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I. INTRODUCTION

N EUROMORPHIC and cognitive computing research is gaining importance in recent years. With potential application in fields such as robotics, large-scale data analysis and intelligent autonomous systems, bio-inspired computing paradigms are being investigated as next generation (postmoore) ultra-low power computing solutions. While emulation of spiking neural networks (SNN) in software and Von-Neumann type hardware (such as DSPs, GPUs and FPGAs) has been around for a while, they fail to realize the true potential of bio-inspired computing in terms of low powerdissipation, scalability, reconfigurability and low instructionexecution redundancy [START_REF] Muthuramalingam | Neural network implementation using fpga: issues and application[END_REF]. One of the main limitations of Von-Neumann type architectures, while emulating massively parallel asynchronous SNN is the need for very high bandwidths (GHz) to effectively transmit spikes between the memory and the processor, thus leading to high power dissipation and limiting the scalability. The true potential of bio-inspired learning M. Suri, G. Palma, E. Vianello and B. DeSalvo are with CEA-LETI, Grenoble, France. (e-mail: manan.suri@cea.fr), (barbara.desalvo@cea.fr). The PhD of M.Suri is co-financed by DGA-France. The authors would like to thank Altis Semiconductors for providing CBRAM devices and CNRS/PEPS for financial support.

O. Bichler rules can be realized if they are implemented on optimized special purpose hardware which can provide direct one-toone mapping with the learning algorithms running on it [START_REF] Arthur | Building block of a programmable neuromorphic substrate: A digital neurosynaptic core[END_REF]. Several research groups are actively working on implementing bio-inspired synaptic behavior directly in hardware [START_REF] Snider | Spike-timing-dependent learning in memristive nanodevices[END_REF], [START_REF] Zamarreno-Ramos | On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex[END_REF].

Emerging non-volatile resistive memory (RRAM) technologies such as phase-change memory (PCM), conductive-bridge memory (CBRAM) and oxide based memory (OXRAM) have been shown as good candidates for emulation of synaptic plasticity and learning rules like spike-timing dependent plasticity (STDP) [START_REF] Kuzum | Energy Efficient Programming of Nanoelectronic Synaptic Devices for Large-Scale Implementation of Associative and Temporal Sequence Learning[END_REF], [START_REF] Suri | CBRAM Devices as Binary Synapses for Low-Power Stochastic Neuromorphic Systems: Auditory (Cochlea) and Visual (Retina) Cognitive Processing Applications[END_REF], [START_REF] Park | RRAM-based Synapse for Neuromorphic System with Pattern Recognition Function[END_REF], [START_REF] Yu | A Neuromorphic Visual System Using RRAM Synaptic Devices with Sub-pJ Energy and Tolerance to Variability: Experimental Characterization and Large-Scale Modeling[END_REF], [START_REF] Suri | Interface engineering of pcm for improved synaptic performance in neuromorphic systems[END_REF]. Most recent demonstrations of RRAM based synaptic emulation treat the synapse as a deterministic multi-valued programmable non-volatile resistor. Although such treatment is desirable, it is challenging in terms of actual implementation. Programming schemes for multi-level operation in RRAM devices are more complicated compared to binary operation. Gradual multi-level resistance modulation of RRAM synapses may require generation of successive non-identical neuron spikes (pulses with changing amplitude or width or a combination of both), thus increasing the complexity of the peripheral CMOS neuron circuits which drive the synapses. Pulse trains with increasing amplitude lead to higher power dissipation and parasitic effects on large crossbars. In our previous work we provided a solution (called '2-PCM Synapse') to address the issue of non-identical neuron spikes for multi-valued neuromorphic systems based on PCM synapses [START_REF] Suri | Phase Change Memory as Synapse for Ultra-Dense Neuromorphic Systems: Application to Complex Visual Pattern Extraction[END_REF]. Another issue is that aggressive scaling leads to increased intrinsic device variability. Unavoidable variability complicates the definition and reproducibility of intermediate resistance states in the synaptic devices. In this paper, we present an alternative approach to multi-level synapses. We show a neuromorphic system which uses CBRAM devices as binary synapses with a stochastic-STDP learning rule. At the system level, a functional equivalence [START_REF] Goldberg | Probabilistic synaptic weighting in a reconfigurable network of vlsi integrate-and-fire neurons[END_REF] exists between deterministic multi-level and stochastic-binary synapses. In the case of supervised NN, several works have exploited this concept [START_REF] Senn | Convergence of stochastic learning in perceptrons with binary synapses[END_REF], [START_REF] Lee | Defect-tolerant nanoelectronic pattern classifiers[END_REF], [START_REF] Kondo | Functional abilities of a stochastic logic neural network[END_REF]. In this work, we use a similar approach for a fully unsupervised SNN. Our approach is also motivated by some works from biology [START_REF] Appleby | Stable competitive dynamics emerge from multispike interactions in a stochastic model of spike-timing-dependent plasticity[END_REF], which suggest that STDP learning might be a partially stochastic process in nature.

