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Abstract.

 

Magnetic

 

particles are largely utilized in several applications ranging from magnetorheological fluids to bioscience and
from nanothechnology to memories or logic devices. The behavior of each single particle at finite temperature (under thermal
stochastic fluctuations) plays a central role in determining the response of the whole physical system taken into consideration.
Here, the magnetization evolution is studied through the Landau-Lifshitz-Gilbert formalism and the non-equilibrium statistical
mechanics

 

is

 

introduced

 

with

 

the

 

Langevin

 

and

 

Fokker-Planck

 

methodologies.

 

As

 

result

 

of

 

the

 

combination

 

of

 

such

 

techniques
we

 

analyse

 

the

 

stochastic

 

magnetization

 

dynamics

 

and

 

we

 

numerically

 

determine

 

the

 

convergence

 

time,

 

measuring

 

the

 

velocity

 

of
attainment

 

of

 

thermodynamic

 

equilibrium,

 

as

 

function

 

of

 

the

 

system

 

temperature.

1 Introduction

Magnetic materials and devices play a central role in
modern nanoscience and nanotechnology. In particular,
dispersions of single domain ferromagnetic particles have
received considerable interest, both for their important
applications and their complex and multifaceted exper-
imental response. The behavior of simplest dilute sys-
tems was clearly understood in the past [1] with some
techniques recently generalized for anisotropic media [2].
Moreover, the experimental results for dense systems were
interpreted more recently through superparamagnetic re-
laxation [3] and dipolar interaction [4] models. One im-
portant application realized with dispersions of magnetic
particle concerns the magnetorheological fluids. They are
colloidal suspensions of magnetic particles that reversibly
stiffen under the influence of an applied magnetic field.
Typically, the particles are coated with a surfactant for
stabilization in a carrier solvent [5].

Colloidal suspensions of particles can be also consid-
ered as many-body model systems in condensed mat-
ter physics. In fact, the fine particles may represent the
macroscopic counterparts of atomic systems. In this con-
text, many ordering phenomena have been observed and
modelled: creation of chains, triangular lattices and lamel-
lar structures are just some examples [6]. In single do-
main magnetic arrays the role of the disorder (positional
and orientational), coupled with exchange and dipolar

a e-mail: Stefano.Giordano@iemn.univ-lille1.fr

interactions, has been investigated for tayloring materi-
als with desired properties [7]. Recent technologies allow
to make use of the self-assembly of floating magnetic parti-
cles into ordered structures. The lattice constant and the
array simmetry may be easily tuned by the application
of external magnetic fields and by using different particle
shapes. This is a promising route for the fabrication of
tunable photonic band gap materials [8].

Magnetic particles are largely used in the area of
bioscience and medicine [9–11]. Many applications can
be mentioned: separation processes including purification
and immunoassay [12,13], magnetic resonance imaging
(MRI) [14,15], drug delivery and targeting [16,17], and
hyperthermia [18,19].

Moreover, the possibility to obtain a direct coupling
between magnetic and electric properties in physical
systems has stimulated a considerable interest [20,21].
In particular, composite assemblages of piezoelectric and
magnetostrictive phases have been proposed [22]. Het-
erostructures based on such materials are very promis-
ing from the energetic point of view. In fact, the reorien-
tation of the magnetization in single particles dissipates
very low energies and it is appropriate for memories, spin-
tronics and new logic paradigms [23–25]. For example, a
ferromagnetic particle based magnetoelectric memory el-
ement has been recently proposed: it is composed of a
magnetoelastic particle embedded in a piezoelectric ma-
trix [26–28]. Different memory structures have been intro-
duced and discussed in literature as well [29–31]. Magnetic
particles have been also employed to realize quantum bits
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useful for implementing factoring or searching quantum
algorithms [32].

The basic element of all previous applications is the
single magnetic particle, which may exhibit even if iso-
lated a complex behavior with stimulating physical and
mathematical features. This paper is devoted to the anal-
ysis of the magnetization dynamics in a magnetic particle
at finite temperature. In particular, we numerically de-
termine the convergence time quantifying the rate of at-
tainment of the thermodynamic equilibrium for different
particle configurations. This quantity is important for the
above discussed applications since it controls the overall
response time of all complex multi-particle systems. More-
over, the effect of the temperature on the convergence time
is crucial for all storage and elaboration systems, where
fluctuations may degrade the quality of signals carrying
the information. As a matter of fact, the convergence time
of the magnetization vector in memories and spintronic
devices represent the switching time used to store or elab-
orate a single bit and, therefore, it plays a central role
from the technical point of view. At the beginning of these
investigations the dynamic response and the convergence
time were analyzed without considering possible thermal
effects [33,34]. In successive important studies the tem-
perature effects were introduced by means of the theory
of stochastic processes applied to the statistical mechan-
ics [35–37]. Recently, these techniques have been applied
to two-dimensional and three-dimensional distributions of
single-domain particles [38,39] and to the dynamics of par-
ticles driven by a rotating magnetic field [40–43].

Firstly, in Section 2, we describe the energy function
of an ellipsoidal particle, which describes the magneti-
zation orientation in terms of the applied field. To do
this we neglect anisotropic, elastic and exchange contri-
butions. It implies that the models examined have a main
didactic objective. Nevertheless, the consideration of the
thermal bath embedding the particle yields non trivial re-
sults of general interest. As for the dynamic of the mag-
netization direction, the above-mentioned energy function
has been combined with classical Landau-Lifshitz-Gilbert
(LLG) equation [44–47]. Moreover, in Section 3, we give a
brief outline of its generalization with the Brown random
field mimicking the thermal effects [48–51]. This approach,
as well known, leads to a stochastic Langevin equation or,
equivalently, to a Fokker-Planck equation describing the
time evolution of the density probability of the magne-
tization direction [35–37]. Important applications of such
techniques concerned single particles and ensembles of in-
teracting and non-interacting particles [38–43]. In this pa-
per, the numerical solution of the Langevin LLG stochas-
tic equation allows us to evaluate the convergence time to
the thermodynamic equilibrium. In particular we examine
the behavior of the convergence time versus the temper-
ature of the system. Specific results have been obtained
for the following configurations: in Section 4, we consider
a spherical particle without applied field (in this case the
magnetization evolves as a random walk on a spherical
surface); in Section 5, we analyse the stochastic dynamics
in a sphere under magnetic field and, finally, in Section 6,
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Fig. 1. Ellipsoidal magnetic particle with magnetization M

subjected to a magnetic field H∞.

we consider prolate and oblate ellipsoidal particles cor-
responding to axial and planar geometrical anisotropies,
respectively.

