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Abstract

Using a standard technique sometimes (inaccurately) known as Burnside’s Lemma, it is shown
that the Veldkamp space of the near hexagon L3×GQ(2, 2) features 158 different types of lines.
We also give an explicit description of each type of a line by listing the types of the three
geometric hyperplanes it consists of and describing the properties of its core set, that is the
subset of points of L3×GQ(2, 2) shared by the three geometric hyperplanes in question.

MSC Codes: 51Exx, 81R99
PACS Numbers: 02.10.Ox, 02.40.Dr, 03.65.Ca
Keywords: Near Hexagons – Geometric Hyperplanes – Veldkamp Spaces

1 Introduction

Brouwer et al. [1] proved that there are eleven isomorphism types of slim dense near hexagons.
Of these eleven, the near hexagons of sizes 27, 45 and 81 are the most promising for physical
applications. This paper is devoted to a study of the second of these three examples and its
Veldkamp space. The first of the three examples was described in our paper [2], and we plan
to study the third case in a future work. The 45 point space we study here is the product
L3×GQ(2, 2), where L3 is the line containing three points and GQ(2, 2) is the generalized
quadrangle of order two.

2 Near polygons, quads, geometric hyperplanes and
Veldkamp spaces

In this section we gather all the basic notions and well-established theoretical results that will
be needed in the sequel.

A near polygon (see, e. g., [3] and references therein) is a connected partial linear space
S = (P,L, I), I ⊂ P × L, with the property that given a point x and a line L, there always
exists a unique point on L nearest to x. (Here distances are measured in the point graph, or
collinearity graph of the geometry.) If the maximal distance between two points of S is equal
to d, then the near polygon is called a near 2d-gon. A near 0-gon is a point and a near 2-gon
is a line; the class of near quadrangles coincides with the class of generalized quadrangles.

A nonempty set X of points in a near polygon S = (P,L, I) is called a subspace if every
line meeting X in at least two points is completely contained in X . A subspace X is called
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geodetically closed if every point on a shortest path between two points of X is contained in X .
Given a subspace X , one can define a sub-geometry SX of S by considering only those points
and lines of S that are completely contained in X . If X is geodetically closed, then SX clearly
is a sub-near-polygon of S. If a geodetically closed sub-near-polygon SX is a non-degenerate
generalized quadrangle, then X (and often also SX) is called a quad.

A near polygon is said to have order (s, t) if every line is incident with precisely s+1 points
and if every point is on precisely t+1 lines. If s = t, then the near polygon is said to have order
s. A near polygon is called dense if every line is incident with at least three points and if every
two points at distance two have at least two common neighbours. A near polygon is called slim

if every line is incident with precisely three points. It is well known (see, e. g., [4]) that there
are, up to isomorphism, three slim non-degenerate generalized quadrangles. The (3× 3)-grid is
the unique generalized quadrangle of order (2, 1), GQ(2, 1). The unique generalized quadrangle
of order 2, GQ(2, 2), is the generalized quadrangle of the points and lines of PG(3, 2) that are
totally isotropic with respect to a given symplectic polarity. The points and lines lying on a
given nonsingular elliptic quadric of PG(5, 2) define the unique generalized quadrangle of order
(2, 4), GQ(2, 4). Any slim dense near polygon contains quads, which are necessarily isomorphic
to either GQ(2, 1), GQ(2, 2) or GQ(2, 4).

Next, a geometric hyperplane of a partial linear space is a proper subspace meeting each line
(necessarily in a unique point or the whole line). The set of points at non-maximal distance
from a given point x of a dense near polygon S is a hyperplane of S, usually called the singular
hyperplane (or perp-set) with deepest point x. Given a hyperplane H (or any subset of points
C) of S, one defines the order of any of its points as the number of lines through the point that
are fully contained in H (C); a point of H (C) is called deep if all the lines passing through it are
fully contained in H (C). If H is a hyperplane of a dense near polygon S and if Q is a quad of S,
then precisely one of the following possibilities occurs: (1) Q ⊆ H ; (2) Q∩H = x⊥∩Q for some
point x of Q; (3) Q∩H is a sub-quadrangle of Q; and (4) Q∩H is an ovoid of Q. If case (1), case
(2), case (3), or case (4) occurs, then Q is called, respectively, deep, singular, sub-quadrangular,
or ovoidal with respect to H . If S is slim and H1 and H2 are its two distinct hyperplanes,
then the complement of symmetric difference of H1 and H2, H1∆H2, is again a hyperplane;
this means that the totality of hyperplanes of a slim near polygon form a vector space over the
Galois field with two elements, F2. In what follows, we shall put H1∆H2 ≡ H1 ⊕H2 and call
it the (Veldkamp) sum of the two hyperplanes.