Section II describes the basics of our CBRAM technology. Experiments of multi-level and stochastic programming are discussed. Section III discusses our simplified STDP learning rule and the synaptic programming methodology. Finally in section IV we present two examples of fully unsupervised learning from complex asynchronous auditory and visual data streams. In the following sections, we use the terms strong-and weak-programming conditions. However these have a relative definition with respect to the technology and materials used for fabricating the CBRAM devices. For the devices presented here, a weak-condition refers to a short pulse width (<10µs), usually 1µs or 500ns, with a voltage <2.5V applied at the anode or the bit-line. A strong condition corresponds to a pulse width>10µs.

II. CBRAM TECHNOLOGY

1T-1R CBRAM devices (both isolated and in 8x8 matrix), integrated in standard CMOS platform [START_REF] Gopalan | Demonstration of conductive bridging random access memory (cbram) in logic cmos process[END_REF], were tested (Fig. 1). A Tungsten (W) plug was used as bottom electrode. The solid electrolyte consisted of a 30nm thick GeS 2 layer deposited by RF-PVD and a 3nm thick layer of Ag deposited by a DC PVD process. The 3nm thick Ag layer is dissolved into the GeS 2 using the photo-diffusion process [START_REF] Vianello | On the impact of ag doping on performance and reliability of ges2-based conductive bridge memories[END_REF]. Then a 2 nd layer of Ag about 75nm thick was deposited to act as top electrode.

CBRAM operating principle relies on the reversible transition from high (reset) to low (set) resistive states owing to the formation and dissolution of a conductive filament in the electrolyte layer. In particular, applying a positive voltage at the Ag electrode results in the drift of Ag + ions in the GeS 2 and discharge at the inert counter electrode (W), leading to the growth of Ag dendrites that eventually shunt the top and the bottom electrodes. Upon reversal of voltage polarity, an electrochemical dissolution of the conductive bridge occurs, resetting the system to the OFF (reset) state (Fig. 2). No forming step is required for this device stack. Simple fabrication, CMOS compatibility, high scalability, low power dissipation, and low operating-voltages [START_REF] Kund | Conductive bridging ram (cbram): an emerging non-volatile memory technology scalable to sub 20nm[END_REF] make CBRAM devices a good choice for the design of synapses in dense neuromorphic systems.

A. Limitations of Multi-level CBRAM Synapses

In literature, CBRAM devices have been proposed to emulate biological synaptic-plasticity by programming the devices in: multiple low-resistance states for emulating long term potentiation (LTP) and multiple high-resistance states for long term depression (LTD) [START_REF] Yu | Modeling the switching dynamics of programmable-metallization-cell (PMC) memory and its application as synapse device for a neuromorphic computation system[END_REF], [START_REF] Jo | Nanoscale Memristor Device as Synapse in Neuromorphic Systems[END_REF]. We demonstrate LTP-like behavior (i.e. gradual ON-state resistance decrease) in our GeS 2 based samples by applying a positive bias at the anode and gradually increasing the select transistor gate voltage (Vg) (Fig. 2a). This phenomenon of gradual resistance decrease can be explained with our model [START_REF] Palma | Experimental investigation and empirical modeling of the set and reset kinetics of ag-ges2 conductive bridging memories[END_REF], assuming a gradual increase in the radius of the conductive filament formed during the set process. Larger gate voltages supply more metal ions leading to the formation of a larger conductive filament during the set process [START_REF] Yu | Compact modeling of conducting-bridge random-access memory (cbram)[END_REF].