2 Energy function for ellipsoidal particles

We consider the ellipsoidal particle depicted in Figure 1
and we suppose that its size is small enough to assure the
presence of a single ferromagnetic domain. Therefore, an
uniform magnetization M = Ms γ appears where Ms is
the magnetization at saturation and γ is a unit vector. The
orientation γ can be obtained by minimizing the energy
function as follows:

w(γ) = −µ0MsγH. (1)

It represents the Zeemann energy and describes the in-
fluence of the local magnetic field H on the orientation
of γ. For simplicity, in this work we neglect the following
terms of the energy function: (i) the anisotropic energy
depending on the actual crystalline structure of the parti-
cle, (ii) the elastic energy describing the magnetostriction
and, therefore, the mechanical interaction with the ma-
trix where the particle is embedded, and (iii) the exchange
energy term describing the magnetic interactions among
different domains.

It is important to remark that the minimization
furnishes the direction in terms of the magnetic field
γ = γ (H). The constitutive equation of the particle is
given by B = µ0(H + Msγ (H)) where B is the mag-
netic induction. To link the local field H with the applied
one H∞, we can utilize a recent result, which is valid for
an arbitrary nonlinear and anisotropic ellipsoidal particle
embedded in a linear but anisotropic matrix [52]. We con-
sider an ellipsoidal inhomogeneity (having semi-axes a1,
a2 and a3) described by the (magnetic field dependent)
permeability tensor µ̂2 = µ̂2(H) embedded in a linear
matrix with permeability tensor µ̂1. In these conditions,
we have the implicit equation:

H =
{

Î − Ŝm

[

Î − µ̂−1
1 µ̂2(H)

]}−1

H∞, (2)
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where Ŝm is the magnetic Eshelby tensor [52]. By using the
definition of the constitutive equation of the particle B =
µ̂2 (H)H = µ0 (H + M), we can rewrite equation (2) in
a different form:

H =
[

Î − Ŝm

(

Î − µ̂−1
1 µ0

)]−1 [

H∞ − Ŝmµ̂−1
1 µ0Msγ

]

= ÂH∞ + N̂γ, (3)

where the tensor N̂ is symmetric. The local magnetic field
is now written in terms of the remotely applied magnetic
field and of the internal magnetization orientation.

The minimization of equation (1) is constrained by
the condition γ × γ = 1. So, we can apply the Lagrange
method leading to an unconstrained minimization of the
function L(γ, λ) = w(γ)−λ(γ ×γ− 1) (λ is the so-called
Lagrange multiplier). Therefore, we consider the equations
∂L/∂γi = 0 (for i = 1, 2, 3) and ∂L/∂λ = 0. We straight-
forwardly obtain a system composed of 2λγi = −µ0MsHi,
γ × γ = 1 and H = ÂH∞ + N̂γ. By combining these
equations and using the symmetry of N̂ we obtain:

2λγi = −µ0Ms

∂
(

γÂH∞

)

∂γi

− 1

2
µ0Ms

∂
(

γN̂γ
)

∂γi

. (4)

The previous expression (with γ × γ = 1) corresponds to
a constrained minimization of a new energy function

w̃ = −µ0MsγÂH∞ − 1

2
µ0MsγN̂γ, (5)

which is advantageous since its minimization leads directly
to the final magnetization orientation in terms of the ex-
ternally applied field.

3 Brief outline of the statistical mechanics

of magnetization

The magnetic system is assumed to be monodomain and,
therefore, all spins behave collectively. The dynamics of
the magnetization direction γ is, therefore, described
by the LLG equation [44–47]:

dγ

dt
= − G

Ms(1 + α2)

[

γ ∧ ∂w̃

∂γ
− αγ ∧

(

γ ∧ ∂w̃

∂γ

)]

, (6)

where G is the gyromagnetic ratio, α is the Gilbert damp-
ing parameter and ∂w̃

∂γ
represents the effective field ap-

plied to the magnetic dipole. Here, w̃ is the generalized
energy function defined in equation (5). The problem of
introducing the damping process in the evolution equa-
tion of the magnetization dynamic is a topic largely dis-
cussed in literature [53–57]. The previous LLG equation
has been generalized by Brown to implement the non-
equilibrium statistical mechanics: he assumed that the
effects of the temperature are mimicked by an addic-
tive random field [48–51]. It means that he substituted
in equation (6) the term ∂w̃

∂γ
with ∂w̃

∂γ
+ Dn, where n is

a stochastic process with three properties: 〈n(t)〉 = 0,
〈ni(t)nj(τ)〉 = 2δijδ(t − τ), and it is Gaussian. It is well
known that the combination of dissipation and fluctu-
ation is able to describe the transient state leading to
the equilibrium thermodynamics [36,37]. It is a general
concept valid both in classical mechanics [58,59] and in
quantum one [60,61]. We remark that a refined technique
for approaching the random rotation of classical spins
is based on the oscillator-bath environment [62]. How-
ever, the Brown hypothesis leads to a stochastic differen-
tial equation (SDE) [63,64]. The typical tool for studying
SDEs is the Fokker-Planck methodology based on a partial
differential equation describing the dynamic of the density
probability of the state of the system [36]. In our case it
can be written as ρ = ρ(ϕ, ϑ, t). The Fokker-Planck equa-
tion should have an asymptotic solution coherent with the
equilibrium

lim
t→∞

ρ (ϕ, ϑ, t) =
sin ϑ

Z exp

[

− w̃(ϕ, ϑ)v

kBT

]