Finally, we shall introduce the notion of the Veldkamp space of a point-line incidence geom-
etry Γ(P,L), V(Γ) [5]. Here, V(Γ) is the space in which (i) a point is a geometric hyperplane
of Γ and (ii) a line is the collection H ′H ′′ of all geometric hyperplanes H of Γ such that
H ′ ∩ H ′′ = H ′ ∩H = H ′′ ∩H or H = H ′, H ′′, where H ′ and H ′′ are distinct points of V(Γ).
Following [6, 7], we adopt also here the definition of Veldkamp space given by Buekenhout and
Cohen [5] instead of that of Shult [8], as the latter is much too restrictive by requiring any three
distinct hyperplanes H ′, H ′′ and H ′′′ of Γ to satisfy the following two conditions: i) H ′ is not
properly contained in H ′′ and ii) H ′ ∩ H ′′ ⊆ H ′′′ implies H ′ ⊂ H ′′′ or H ′ ∩ H ′′ = H ′ ∩ H ′′′.
The two definitions differ in the crucial fact that whereas the Veldkamp space in the sense of
Shult is always a linear space, that of Buekenhout and Cohen needs not be so; in other words,
Shult’s Veldkamp lines are always of the form {H ∈ V(Γ) | H ⊇ H ′∩H ′′} for certain geometric
hyperplanes H ′ and H ′′.

3 The near hexagon L3×GQ(2, 2)

The near hexagon L3× GQ(2, 2) has recently [9] caught an attention of theoretical physicists
due to the fact that its main constituent, the generalized quadrangle GQ(2, 2), reproduces
the commutation relations of the 15 elements of the two-qubit Pauli group (see, e. g., [10]),
with each of its ten embedded copies of GQ(2, 1) playing, remarkably, the role of the so-called
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Mermin magic square [11] — the smallest configuration of two-qubit observables furnishing a
very important proof of contextuality of quantum mechanics. A well-known construction of
GQ(2, 2) identifies the points with two-element subsets of {1, 2, 3, 4, 5, 6}, with two points being
collinear if and only if they are equal or disjoint. The natural action of S6 on this set of size 6
induces automorphisms of GQ(2, 2). In fact, when considered in this way, S6 turns out to be
the full automorphism group.

It is known that every geometric hyperplane of a slim dense near polygon arises from its
universal embedding. It can be shown from this that, equipped with the operation of Veldkamp
sum, the Veldkamp space VGQ(2,2) is isomorphic to PG(4, 2), the projective space obtained from
a 5-dimensional space over F2 (see also [6]). It follows that GQ(2, 2) has 25 − 1 = 31 geometric
hyperplanes, which turn out to be of three types:

(i) 15 perp-sets, with 7 points each;

(ii) 10 grids (copies of GQ(2, 1)), with 9 points each;

(iii) 6 ovoids, with 5 points each.

In other words, there are three orbits of geometric hyperplanes under the action of S6.
Identifying the points of GQ(2, 2) with two-element subsets of the set {1, 2, 3, 4, 5, 6} as

described earlier, we find that an example of an ovoid is the set

e1 := {{1.2}, {1.3}, {1.4}, {1.5}, {1.6}}.

The other ovoids, e2, e3, . . . , e6 are obtained from e1 by acting by the transposition (1, i) for
i = 2, 3, . . . , 6 respectively.

The Veldkamp sum ei + ej (for 1 ≤ i < j ≤ 6) is the perp-set of the point {i, j}. If we have

{1, 2, 3, 4, 5, 6} = {i, j, k, l,m, n}

in some order, then the sum ei + ej + ek is the grid whose elements are the nine points

{{a, b} : a ∈ {i, j, k} and b ∈ {l,m, n}}.