Nevertheless, this approach implies that each neuron must generate pulses with increasing amplitude while keeping a history of the previous state of the synaptic device, thus leading to additional overhead in the neuron circuitry. Moreover, we found it difficult to reproducibly emulate a gradual LTD-like effect using CBRAM. Fig. 2b shows the abrupt nature of the set-to-reset transition in our devices. Precisely controlling the dissolution of the conductive filament was not possible during the pulsed reset process. Note that for emulating a spiking neural network (SNN) it is essential that both LTP and LTD be implemented by pulse-mode programming of the synaptic devices. Pulse based synaptic programming is an analogue for the neuron spikes or action-potentials.

B. Deterministic and Probabilistic Switching

Fig. 3 shows the On/Off resistance distributions of an isolated 1T-1R CBRAM (during repeated cycles with strong set/reset conditions). The OFF state presents a larger dispersion compared to the ON state. This can be interpreted in terms of non-uniform breaking of the filament during the reset process, due to the unavoidable defects [START_REF] Choi | Resistance drift model for conductive-bridge (cb) ram by filament surface relaxation[END_REF], [START_REF] Ielmini | Resistance-dependent amplitude of random telegraph-signal noise in resistive switching memories[END_REF] close to the filament which act as preferential sites for dissolution. By fitting the Roff-spread data with our physical model [START_REF] Palma | Experimental investigation and empirical modeling of the set and reset kinetics of ag-ges2 conductive bridging memories[END_REF], the distribution of the left-over filament-height was computed. Using the computed distribution of the left-over filament height and the equations in [START_REF] Palma | Experimental investigation and empirical modeling of the set and reset kinetics of ag-ges2 conductive bridging memories[END_REF] we estimated the spread on the voltage (Vset) and time (Tset) needed for a successful consecutive set operation (Fig. 4). Moreover, when weak-set programming conditions are used immediately after a reset, a probabilistic switching of the device may appear as seen in fig. 5. In fig. 5 the set operation fails in several cycles as the set-programming conditions are not strong enough to switch the device in those cycles.

In a large-scale system, such stochastic switching behavior at weak conditions will get compounded with the inclusion of 'device-to-device' variations. To take into account the deviceto-device variability, we performed similar analysis on the matrix devices. Fig. 6 shows the On/Off resistance distributions for all devices cycled 20 times with strong conditions. As expected, the spread on Roff values is larger compared to the Roff spread for a single device shown in fig. 3.

To quantify the trend of probabilistic switching (both set/reset) we designed two simple experiments: a cycling procedure with a strong-set condition and progressively weakening-reset condition was used to determine reset probability (fig. 7a) while a strong-reset condition and progressively weakening set condition was used to determine the setprobability (fig. 7b). As shown in fig. 7, the overall switching probability (criterion for successful switch: Roff/Ron>10), for 64 device matrix, increases with stronger programming conditions. It is thus conceivable to tune the CBRAM device switching probability by using the right combination of programming conditions.

III. STOCHASTIC STDP AND PROGRAMMING METHODOLOGY

Fig. 8 shows the core circuit of our architecture. It is similar to the one that we proposed for deterministic synapses in [START_REF] Suri | Phase Change Memory as Synapse for Ultra-Dense Neuromorphic Systems: Application to Complex Visual Pattern Extraction[END_REF], [START_REF] Querlioz | Simulation of a memristorbased spiking neural network immune to device variations[END_REF] but is adapted for bipolar-devices and stochastic learning rule. The core consists of three main blocks-(i) Input/Output CMOS-neuron circuits (ii) CBRAM synapsecrossbar connecting the neurons. This may be implemented without (1R) or with (1T-1R) selector devices (Fig. 8 (PRNG) circuit. The PRNG block is only used for implementing optional extrinsic stochasticity as explained later. All neurons are modeled as leaky-integrate and fire (LIF) type.