, (7)

where Z is the partition function. Here kB is the
Boltzmann constant and T is the absolute temperature.
Moreover, v represents the volume of the magnetic particle
(w̃v is the total energy being w̃ the energy density). The
value of the diffusion constant D can be found by imposing
equation (7) at equilibrium: D2 = αMskBT

Gv
[48–51]. Once

the value of D is known, we can write the Fokker-Planck
equation as follows [48–51]:

2τN

∂ρ

∂t
=

v

αkBT

1

sin ϑ

∂

∂ϕ

{[

∂w̃

∂ϑ
+

α

sinϑ

∂w̃

∂ϕ

]

ρ

}

+
v

αkBT

∂

∂ϑ

{[

− 1

sin ϑ

∂w̃

∂ϕ
+ α

∂w̃

∂ϑ

]

ρ

}

− ∂

∂ϑ

{

cosϑ

sinϑ
ρ

}

+
1

sin2 θ

∂2ρ

∂ϕ2
+

∂2ρ

∂ϑ2
, (8)

where we have introduced the Néel time τN = Ms(1+α2)v
2αGkBT

,
representing the response time of a particle without exter-
nal fields (see below for details). This equation has been
recently used to obtain a simplified version of the Langevin
system (see Refs. [42,43,65,66] for details): the Brown as-
sumption used three random terms to add fluctuations in
a system with two variables (ϕ and ϑ). We can consider a
new version of the Langevin system where only two noise
terms are considered [42,43,65,66]:

ϕ̇ = − G
Ms(1 + α2) sin ϑ

[

∂w̃

∂ϑ
+

α

sin ϑ

∂w̃

∂ϕ

]

+
1

sinϑ

√

1

2τN

nφ,

ϑ̇ = − G
Ms(1 + α2)

[

− 1

sinϑ

∂w̃

∂ϕ
+ α

∂w̃

∂ϑ

]

+
1

2τN

cosϑ

sin ϑ
+

√

1

2τN

nθ. (9)

If the noises have the standard properties 〈nφ(t)〉 = 0,
〈nθ(t)〉 = 0, 〈nφ(t)nθ(τ)〉 = 0, 〈nφ(t)nφ(τ)〉 = 2δ(t − τ),
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〈nθ(t)nθ(τ)〉 = 2δ(t− τ) and they are Gaussian, it is pos-
sible to prove that the Fokker-Planck equation established
starting form equation (9) is exactly coincident to equa-
tion (8). From the theoretical point of view equation (9)
is more coherent since the SDE lives completely on the
spherical surface without the need for a three-dimensional
embedding (it represents the covariant formulation of the
SDE on the spherical manifold) [65,66]. Moreover, from
the computational point of view equation (9) is conve-
nient since only two random numbers must be generated
at any time step.

To conclude, to study the thermal effects on the mag-
netization dynamics we can adopt one of the three fol-
lowing computational methodologies. First, we can take
into consideration the Fokker-Planck equation and we can
search its solution through the finite difference (or ele-
ment) method [67–69]. As second approach, it is possible
to develop the density probability in a series of harmonic
functions and to analyse the dynamics of the related co-
efficients. The kinetic equation for these coefficients has
been obtained [70–72] and it has been largely used for
determining the relaxation time of the Fokker-Planck op-
erator [73–76]. Finally, the third approach consists in nu-
merically solving the Langevin equation and in calculat-
ing the relevant average values through the Monte Carlo
method [77]. In the following, we adopt this approach with
a standard integration scheme (see Ref. [77] for details).

Langevin equations for isotropic ellipsoidal particles

If we consider isotropic ellipsoidal particles, equation (5)

can be strongly simplified: we have µ̂1 = µ1Î where µ1

is the scalar permeability and Î is the identity tensor.
Therefore, we obtain a simpler version of the magnetic
Eshelby tensor Ŝm = diag (L1, L2, L3) where the Li’s are
the so-called depolarization factors [78]. Moreover, also

the tensors Â and N̂ become diagonal with the following
simplified forms:

Aij =
µ1δij

(1 − Li)µ1 + Liµ0
, Nij =

−Liµ0Msδij

(1 − Li) µ1 + Liµ0
.

(10)
If we consider an ellipsoid of revolution with L1 = L2 = L
and L3 = 1 − 2L and a magnetic field H∞ aligned with
the z-axis, we have from equation (5):

w̃ = −2αkBTτN

v

(

ω0 cosϑ +
δ

2
sin2 ϑ

)

+ const.,

where we defined the parameters

ω0 =
Gµ0µ1H

∞

(1 + α2)[2Lµ1 + (1 − 2L)µ0]
,

δ =
Gµ2

0µ1(1 − 3L)Ms

(1 + α2)[(1 − L)µ1 + Lµ0][2Lµ1 + (1 − 2L)µ0]
.

(11)

If there is no contrast between the magnetic permeabili-
ties, µ1 = µ0, we have the simplified expressions:

ω0 =
Gµ0H

∞

1 + α2
and δ =

Gµ0(1 − 3L)Ms

1 + α2
. (12)

We remark that δ �= 0 only for non-spherical particles: the
ellipsoidal shape produces a geometrical anisotropy in the
system, effectively described by this parameter.