It follows that the six ovoids are a spanning set for VGQ(2,2). Since each point of GQ(2, 2) lies
in precisely two ovoids, it follows that we have the relation

e1 + e2 + e3 + e4 + e5 + e6 = 0,

where 0 denotes the subset of GQ(2, 2) consisting of all 15 points. Since we have an isomor-
phism VGQ(2,2)

∼= PG(4, 2), it follows by a counting argument that this is the only nontrivial
dependence relation between the ei, and thus that the ovoids e1, . . . , e5 form a basis for VGQ(2,2).

The points of the near hexagon L3× GQ(2, 2) are simply the 45 ordered pairs (p, q) where
p is a point of L3 and q is a point of GQ(2, 2). Two points (p1, q1) and (p2, q2) of L3× GQ(2, 2)
are collinear if either

(i) p1 = p2 and q1 is collinear to q2, or

(ii) p1 is collinear to p2 and q1 = q2.

The lines of L3× GQ(2, 2) are of two types. The type-one lines are the 15 lines of the form
{(p, q) : p ∈ L3} for a fixed point q ∈ GQ(2, 2). The type-two lines are the 45 lines of the form
{(p, q) : q ∈ L} for a fixed p ∈ L3 and some line L of GQ(2, 2).

The near hexagon L3× GQ(2, 2) has a number of obvious automorphisms. One type of
automorphism involves permuting the three GQ(2, 2)-quads, but making no other changes.
The subgroup of all such automorphisms is isomorphic to S3. Another type of automorphism
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involves acting diagonally on the three GQ(2, 2)-quads by S6, the automorphism group of
GQ(2, 2). This action commutes with the action of S3 just mentioned, and produces a group of
automorphisms isomorphic to S6 × S3. It turns out that this is the full automorphism group,
as shown by Brouwer et al. [1].

From now on, let us denote the Veldkamp space of L3× GQ(2, 2) by V . Some features of
V are close to obvious, which stems from Sec. 2. One of these is that the intersection of one
of the three GQ(2, 2)-quads with a point of V (regarded as a subset of the 45 points) can take
one of two forms. Either the GQ(2, 2)-quad is completely filled in (i. e., it is deep), or takes
the form of one of the geometric hyperplanes of GQ(2, 2) (i. e., it is singular, sub-quadrangular
or ovoidal). Furthermore, the Veldkamp sum of any two of the layers (regarded as subsets of
GQ(2, 2) under some obvious identification) must be equal to the third layer. It follows from
this that V contains 210 − 1 = 1023 points.

The above discussion shows that, as an S6×S3-module over F2, V is isomorphic to M ⊗N ,
where M is the 5-dimensional module for S6 described earlier, and N is the S3-module obtained
by quotienting the 3-dimensional permutation module {f1, f2, f3} for S3 by the submodule
spanned by f1 + f2 + f3. The set {f1, f2} then form a basis for N , and the set

{ei ⊗ fj : 1 ≤ i ≤ 5, 1 ≤ j ≤ 2}

forms a basis for V . We will write this basis for short as {e1, . . . e10}, where for 1 ≤ i ≤ 5, ei
denotes ei ⊗ f1, and for 6 ≤ i ≤ 10, ei denotes ei−5 ⊗ f2.

4 The classification of hyperplanes

The geometric hyperplanes of L3× GQ(2, 2) were classified in [9]. Up to automorphisms, there
are eight types of them, denoted by H1 to H8 and described in detail in [9, Table 2]. We now
explain how these eight types can be reconstructed using the results in the previous section.

The description of the hyperplanes of GQ(2, 2) above can be used to identify each hyperplane
with one of the 31 nontrivial set partitions of a 6-element into two pieces. If S and T are disjoint
nonempty sets for which

S ∪ T = {1, 2, 3, 4, 5, 6},

then we identify the pair {S, T } with the hyperplane

∑

i∈S

ei =
∑

j∈T

ej.

Under these identifications, the partitions of 6 given by (5, 1), (4, 2) and (3, 3) correspond, via
set partitions, to ovoids, perp sets and grids, respectively.