Our stochastic-STDP rule (Fig. 9) is a simplified version of the deterministic biological STDP rule [START_REF] Bi | Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type[END_REF]. The optimization of the LTP window and neuron parameters is performed using genetic-evolution algorithm [START_REF] Bichler | Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity[END_REF]. The STDP rule functions as follows: when an output neuron fires, if the input neuron was active recently (within the LTP time window) the corresponding CBRAM synapse connecting the two neurons, has a given probability to switch into the ON-state (probabilistic LTP). If not, the CBRAM has a given probability to switch to the OFF-state (probabilistic LTD).

Synaptic programming can be implemented using specific voltage pulses. The case without selector device is straightfor- ward (Fig. 8(a)). After an output neuron spikes, it generates a specific voltage waveform (signal (3)). Additionally, the input neurons apply signal (1) if they were active recently (within the LTP time window), else they apply signal [START_REF] Arthur | Building block of a programmable neuromorphic substrate: A digital neurosynaptic core[END_REF]. The conjunction of the input and output waveforms implements STDP. In the case with selector devices (Fig. 8(b)), the gates are connected to the output neurons as shown. When an output neurons spikes (fires), it applies a specific voltage waveform to the gates of the selector devices (signal (3)), while non-spiking output neurons will apply signal (4) on the corresponding gates. The input neurons apply pulses similar to the case without selector devices (i.e. signals ( 1) and ( 2)). The above described signaling mechanism leads to change in synaptic conductance but does not account for probabilistic or stochastic switching. Probabilistic switching can be implemented in two ways:

• Extrinsically, by multiplying the signal of the input spiking neuron with the PRNG output, whose signal probability can be tuned by combining with logical AND and OR operations several independent PRNGs, that can be implemented for example with linear feedback shift registers (LFSR) [START_REF] Brglez | Hardware-based weighted random pattern generation for boundary scan[END_REF]. This approach is illustrated in Fig. 8. The PRNG output allows or blocks the input neuron signals according to the defined probability levels. • Intrinsically, by using weak programming conditions (Figures 5 and7). In this case, the input neuron applies a weak programming signal, which leads to probabilistic Fig. 13. Final sensitivity map of 9 output neurons from the 1st layer of the neural network shown in Fig. 17b. Average detection rate for 5 lanes was 95%.

switching in the CBRAM devices. Exploiting the intrinsic CBRAM switching probability avoids the presence of the PRNG circuits, thus saving important silicon footprint. It also reduces the programming power, as the programming pulses are weaker compared to the ones used for deterministic switching. However it might be difficult to precisely control the switching probability of individual synapses using weak-conditions in a large-scale system. When weak programming conditions are used, both 'device-to-device' and 'cycle-to-cycle' variations contribute to probabilistic switching. Decoupling the effect of the two types of variations is not straightforward in filamentary type of devices (due to the spread on left-over filament height postreset). In order to precisely control the switching probability a better understanding and modeling of the device phenomena at weak programming conditions is required. If precise values of switching probability are desired then extrinsic PRNG circuits should be used. For instance a 2-bit PRNG control signal as shown in Fig. 8 can be used to separately tune the LTP and LTD probability. The core with and without selector devices are equivalent from a functional point of view. Selector-free configuration is the most compact (4F 2 ) and highest CBRAM integration density can be obtained with it. Although adding selector element consumes more area (>4F 2 ), it helps to reduce the sneak-path leakage and unwanted device disturbs during the STDP operation which are difficult to control with just 1R devices. Since we did not fabricate a full test chip to measure the leakage and disturb effects in the 1R case, the simulations described in Section IV are based on synaptic programming methodology with-selector devices (1T-1R).