For our purpose, we can substitute equation (11) in
equation (9) and we obtain the following Langevin LLG
equations for an ellipsoid of revolution:

ϕ̇ = δ cosϑ − ω0 +
1

sinϑ

√

1

2τN

nφ,

ϑ̇ = α sin ϑ(δ cosϑ − ω0) +
1

2τN

cosϑ

sinϑ
+

√

1

2τN

nθ. (13)

Some particular cases will be studied below. To do this
we will adopt the parameters: µ0 = µ1 = 4π× 10−7 N/A2

(particle in air), Ms = 64 × 104 A/m (saturation mag-
netization for Terfenol), G = 1.76 × 1011 rad s−1T−1

(G = gµB/� where g = 2 is the Landé factor and µB

is the Bohr magneton), α = 0.3 (typical for ferrimagnetic
rare earth-transition metal) and v = 9.4 × 10−23 m3 (for
a radius particle of about 28 nm).

4 Random walk on a spherical surface

We consider the simplest case concerning a spherical par-
ticle without magnetic field applied to the structure: in
this situation the magnetization follows a random walk
on the unit sphere. This problem is widely dealt with in
mathematical literature and it has been approached with
several different techniques [66,79,80]. From our point of
view, the Langevin equation can be obtained from equa-
tion (9) by letting w̃ = 0:

ϕ̇ =
1

sinϑ

√

1

2τN

nφ,

ϑ̇ =
1

2τN

cosϑ

sin ϑ
+

√

1

2τN

nθ. (14)

Hence, as above said, only the coefficient τN controls the
dynamics in this case. On the other hand, starting from
the Fokker-Planck equation, we can find the dynamics of
some expected values of the random variables ϕ and ϑ.
So, we can compare these analytical solutions with the
numerical ones obtained from equation (14). A standard
technique for solving this Fokker-Planck equation, largely
discussed in Section 7.3 of reference [81], yields the first
order and the second order expectation values of the com-
ponents of γ:

〈γi〉 = γi0e
− t

τN , (15)

〈γiγj〉 = γi0γj0e
−3 t

τN +
1

3
δij

(

1 − e
−3 t

τN

)

, (16)
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Fig. 2. Dynamics of γ for a spherical particle without ex-
ternal field. Top panel: red, blue and green lines correspond
to 〈γx〉, 〈γy〉 and 〈γz〉, respectively, obtained with the Monte
Carlo method. Bottom panel: red, blue and green continuous
lines correspond to the averages of γ2

x, γ2

y and γ2

z while red, blue
and green dashed lines correspond to the averages of γxγy, γyγz

and γzγx. In both cases, the black lines correspond to equa-
tions (15) and (16).

where γ0 is the initial direction coherent with the an-
gles ϕ0 and ϑ0. These expressions suggest the meaning
of the Néel time τN : it is the time constant governing
the approaching to zero of the average value of γ start-
ing from a definite state and evolving without any applied
field. The density probability converges, asymptotically
for large time, to a uniform distribution over the spherical
surface. It is important to remark that, while the norm
of γ is unitary instantaneously, its average value can be
less than one for evident statistical reasons. In the present
case, the average value converges to zero because of the
isotropic statistical distribution of γ for large time. In
Figure 2, we have compared the exact solutions given
in equations (15) and (16) with the numerical integra-
tion of equation (14). We adopted ϕ0 = π/8, ϑ0 = 7π/8,
τN = 1.5×10−7 s (at T = 300 K). Moreover, we integrated
equation (14) with a time step δt = 1.5× 10−10 s and the

final curves have been obtained by averaging M = 1000 in-
dependent trajectories through the Monte Carlo method.

5 Spherical particle under magnetic field

We consider now a spherical particle subjected to a uni-
form magnetic field: we have now ω0 �= 0 and, therefore,
the Langevin system assumes the form:

ϕ̇ = −ω0 +
1

sin ϑ

√

1

2τN

nφ, (17)

ϑ̇ = −ω0α sin ϑ +
1

2τN

cosϑ

sinϑ
+

√

1

2τN

nθ.

Without thermal effects (T = 0 K or τN → ∞) it is possi-
ble to obtain the closed form solution of equation (17) cor-
responding to the initial conditions ϕ(0) = ϕ0, ϑ(0) = ϑ0;
the result is given by:

γ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cos(ω0t − ϕ0) sin ϑ0

cosh(ω0αt) + cosϑ0 sinh(ω0αt)

− sin(ω0t − ϕ0) sin ϑ0

cosh(ω0αt) + cosϑ0 sinh(ω0αt)

sinh(ω0αt) + cosϑ0 cosh(ω0αt)

cosh(ω0αt) + cosϑ0 sinh(ω0αt)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (18)

This solution is a particular case of a more general result
obtained in reference [82]. If ϕ(0) = 0, ϑ(0) = π/2, we
obtain the simpler result:

γ =

(

cos(ω0t)

cosh(ω0αt)
,− sin(ω0t)

cosh(ω0αt)
,
sinh(ω0αt)

cosh(ω0αt)

)

, (19)

which represents the classical damped precession motion
of the magnetization direction towards the perfect align-
ment with the applied magnetic field (along the z-axis
in the present case). When the temperature is taken
into account it is difficult to obtain closed form expres-
sions describing the dynamics of the system (see Sect. 7.5
of Ref. [37] for details). However, we can analytically
study the asymptotic thermodynamic equilibrium. In fact,
from equation (7) we easily obtain the Gibbs distribu-
tion describing the probability density of the angles at
equilibrium

ρeq(ϕ, ϑ) =
ατNω0 sin ϑ

2π sinh(2ατNω0)
e2ατN ω0 cos ϑ. (20)

Of course, it depends only on the angle ϑ for the axial
symmetry of the system. The knowledge of such a dis-
tribution allow us to determine the average values of the
components of γ:

〈γx〉 = 〈γy〉 = 0, (21)