The Veldkamp sum operation on VGQ(2,2) described in the previous section may now be
defined purely in terms of sets: the Veldkamp sum of the two set partitions {A|B} and {C|D}
is given by

{(A ∩ C) ∪ (B ∩D)|(A ∩D) ∪ (B ∩ C)}.

This identification extends to a set-theoretic description of the hyperplanes of L3× GQ(2, 2).
The hyperplanes of this larger space may be put into bijection with ordered quadruples of
pairwise disjoint sets (A,B,C,D) such that (a) no three of the sets are empty and (b) the
union of the four sets is {1, 2, 3, 4, 5, 6}. Such a quadruple corresponds to the hyperplane given
by the ordered triple of partitions

({A ∪B|C ∪D}, {A ∪ C|B ∪D}, {A ∪D|B ∪ C}).

Here, the leftmost component of the ordered triple describes the hyperplane of GQ(2, 2) ap-
pearing in the uppermost GQ(2, 2)-quad of L3× GQ(2, 2), and so on. For example, if the sets
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Table 1: A classification of geometric hyperplanes of L3× GQ(2, 2).

Name Partition Orbit size Stabilizer Order
H1 (3, 3) 30 S3 × S3 × S2 × S2 144
H2 (4, 2) 45 S4 × S2 × S2 96
H3 (5, 1) 18 S5 × S2 240
H4 (2, 2, 1, 1) 270 S2 × S2 × S2 × S2 16
H5 (2, 2, 2) 90 S2 × S2 × S2 × S3 48
H6 (3, 1, 1, 1) 120 S3 × S3 36
H7 (3, 2, 1) 360 S3 × S2 12
H8 (4, 1, 1) 90 S4 × S2 48

C and D are empty, the top GQ(2, 2)-quad will be deep and the other two will be identical to
each other, being either singular, sub-quadrangular or ovoidal.

The correspondence between the ordered quadruples and the hyperplanes is four-to-one,
because the quadruples (A,B,C,D), (B,A,D,C), (C,D,A,B) and (D,C,B,A) all index the
same hyperplane. It follows that acting by an element of the Klein four-group V4 on an or-
dered quadruple leaves the corresponding hyperplane invariant. The group S6 × S4 acts on the
quadruples, where S6 acts diagonally on each of the set partitions A, B, C and D, and S4 acts
by place permutation. This induces an action of S6 × S4 on the hyperplanes of L3× GQ(2, 2),
and since the action of V4 ≤ S4 is trivial, this in turn induces an action of S6×(S4/V4) ∼= S6×S3

on the hyperplanes, thus recovering the full automorphism group of L3× GQ(2, 2) in which S3

acts by permuting the GQ(2, 2)-quads.
This approach yields another way to deduce that the number of hyperplanes of L3× GQ(2, 2)

is 210 − 1, as follows. There are 46 possible quadruples of pairwise disjoint sets (A,B,C,D)
whose union is {1, 2, 3, 4, 5, 6}, and four of these quadruples have three empty components.
Since the correspondence between quadruples and hyperplanes is four-to-one, the number of
hyperplanes is (46 − 4)/4.

The correspondence described above induces a natural correspondence between S6 × S4-
orbits (or S6×S3-orbits) of hyperplanes on the one hand, and partitions of 6 into two, three or
four parts on the other. There are eight such partitions; they are shown in Table 1, together
with their orbit sizes, stabilizers isomorphism types, stabilizer orders, and their name in the
H1 −H8 notation of [9, Table 2].

5 Counting and classifying different types of Veldkamp
lines

The orbits of lines in the Veldkamp space V may be enumerated using a standard technique
sometimes (inaccurately) known as Burnside’s Lemma, which proves the following.

Let G be a finite group acting on a finite set X with t orbits, and for each g ∈ G, let Xg

denote the number of elements of X fixed by g. Then we have t =
1

|G|

∑

g∈G

|Xg|. Furthermore,

if C is a set of conjugacy class representatives of G, then we have

t =
1

|G|

∑

g∈C

|C||Xg|.

Using this technique, we can recover known results about orbits of lines under the action of
the automorphism group S6 of GQ(2, 2): there are 3 orbits of hyperplanes (Veldkamp points)
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and 5 orbits of Veldkamp lines. We can also recover the result the Veldkamp space V has 8
orbits of hyperplanes under the automorphism group S6 × S3.