IV. AUDITORY AND VISUAL PROCESSING SIMULATIONS

We performed full system-level simulations with our special purpose event-based Xnet simulator tool [START_REF] Suri | Phase Change Memory as Synapse for Ultra-Dense Neuromorphic Systems: Application to Complex Visual Pattern Extraction[END_REF], [START_REF] Bichler | Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity[END_REF], [START_REF] Querlioz | Simulation of a memristorbased spiking neural network immune to device variations[END_REF]. The neuron circuits are modeled with behavioral equations as in [START_REF] Querlioz | Simulation of a memristorbased spiking neural network immune to device variations[END_REF], [START_REF] Bichler | Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity[END_REF]. The synapses are modeled by fitting data of Fig. 3 and Fig. 6 with a log-normal distribution, in order to take into account the experimental spread in the conductance parameters. Effect of both 'device-to-device' and 'cycle to cycle' variations are captured in the synapse model. Two different SNN were used to process auditory and visual data. Fig. 10a shows the network designed to learn, extract, and recognize hidden patterns in auditory data. Temporally encoded auditory data is filtered and processed using a 64-channel silicon cochlea emulator (similar to [START_REF] Chan | Aer ear: A matched silicon cochlea pair with address event representation interface[END_REF], simulated within Xnet). The processed data is then presented to a single layer feedforward SNN with 192-CBRAM synapses (i.e. every channel of the cochlea is connected to the output neuron by 3 CBRAM synapses). Initially (from 0 to 400s), gaussian audio noise is used as input to the system, and the firing pattern of the output neuron is completely random (as seen in Fig. 11). Then (from 400 to 600s), an arbitrarily created pattern is embedded in the input noise data and repeated at random intervals. Within this time frame, the output neuron starts to spike predominantly when the pattern occurs, before becoming entirely selective to it at the end of the sequence. This is well seen on the sensitivity d' (a standard measurement in signal detection theory) presented in Fig. 12a, which grows from 0 to 2.7. By comparison, a trained human on the same problem achieves a sensitivity of approximately 2 [START_REF] Agus | Rapid formation of robust auditory memories: Insights from noise[END_REF]. During the same period, the number of false positives also decreases to nearly 0 (Fig. 12b). At the end of the test case (from 600 to 800s), pure noise (without embedded patterns) is again presented to the system. As expected, the output neuron does not activate at all, i.e. no false positive is seen (Fig. 11,12). The total synaptic learning power consumption (i.e. the power required to read, write and erase the CBRAMs) was extremely low (0.55 µW in the extrinsic probability case, 0.15 µW in the intrinsic probability case). The estimation of synaptic learning power is described in detail in Tab.1 [START_REF] Suri | CBRAM Devices as Binary Synapses for Low-Power Stochastic Neuromorphic Systems: Auditory (Cochlea) and Visual (Retina) Cognitive Processing Applications[END_REF], following equations were used: E set/reset = V set/reset ×I set/reset ×t pulse E total = (E set ×total set events) + (E reset ×total reset events) Power synaptic learning = E total /Duration learning In the extrinsic probability case, about 90% of the energy was used to program the CBRAM devices, and about 10% to read them (while in the case of intrinsic probability it was about 81% and 19% respectively). The sound pattern extraction example can act as a prototype for implementing more complex applications such as speech recognition and soundsource localization. Fig. 10b shows the network simulated to process temporally encoded video data, recorded directly from an artificial silicon retina [START_REF] Lichtsteiner | A 128 x 128 120 dB 15 µs Latency Asynchronous Temporal Contrast Vision Sensor[END_REF]. A video of cars passing on a freeway recorded in address-event-representation (AER) format by the authors of [START_REF] Lichtsteiner | A 128 x 128 120 dB 15 µs Latency Asynchronous Temporal Contrast Vision Sensor[END_REF] is presented to a 2-layered SNN. In each layer, every input is connected to every output by a single CBRAM synapse. The CBRAM based system learns to recognize the driving lanes, extract car-shapes (Fig. 13) and orientations, with more than 95% average detection rate. The total synaptic-power dissipation was 74.2 µW, in the extrinsic probability case and 21 µW in the intrinsic probability case. This detection rate is similar to the one that we simulated on the same video test case with a deterministic system based on multi-level PCM synapses [START_REF] Suri | Phase Change Memory as Synapse for Ultra-Dense Neuromorphic Systems: Application to Complex Visual Pattern Extraction[END_REF], [START_REF] Suri | Physical aspects of low power synapses based on phase change memory devices[END_REF], [START_REF] Bichler | Visual pattern extraction using energy-efficient 2-pcm synapse neuromorphic architecture[END_REF]. The example SNN on visual pattern extraction, shown here, can be used as a prototype to realize more complex functions such as image classification [START_REF] Masquelier | Unsupervised learning of visual features through spike timing dependent plasticity[END_REF], [START_REF] Querlioz | Simulation of a memristorbased spiking neural network immune to device variations[END_REF], position detection and target-tracking. We tested the two test applications with both extrinsic and intrinsic probability programming methodologies. Sensitivity and detection rates were nearly identical in both cases, which suggests a relative equivalence of the two approaches. Total synaptic power consumption was lower when the intrinsic probability methodology was used. This suggests that the power saved by using weak programming pulses is greater than the power dissipated due to the extra programming pulses required to implement the intrinsic probability. Additionally, we performed simulations without any intrinsic or extrinsic conductance spreads (ideal or non-variable synapses). These gave sensitivity values and detection rates similar to the ones when the spread was considered, suggesting that the experimentally measured variability in our devices had no significant impact on the overall system learning performance. This is consistent with variability-tolerance of STDP-based networks [START_REF] Querlioz | Simulation of a memristorbased spiking neural network immune to device variations[END_REF].