〈γz〉 = 〈cosϑ〉 = L(2ατNω0), (22)

where L(x) = coth x− 1/x is the classical Langevin func-
tion. The value of 〈γz〉 approaches 1 at T = 0 K and
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it is a decreasing function with the temperature: in fact,
the area around the north pole spanned by the magne-
tization vector is increasing with temperature, lowering
at the same time the net magnetization along the z-axis.
In the context of the particles suspensions, equation (22)
is useful to explain the superparamagnetic behavior ob-
served under the dilute conditions [1–4]. This result is
also in perfect agreement with the theory of the mag-
netic polarization (for paramagnetic materials) or the elec-
tric polarization (when the orientation of polar molecules
takes place) [83,84]. There is also a strong mathematical
analogy with the problem of determining the elastic re-
sponse of flexible polymer under external forces (in this
case, each bond between two adjacent monomers behaves
like a dipole under an external field) [85,86]. Moreover,
we can also calculate the second order expectation values,
eventually obtaining the following results:

〈

γ2
x

〉

=
〈

γ2
y

〉

=
L(2ατNω0)

2ατNω0
, (23)

〈

γ2
z

〉

= 1 − L(2ατNω0)

ατNω0
, (24)

〈γxγy〉 = 〈γyγz〉 = 〈γzγx〉 = 0. (25)

In Figure 3, one can find an example of numerical so-
lution of equation (17) for a particle with ϕ(0) = π/8,
ϑ(0) = 7π/8, ω0 = 108 s−1, τN = 1.5 × 10−7 s (at
T = 300 K) and δt = 1.5×10−10 s (with M = 1000 Monte
Carlo trials). In the top panel, we note that while 〈γz〉
converges monotonically to the asymptotic value given by
equation (22), 〈γx〉 and 〈γy〉 exhibit a series of damped
oscillations, representing rotations of the magnetization
around the direction of the applied field (precession). On
the other hand, in the bottom panel the behavior of the
second order expectation values is shown. The limiting
values given in equations (23)−(25) are in agreement with
simulations.

Starting with equation (20), we can also determine the
expression of the variance of the z-component of γ, which
is useful for the interpretation of the following numerical
results:

σ2
z = 1 − L(2ατNω0)

ατNω0
− [L(2ατNω0)]

2
. (26)

We can evaluate the thermal effects on the orientation dy-
namics: in Figure 4 one can find the behavior of 〈γz〉,

〈

γ2
z

〉

and σ2
z for different values of the temperature. In these nu-

merical calculations, we assumed ϕ(0) = 0, ϑ(0) = π/2,
ω0 = 108 s−1, a time step δt = 10−10 s and the final curves
have been obtained by averaging M = 5000 independent
trajectories (Monte Carlo method). We adopted 15 dif-
ferent values of the temperature equispaced between 5 K
and 2105 K (with an incremental step of 150 K). These
very high values may be non-physical, but they are useful
to test the numerical schemes and to understand the be-
havior of the system. The first curves have been obtained
at nearly zero temperature and they are indeed in perfect
agreement with equation (19), representing a determinis-
tic result. Moreover, the asymptotic behavior of all curves
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0
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1

t

〈γiγj〉

Fig. 3. Dynamics of γ for a spherical particle under exter-
nally applied magnetic field. Top panel: red, blue and green
lines correspond to 〈γx〉, 〈γy〉 and 〈γz〉, respectively, obtained
with the Monte Carlo method. Bottom panel: red, blue and
green continuous lines correspond to the averages of γ2

x, γ2

y

and γ2

z while red, blue and green dashed lines correspond to
the averages of γxγy, γyγz and γzγx. In both cases, the black
lines correspond to equations (21)−(25).

correspond perfectly to equations (22)−(26), as expected.
We remark that 〈γz〉 and

〈

γ2
z

〉

are decreasing function of

the temperature, while σ2
z is increasing, measuring effec-

tively the intensity of the fluctuations.

It is important to remark that the velocity of conver-
gence towards the thermodynamic equilibrium depends on
the temperature. Therefore, we can introduce a conver-
gence time tm (between ϑ = π/2 and ϑ = 0) and in-
vestigate its dependence on T . The time tm is defined as
the first instant of time when the condition | 〈γz〉 (tm) −
〈γz〉 (∞)| < ǫγ is satisfied (here, we used ǫγ = 3/100).
The behavior of tm versus T is reported in Figure 5. For
any temperature we have generated n = 100 averaged
trajectories (for each of them we used δt = 10−10 s and
we calculated the mean value over M = 5000 samples),
corresponding to the circles in Figure 5 (top panel). On
the other hand, the squares represent the average tm over
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Fig. 4. Time behavior of 〈γz〉 (left panel),
〈

γ2

z

〉

(central panel) and σ2

z (right panel) for different values of the temperature. Black
dashed lines in each plot correspond to the asymptotic regime (equilibrium thermodynamics) given by equations (22)−(26),
respectively.
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Fig. 5. Convergence time tm (top) and its standard deviation
σm (bottom) for a spherical particle under a magnetic field
applied along a given direction.

the n = 100 different values ti (i = 1, . . . , 100). In the
bottom panel, we report the standard deviation σm of
the quantity tm. It is defined through the relation σ2

m =
∑n

i=1(ti − tm)2/(n − 1), where n = 100; here the circles

represent the deviations |ti − tm| (i = 1, . . . , 100). In the
top panel of Figure 5, we note a non-monotone behavior
of tm versus T . The first increasing part of the curve
means that the fluctuations introduced by the tempera-
ture slow down the convergence to the thermodynamic
equilibrium; nevertheless, the trend becomes decreasing
for high temperatures since the asymptotic value of 〈γz〉
(see Fig. 4) is much lower and, therefore, it can be rapidly
reached in spite of thermal fluctuations.