The same idea can be adapted to count the orbits of Veldkamp lines of V . The counting
argument is more complicated than for the case of Veldkamp points, because it is possible for
a line to be fixed by a group element g without the three individual points being fixed. There
are three possibilities to consider, which we denote by (1), (2) and (3) in Table 2.

(1) Every point of the Veldkamp line is fixed by g. Such lines lie entirely within the fixed
point space of g.

(2) One point of the Veldkamp line is fixed by g, and the other two are exchanged. To
enumerate such lines, we take one point x outside the fixed point space of g. The other
two points are the point g(x), and the point collinear with both of them (which is fixed
by g). We then divide by 2 to correct for the overcount.

(3) The element g rotates the three points of the Veldkamp line in a 3-cycle. These are much
harder to enumerate, but fortunately this happens relatively rarely.

We identify the group S6×S3 in the obvious way with the subgroup of S9 fixing setwise each
of the subsets {1, 2, 3, 4, 5, 6} and {7, 8, 9}. Since there are 11 partitions of 6 and 3 partitions of
3, it follows that S6 × S3 has 33 conjugacy classes, and it is straightforward to find conjugacy
class representatives. Table 2 shows the calculation for the Veldkamp lines of L3× GQ(2, 2).
The grand total of

682560 = |S6 × S3| × 158 = 720× 6× 158

proves that there are 158 orbits of Veldkamp lines of the near hexagon. (The highlighted entry
of 85 in the table corresponds to some remarkable exceptional behaviour.)

All 158 types are then listed in Table 3. Here, each type is characterized by its composition
(columns 9 to 16) and the properties of the core C of the line, that is the set of points that are
common to all the three geometric hyperplanes of a line of the given type. In particular, for
each type (column 1) we list the number of points (column 2) and lines (column 3) of the core as
well as the distribution of the orders of its points. The last three columns show the intersection
of C with each of the three GQ(2, 2)-quads. Here, ‘g-perp’ stands for a perp-set in a certain
GQ(2, 1) located in the particular GQ(2, 2), and ‘unitr/tritr’ abbreviates a unicentric/tricentric
triad. If two or more types happen to possess the same string of parameters, the distinction
between them is given by an explanatory remark/footnote.
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Table 2: Orbits of Veldkamp lines of L3× GQ(2, 2).

Conjugacy class Fix(1) Fix(2) Fix(3) Size of class Product
id 174251 0 0 1 174251
(12) 10795 384 0 15 167685

(12)(34) 651 480 0 45 50895
(12)(34)(56) 651 480 0 15 16965

(123) 651 0 5 40 26240
(123)(456) 1 0 85 40 3440
(1234) 35 24 0 90 5310

(1234)(56) 35 24 0 90 5310
(123)(45) 35 24 5 120 7680
(12345) 1 0 0 144 144
(123456) 1 0 5 120 720
(78) 155 496 0 3 1953

(12)(78) 155 496 0 45 29295
(12)(34)(78) 155 496 0 135 87885

(12)(34)(56)(78) 155 496 0 45 29295
(123)(78) 7 28 1 120 4320

(123)(456)(78) 0 1 5 120 720
(1234)(78) 7 28 0 270 9450

(1234)(56)(78) 7 28 0 270 9450
(123)(45)(78) 7 28 1 360 12960
(12345)(78) 0 1 0 432 432
(123456)(78) 0 1 1 360 720

(789) 0 0 1023 2 2046
(12)(789) 0 0 255 30 7650

(12)(34)(789) 0 0 63 90 5670
(12)(34)(56)(789) 0 0 63 30 1890

(123)(789) 1 0 64 80 5200
(123)(456)(789) 35 0 8 80 3440
(1234)(789) 0 0 15 180 2700

(1234)(56)(789) 0 0 15 180 2700
(123)(45)(789) 1 0 16 240 4080
(12345)(789) 0 0 3 288 864
(123456)(789) 1 0 4 240 1200

682560
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Table 3: The types of Veldkamp lines of L3 × GQ(2, 2).