V. CONCLUSION We proposed for the very first time a bio-inspired system with binary CBRAM synapses and stochastic STDP learning rule able to process asynchronous analog data streams for recognition and extraction of repetitive patterns in a fully unsupervised way. The demonstrated applications exhibit very high performance (auditory pattern sensitivity>2.5, video detection rate>95%) and ultra-low synaptic power dissipation (audio 0.55µW, video 74.2µW) in the learning mode. We show different programming strategies for 1R and 1T-1R based CBRAM configurations. Intrinsic and extrinsic programming methodology for CBRAM synapses is also discussed.
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 1 Fig. 1. (Left) TEM of the CBRAM resistor element. (Right) Circuit schematic of the 8 X 8 1T-1R CBRAM. matrix. (note: the devices used in this study had a GeS 2 layer thickness of 30nm. The 50nm TEM is for illustrative purpose only.)
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 23 Fig. 2. (a) On-state resistance modulation using current compliance. Fitting using model [21] is also shown (extracted filament radius are indicated). (b) Resistance dependence on gate voltage during the set-to-reset transition.

  Fig.8shows the core circuit of our architecture. It is similar to the one that we proposed for deterministic synapses in[START_REF] Suri | Phase Change Memory as Synapse for Ultra-Dense Neuromorphic Systems: Application to Complex Visual Pattern Extraction[END_REF],[START_REF] Querlioz | Simulation of a memristorbased spiking neural network immune to device variations[END_REF] but is adapted for bipolar-devices and stochastic learning rule. The core consists of three main blocks-(i) Input/Output CMOS-neuron circuits (ii) CBRAM synapsecrossbar connecting the neurons. This may be implemented without (1R) or with (1T-1R) selector devices (Fig.8(a) and (b), respectively), and (iii) Pseudo-random number generator
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 5 Fig. 5. Stochastic switching of 1T-1R device during 1000 cycles using weakconditions (switch-probability=0.49).
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 6 Fig. 6. On/Off resistance distributions of the 64 devices of the 8x8 matrix cycled 20 times. Inset shows Ron and Roff values in log scale with dispersion for each cycle.
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 7 Fig. 7. Overall switching probability for the 64 devices of the matrix (switching being considered successful if Roff/Ron>10) using (a) weakreset conditions and (b) weak-set conditions. Vg of 1.5V was used in both experiments.
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 8 Fig. 8. (a) Circuit schematic with CBRAM synapses without selector devices, LIF neurons, in the external probability case. (b) Circuit schematic with CBRAM synapses with selector devices, LIF neurons, in the external probability case. In both cases, the presented voltages waveforms implement the simplified STDP learning rule for the CBRAMs.
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 9 Fig. 9. Probabilistic STDP learning rule (used for audio application). X-axis shows the time difference of post-and pre-neuron spike.
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 10 Fig. 10. (a) Single-layer SNN simulated for auditory processing.(b) 2-layer SNN for visual processing.(Right) AER video data snapshot with neuron sensitivity maps.

Fig. 11 .

 11 Fig. 11. (a) Full auditory-data test case with noise and embedded repeated patterns. (b) Auditory input data and (c) spiking activity for selected time intervals of the full test case of the output neuron (shown in Fig.16b).
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 12 Fig. 12. (a) Pattern Sensitivity (d') for the test case shown in fig. 11. The system reaches a very high sensitivity (d'>2). (b) Number of false detections by the output neuron during the auditory learning.