6 Ellipsoidal particle without magnetic field

We study the free motion of the magnetization within an
ellipsoidal particle. In particular, we are interested in un-
derstanding the different behavior of prolate and oblate
particles. The dynamics of the system is described by
equation (13) with ω0 = 0 (i.e. H∞ = 0):

ϕ̇ = δ cosϑ +
1

sin ϑ

√

1

2τN

nφ,

ϑ̇ = αδ sin ϑ cosϑ +
1

2τN

cosϑ

sin ϑ
+

√

1

2τN

nθ. (27)

In order to understand the effects of the non-sphericity, at
the beginning we consider the system at T = 0 K and we
obtain, after some long but straightforward calculations
the solution for an arbitrary ϕ0 and for ϑ0 ∈ (0, π/2):

ϕ = ϕ0 +
1

2α
ln

{
√

1 + tan2 ϑ0 + 1
√

1 + tan2 ϑ0 − 1

×
√

1 + tan2 ϑ0e2αδt − 1
√

1 + tan2 ϑ0e2αδt + 1

}

, (28)

cosϑ =
1

√

1 + tan2 ϑ0e2αδt
, (29)

sin ϑ =
tan ϑ0e

αδt

√

1 + tan2 ϑ0e2αδt
. (30)
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Fig. 6. Numerical results for a prolate particle without applied fields. First panel: examples of trajectories starting from
ϕ(0) = π/3 and ϑ(0) = π/2. Central panel: average values of γx (red curve), γy (blue curve), γz (green curve) and |γz| (black
dashed curve). The black solid line corresponds to the asymptotic value given in equation (39). Third panel: red, blue and green
solid lines correspond to the averages of γ2

x, γ2

y and γ2

z while red, blue and green dashed lines correspond to the averages of γxγy,
γyγz and γzγx. Black lines correspond to equations (36)−(38).

Now, we may observe that δ is proportional to 1−3L and
therefore we have: (i) δ < 0 for prolate particles (L > 1/3)
and (ii) δ > 0 for oblate particles (L < 1/3). The impor-
tant result is that, for an arbitrary initial condition we
have: (i) a reorientation of the magnetization along the z-
axis (in the positive direction if 0 < ϑ0 < π/2 and in the
negative direction if π/2 < ϑ0 < π) for prolate particles
(cosϑ → ±1 if t → ∞) and (ii) a reorientation on the
plane xy for oblate particles (cosϑ → 0 if t → ∞). In this
latter case (δ > 0), there exists an asymptotic value of the
angle ϕ given by the following expression:

lim
t→∞

ϕ = ϕ0 +
1

2α
ln

√

1 + tan2 ϑ0 + 1
√

1 + tan2 ϑ0 − 1
, (31)

corresponding to a finite number of precession rotations.
When the system is embedded in a thermal bath

at temperature T we can analyse the thermodynamic
equilibrium through equation (7): after some calculations
we obtain:

ρeq(ϕ, ϑ) =
sin ϑeατN δ sin2 ϑ

2π
√

π
ατN δ

eατN δerf
(√

ατN δ
)

(32)

if δ > 0 (oblate particle) and

ρeq(ϕ, ϑ) =
sin ϑe−ατN ε sin2 ϑ

2π
√

π
ατN ε

e−ατN εerfi
(√

ατNε
)

(33)

if δ = −ǫ < 0 (prolate particle), where we used the func-
tions erf (z) and erfi (z) defined below [87]

erf (z) =
2√
π

∫ z

0

e−t2dt, (34)

erfi (z) =
2√
π

∫ z

0

et2dt. (35)

The obtained Gibbs distributions, equations (32) and (33),
will be used to determine some relevant expectation val-
ues, useful to compare the theory with numerical results
for both prolate and oblate particles.

6.1 Prolate particle: an axial geometrical anisotropy

In Figure 6, we can observe an example of numerical
solution of equation (27). We adopted the parameters
τN = 1.5×10−7 s (at T = 300 K) and δ = −2.58×108 s−1.
In the first panel, we can find a series of trajectories start-
ing from ϕ(0) = π/3 and ϑ(0) = π/2: since ϑ(0) = π/2
corresponds to an unstable position each trajectory con-
verges with the same probability either towards the north
or the south pole of the sphere. In the central panel, we
report the average values 〈γx〉, 〈γy〉 and 〈γz〉, converging
asymptotically to zero, and in the last panel, the second
order expectation quantities converging to the following
values (calculated by means of Eq. (33)):

〈

γ2
x

〉

=
〈

γ2
y

〉

=
1 −

〈

γ2
z

〉

2
, (36)

〈

γ2
z

〉

=
eατN ε

√
πατNε erfi

(√
ατNε

) − 1

2ατNε
, (37)

〈γxγy〉 = 〈γyγz〉 = 〈γzγx〉 = 0. (38)

Since 〈γz〉 → 0 (as t → ∞) for symmetry, we can intro-
duce 〈|γz |〉 (dashed line in Fig. 6, central panel), which
converges to the asymptotic value

〈|γz|〉 =
eατN ε − 1

√
πατNε erfi

(√
ατNε

) . (39)

In Figure 7 (first panel), we can observe the behavior of
such a quantity 〈|γz |〉 for different temperatures. We can
define tm as the convergence time of 〈|γz|〉 to its its asymp-
totic value given in equation (39). In the central panel
of Figure 7, we report the behavior of tm versus T (ob-
tained with a confidence parameter ǫγ = 2/100) and in the
third one the corresponding standard deviation (defined as
above). The trajectories of the magnetization start from
ϑ = π/2 that is an unstable equilibrium point for the pro-
late particle and, therefore, if T → 0 we have tm → ∞.
This asymptotic trend is evident in the second panel of
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Fig. 7. Temperature effects on the reorientation process for a prolate particle. First panel: behavior of 〈|γz|〉 for different
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Fig. 8. Numerical results for an oblate particle without applied fields. First panel: examples of trajectories starting from
ϕ(0) = π/3 and ϑ(0) = π/2. Central panel: average values of γx (red curve), γy (blue curve), γz (green curve) and |γz| (black
dashed curve). The black solid line corresponds to the asymptotic value given in equation (43). Third panel: red, blue and green
solid lines correspond to the averages of γ2
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z while red, blue and green dashed lines correspond to the averages of γxγy,
γyγz and γzγx. Black lines correspond to equations (40)−(42).