# of Points of Order Composition
Tp Pt Ln 0 1 2 3 4 H1 H2 H3 H4 H5 H6 H7 H8 1st 2nd 3rd

1 27 27 0 0 0 27 0 3 – – – – – – – grid grid grid
2 25 24 0 0 10 10 5 2 1 – – – – – – full g-perp g-perp
3 23 19 0 0 12 11 0 2 – – 1 – – – – grid g-perp grid
4 21 20 0 0 6 12 3 – 3 – – – – – – full line line
5 21 18 0 6 0 12 3 1 1 1 – – – – – full unitr unitr
6 21 18 0 6 0 12 3 – 3 – – – – – – full tritr tritr
7 21 16 0 2 12 6 1 1 1 – 1 – – – – perp grid g-perp
8 21 16 0 0 18 0 3 – 3 – – – – – – perp perp perp
9 19 15 0 0 12 7 0 1 – – 2 – – – – grid g-perp g-perp
10 19 13 0 4 10 5 0 1 – – 2 – – – – grid g-perp g-perp
11 19 12 0 6 9 4 0 1 1 – – – – 1 – perp grid unitr
12 17 16 0 2 0 14 1 – 1 2 – – – – – full point point
13 17 12 0 2 12 2 1 – 1 – 2 – – – – perp g-perp g-perp
14 17 12 0 2 11 4 0 – 1 – 2 – – – – grid line g-perp
15 17 10 0 8 6 2 1 1 – – 1 1 – – – g-perp g-perp perp
16 17 10 1 4 10 2 0 1 – – 1 – – 1 – grid unitr g-perp
17 17 10 0 8 7 0 2 – 2 – – 1 – – – perp line perp
18 17 10 1 4 10 2 0 – 1 – 2 – – – – grid tritr g-perp
19 17 10 0 8 6 2 1 – 1 – 2 – – – – perp g-perp g-perp
20 17 9 2 6 6 3 0 1 – 1 – – – 1 – ovoid unitr grid
21 17 9 0 8 8 1 0 1 – – 1 – 1 – – perp g-perp g-perp
22 17 9 0 9 6 2 0 – 2 – – – 1 – – perp tritr perp
23 15 11 0 0 12 3 0 – – – 3 – – – – g-perp g-perp g-perp
24 15 9 0 6 6 3 0 1 – – – – – 2 – unitr grid unitr
25 15 9 0 6 6 3 0 – – – 3 – – – – g-perp1 g-perp g-perp
26 15 9 0 6 6 3 0 – – – 3 – – – – g-perp1 g-perp g-perp
27 15 8 2 4 7 2 0 – 1 – 1 – – 1 – grid tritr unitr
28 15 8 2 3 9 1 0 – 1 – 1 – – 1 – line grid unitr
29 15 8 2 4 7 2 0 – – 1 2 – – – – grid unitr unitr
30 15 8 0 6 9 0 0 – – – 3 – – – – g-perp g-perp g-perp
31 15 7 1 8 5 1 0 1 – – – – 1 1 – perp g-perp unitr
32 15 7 4 2 8 1 0 1 – – – – – 2 – unitr grid unitr
33 15 7 1 8 5 1 0 – 1 – 1 – – 1 – perp unitr g-perp
34 15 7 0 9 6 0 0 – – – 3 – – – – g-perp g-perp g-perp
35 15 6 2 10 1 2 0 1 – – – 1 – 1 – perp unitr g-perp
36 15 6 3 6 6 0 0 1 – – – – – 2 – ovoid g-perp g-perp
37 15 6 2 9 3 1 0 – 1 1 – – – 1 – ovoid unitr perp
38 15 5 0 15 0 0 0 – – 3 – – – – – ovoid ovoid ovoid
39 13 8 0 4 8 0 1 – 1 – – 2 – – – perp line line
40 13 8 0 3 9 1 0 – 1 – – – – 2 – line grid point
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Table 3: (Continued.)

