. A video of cars passing
on a freeway recorded in address-event-representation (AER)
format by the authors of [31] is presented to a 2-layered SNN.
In each layer, every input is connected to every output by a
single CBRAM synapse. The CBRAM based system learns to
recognize the driving lanes, extract car-shapes (Fig. 13) and
orientations, with more than 95% average detection rate. The
total synaptic-power dissipation was 74.2 µW, in the extrinsic
probability case and 21 µW in the intrinsic probability case.
This detection rate is similar to the one that we simulated on
the same video test case with a deterministic system based on
multi-level PCM synapses [10],[32],[33]. The example SNN
on visual pattern extraction, shown here, can be used as a
prototype to realize more complex functions such as image
classification [34],[25], position detection and target-tracking.
We tested the two test applications with both extrinsic and
intrinsic probability programming methodologies. Sensitivity
and detection rates were nearly identical in both cases, which
suggests a relative equivalence of the two approaches. Total
synaptic power consumption was lower when the intrinsic
probability methodology was used. This suggests that the
power saved by using weak programming pulses is greater
than the power dissipated due to the extra programming pulses
required to implement the intrinsic probability. Additionally,
we performed simulations without any intrinsic or extrinsic
conductance spreads (ideal or non-variable synapses). These
gave sensitivity values and detection rates similar to the
ones when the spread was considered, suggesting that the
experimentally measured variability in our devices had no
significant impact on the overall system learning performance.
This is consistent with variability-tolerance of STDP-based
networks [25].
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V. CONCLUSION

We proposed for the very first time a bio-inspired system
with binary CBRAM synapses and stochastic STDP learning
rule able to process asynchronous analog data streams for
recognition and extraction of repetitive patterns in a fully
unsupervised way. The demonstrated applications exhibit very
high performance (auditory pattern sensitivity>2.5, video de-
tection rate>95%) and ultra-low synaptic power dissipation
(audio 0.55µW, video 74.2µW) in the learning mode. We
show different programming strategies for 1R and 1T-1R based
CBRAM configurations. Intrinsic and extrinsic programming
methodology for CBRAM synapses is also discussed.
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Supérieure d’Électronique et de Radioélectricité,
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