Figure 7, where an infinitely large negative slope can be
observed for T → 0. The following increasing part of the
curve means that fluctuations reduce the convergence ve-
locity to the thermodynamic equilibrium at intermediate
temperatures. Finally, the last decreasing trend can be ex-
plained by observing that at higher temperatures the lim-
iting value of 〈|γz |〉 is much lower and it can be reached
more quickly, in spite of thermal effects.

6.2 Oblate particle: a planar geometrical anisotropy

In Figure 8 we can observe an example of numerical
solution of equation (27). We adopted the parameters
τN = 1.5 × 10−7 s (at T = 300 K) and δ = 1.3 × 108 s−1.
In the first panel we can find a series of trajectories start-
ing from ϕ(0) = π/3 and ϑ(0) = π/2: since ϑ(0) = π/2
corresponds to a stable position each trajectory fluctu-
ates around the equator. In the central panel, we report
the average values 〈γx〉, 〈γy〉 and 〈γz〉, converging asymp-
totically to zero, and in the last panel the second order
expectation quantities converging to the following values

(calculated by means of Eq. (32)):

〈

γ2
x

〉

=
〈

γ2
y

〉

=
1 −

〈

γ2
z

〉

2
, (40)

〈

γ2
z

〉

=
1

2ατN δ
− e−ατN δ

√
πατN δ erf

(√
ατNδ

) , (41)

〈γxγy〉 = 〈γyγz〉 = 〈γzγx〉 = 0. (42)

As before, since 〈γz〉 → 0 as t → ∞, we can introduce
〈|γz|〉 (dashed line in Fig. 8, central panel), which con-
verges to the asymptotic value

〈|γz|〉 =
1 − e−ατN δ

√
πατN δ erf

(√
ατNδ

) . (43)

In Figure 9 (first panel), we can observe the behavior of
such a quantity 〈|γz |〉 for different temperatures. We can
define tm as the convergence time of 〈|γz |〉 to its asymp-
totic value given in equation (43). In the central panel of
Figure 9, we report the behavior of tm versus T (obtained
with a confidence parameter ǫγ = 2/100) and, finally, in

9



0 1 2 3 4 5

x 10
−8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t

〈|γz| 〉

T

0 200 400 600 800 1000
0

1

2

3

4

5

6

7
x 10

−8

T

tm

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1
x 10

−8

T

σm

Fig. 9. Temperature effects on the reorientation process for an oblate particle. First panel: behavior of 〈|γz|〉 for different
temperatures (ten values from 5 K to 1355 K with a step of 150 K). Second panel: convergence time tm versus T . Third panel:
standard deviation σm of the convergence time versus T .

the third one the corresponding standard deviation (de-
fined as above). The trajectories of the magnetization start
from ϑ = π/2 that is a stable equilibrium point for the
oblate particle and, therefore, if T → 0 we have tm → 0. It
can be seen in the second panel of Figure 9, where a large
positive slope is evident for T → 0. For higher temper-
ature the curve exhibits a decreasing trend. Interestingly
enough, the maximum value of tm for oblate and prolate
particles can be observed at the same temperature value.

We remark that for the configurations considered in
the present paper the relaxations times (related to the
Fokker-Planck operator) are known in analytical (exact or
approximate) form [37]. Of course, our convergence times
can be conceptually related to the relaxation times but,
unfortunately, direct relationships among them are not
available. As a matter of fact, the relaxation times, being
related to the eigenvalues of the Fokker-Planck operator,
are present in any explicit solution for the average values of
the magnetization vector. However, the convergence time
is strongly related to applications being the time used to
reach an equilibrium position of the magnetization. For
example, for an information storage system it corresponds
to the switching time (used to change the state of a bit),
which is an important parameter for memory devices.

7 Conclusions

In this work, we considered the effects of the temperature
on the magnetization dynamics in single domain particles.
In order to address the problem in a gradual manner, we
initially considered the most simple cases, and at a later
stage the most involved ones. We have therefore intro-
duced a series of paradigmatic configurations of increas-
ing complexity: (i) a spherical particle without applied
fields, corresponding to a random walk on the sphere, (ii) a
spherical particle subjected to an external magnetic field,
and (iii) a prolate or oblate ellipsoidal particle without ap-
plied fields, corresponding to axial or planar geometrical
anisotropies. In all cases, we have taken into considera-
tion the Langevin equation describing the dynamics of the
magnetization vector when the system is in contact with a
thermal bath. Its numerical solution allowed us to examine

the convergence time of all above-mentioned configura-
tions in terms of the temperature. If we take into consider-
ation a given average value concerning the magnetization
dynamics, the convergence time is defined as the time used
to reach the asymptotic value of this quantity with a fixed
margin of error. In any case, we found non-monotone de-
pendences versus the temperature, which correspond to a
complex behavior of the considered systems. The compu-
tational outcomes concerning the non-equilibrium statis-
tics have been supported with two kind of analytical re-
sults: (i) the dynamics at zero temperature obtained by
solving in closed forms the classical LLG equation with-
out noise, and (ii) the Gibbs probability density and some
expectation values at thermodynamic equilibrium.

This work was supported by the Agence Nationale de la
Recherche ANR (France) through the PNano NAMAMIS
project and by the Russian Federation Ministry of Education
and Sciences (Contract N. 11.519.11.3023).
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4. J. Garćıa-Otero, M. Porto, J. Rivas, A. Bunde, Phys. Rev.

Lett. 84, 167 (2000)
5. C. Kormann, H.M. Laun, H.J. Richter, Int. J. Mod. Phys.

B 10, 3167 (1996)
6. A.T. Skjeltorp, J. Appl. Phys. 57, 3285 (1985)
7. S. Lamba, S. Annapoornia, Eur. Phys. J. B 39, 19 (2004)
8. M. Golosovsky, Y. Saado, D. Davidov, Appl. Phys. Lett.

75, 4168 (1999)
9. M. Shinkai, J. Biosci. Bioeng. 94, 606 (2002)

10. I.-M. Hsing, Y. Xu, W. Zhaob, Electroanalysis 19, 755
(2007)

11. Y.-W. Jun, J.-W. Seo, J. Cheon, Acc. Chem. Res. 41, 179
(2008)

12. I. Safarik, M. Safarikova, BioMag. Res. Technol. 2, 7
(2004)

13. N. Pamme, Lab on a Chip 6, 24 (2005)

10



14. B. Gleich, J. Weizenecker, Nature 435, 1214 (2005)
15. J. Weizenecker, B. Gleich, J. Rahmer, H. Dahnke, J.

Borgert, Phys. Med. Biol. 54, L1 (2009)
16. A.K. Gupta, M. Gupta, Biomaterials 26, 3995 (2005)
17. K.J. Widder, R.M. Morris, G. Poore, D.P. Howard, A.E.

Senyei, Proc. Natl. Acad. Sci. 78, 579 (1981)
18. A. Jordan, P. Wust, R. Scholz, B. Tesch, H. Filhling, T.

Mitrovics, T. Vogl, J. Cervos-Navarro, R. Felix, Int. J.
Hyperthermia 12, 705 (1996)

19. P. Moroz, S.K. Jones, B.N. Gray, Int. J. Hyperthermia
18, 267 (2002)

20. M. Fiebig, J. Phys. D 38, 123 (2005)
21. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)
22. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G.

Srinivasan, J. Appl. Phys. 103, 031101 (2008)
23. N. D’Souza, J. Atulasimha, S. Bandyopadhyay, J. Phys.

D 44, 265001 (2011)
24. N.A. Pertsev, H. Kohlstedt, Nanotechnology 21, 475202

(2010)
25. K. Roy, S. Bandyopadhyay, J. Atulasimha, Appl. Phys.

Lett. 99, 063108 (2011)
26. N. Tiercelin, Y. Dusch, V. Preobrazhensky, P. Pernod, J.

Appl. Phys. 109, 07D726 (2011)
27. N. Tiercelin, Y. Dusch, A. Klimov, S. Giordano, V.

Preobrazhensky, P. Pernod, Appl. Phys. Lett. 99, 192507
(2011)

28. S. Giordano, Y. Dusch, N. Tiercelin, P. Pernod, V.
Preobrazhensky, Phys. Rev. B 85, 155321 (2012)

29. V. Novosad, Y. Otani, A. Ohsawa, S.G. Kim, K.
Fukamichi, J. Koike, K. Maruyama, O. Kitakami, Y.
Shimada, J. Appl. Phys. 87, 6400 (2000)

30. K. Roy, S. Bandyopadhyay, J. Atulasimha, Phys. Rev. B
83, 224412 (2011)

31. K. Roy, S. Bandyopadhyay, J. Atulasimha, J. Appl. Phys.
112, 023914 (2012)

32. J. Tejada, E.M. Chudnovsky, E. del Barco, J.M.
Hernandez, T.P. Spiller, Nanotechnology 12, 181 (2001)

33. R. Kikuchi, J. Appl. Phys. 27, 1352 (1956)
34. G.V. Skrotskii, Sov. Phys. Usp. 27, 977 (1984)
35. P. Hänggi, Phys. Rep. 88, 207 (1982)
36. H. Risken, The Fokker-Planck equation (Springer-Verlag,

Berlin, 1989)
37. W.T. Coffey, Yu. P. Kalmykov, J.P. Waldron, The

Langevin equation (World Scientific, Singapore, 2004)
38. S.I. Denisov, Phys. Solid State 41, 1672 (1999)
39. S.I. Denisov, K.N. Trohidou, Phys. Rev. B 64, 184433

(2001)
40. S.I. Denisov, T.V. Lyutyy, P. Hänggi, Phys. Rev. Lett.

97, 227202 (2006)
41. S.I. Denisov, T.V. Lyutyy, P. Hänggi, K.N. Trohidou,

Phys. Rev. B 74, 104406 (2006)
42. S.I. Denisov, K. Sakmann, P. Talkner, P. Hänggi, Phys.

Rev. B 75, 184432 (2007)
43. S.I. Denisov, A. Yu. Polyakov, T.V. Lyutyy, Phys. Rev.

B 84, 174410 (2011)
44. L. Landau, E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935)
45. T.L. Gilbert, Phys. Rev. 100, 1243 (1955) (abstract only)
46. T.L. Gilbert, IEEE Trans. Mag. 40, 3443 (2004)
47. M. Lakshmanan, Phil. Trans. R. Soc. A 369, 1280 (2011)
48. W.F. Brown, J. Appl. Phys. 30, S130 (1959)
49. W.F. Brown, J. Appl. Phys. 34, 1319 (1963)

50. W.F. Brown, Phys. Rev. 130, 1677 (1963)
51. W.F. Brown, IEEE Trans. Magn. 15, 1196 (1979)
52. S. Giordano, P.L. Palla, J. Phys. A 41, 415205 (2008)
53. J.C. Mallinson, IEEE Trans. Magn. 23, 2003 (1987)
54. P. Podio-Guidugli, Eur. Phys. J. B 19, 417 (2001)
55. G. Bertotti, I.D. Mayergoyz, C. Serpico, Physica B 306,

102 (2001)
56. W.M. Saslow, J. Appl. Phys. 105, 07D315 (2009)
57. J.-E. Wegrowe, M.-C. Ciornei, Am. J. Phys. 80, 607

(2012)
58. G.E. Uhlenbeck, L.S. Ornstein, Phys. Rev. 36, 823 (1930)
59. M.C. Wang, G.E. Uhlenbeck, Rev. Mod. Phys. 17, 323

(1945)
60. P. Caldirola, L.A. Lugiato, Physica A 116, 248 (1982)
61. B. Bianco, E. Moggia, S. Giordano, W. Rocchia, A.

Chiabrera, Nuovo Cim. 116, 155 (2001)
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