# of Points of Order Composition
Tp Pt Ln 0 1 2 3 4 H1 H2 H3 H4 H5 H6 H7 H8 1st 2nd 3rd

41 13 8 0 4 7 2 0 – – – 2 1 – – – line g-perp g-perp
42 13 7 2 2 8 1 0 – – 1 1 – – 1 – grid unitr point
43 13 6 0 9 3 1 0 – 1 – – – 2 – – perp tritr tritr
44 13 6 0 9 3 1 0 – 1 – – – 2 – – perp line line
45 13 6 4 0 9 0 0 – 1 – – – – 2 – point grid tritr
46 13 6 0 10 2 1 0 – 1 – – – – 2 – perp g-perp point
47 13 6 0 9 3 1 0 – 1 – – – – 2 – perp unitr unitr
48 13 6 1 6 6 0 0 – – – 2 – 1 – – tritr g-perp g-perp
49 13 6 0 8 5 0 0 – – – 2 – 1 – – line g-perp g-perp
50⋆ 13 6 1 6 6 0 0 – – – 2 – – 1 – g-perp g-perp unitr
51 13 5 2 8 2 1 0 – 1 – – 1 1 – – perp line tritr
52 13 5 2 8 2 1 0 – – 1 1 – 1 – – perp unitr unitr
53 13 5 2 8 2 1 0 – – – 2 1 – – – tritr g-perp g-perp
54 13 5 0 11 2 0 0 – – – 2 1 – – – line g-perp g-perp
55 13 5 2 7 4 0 0 – – – 2 – 1 – – tritr g-perp g-perp
56 13 5 2 8 2 1 0 – – – 2 – – 1 – g-perp g-perp unitr
57 13 5 2 7 4 0 0 – – – 2 – – 1 – unitr g-perp g-perp
58 13 4 4 8 0 0 1 1 – – – 1 – – 1 perp unitr unitr
59 13 4 4 8 0 0 1 – 1 1 – – – – 1 perp ovoid point
60 13 4 4 8 0 0 1 – 1 – 1 – – – 1 perp unitr unitr
61 13 4 4 8 0 0 1 – 1 – – 2 – – – perp tritr tritr
62 13 4 4 7 1 1 0 – 1 – – – 2 – – tritr tritr perp
63 13 4 4 7 1 1 0 – 1 – – – – 2 – line g-perp ovoid
64 13 4 4 7 1 1 0 – 1 – – – – 2 – perp unitr unitr
65 13 4 4 6 3 0 0 – 1 – – – – 2 – tritr g-perp ovoid
66 13 4 4 8 0 0 1 – – 1 1 1 – – – perp unitr unitr
67 13 3 6 6 0 1 0 1 – – – – 1 – 1 perp unitr unitr
68 13 3 6 6 0 1 0 1 – – – – – 1 1 ovoid g-perp unitr
69 11 6 2 0 9 0 0 – – 1 – – – 2 – grid point point
70 11 5 0 7 4 0 0 – – – 1 – – 2 – g-perp g-perp point
71 11 4 2 7 1 1 0 – – 1 – 1 – 1 – perp unitr point
72 11 4 2 7 1 1 0 – – – 1 1 – 1 – line g-perp unitr
73 11 4 2 6 3 0 0 – – – 1 1 – 1 – line unitr g-perp
74 11 4 2 6 3 0 0 – – – 1 – 1 1 – unitr tritr g-perp
75 11 4 2 6 3 0 0 – – – 1 – 1 1 – line unitr g-perp
76 11 4 2 6 3 0 0 – – – 1 – – 2 – g-perp2 unitr unitr
77 11 4 2 6 3 0 0 – – – 1 – – 2 – g-perp2 unitr unitr
78 11 4 1 8 2 0 0 – – – 1 – – 2 – point g-perp g-perp
79 11 3 4 6 0 1 0 – 1 – – – – 1 1 perp point unitr
80 11 3 4 6 0 1 0 – – 1 – – 1 1 – perp unitr point
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Table 3: (Continued.)

# of Points of Order Composition
Tp Pt Ln 0 1 2 3 4 H1 H2 H3 H4 H5 H6 H7 H8 1st 2nd 3rd

81 11 3 2 9 0 0 0 – – 1 – – – 2 – unitr unitr ovoid
82 11 3 4 6 0 1 0 – – – 2 – – – 1 unitr g-perp unitr
83 11 3 4 6 0 1 0 – – – 1 1 – 1 – tritr unitr g-perp
84 11 3 4 5 2 0 0 – – – 1 – 1 1 – tritr g-perp unitr
85 11 3 3 7 1 0 0 – – – 1 – 1 1 – line g-perp unitr
86 11 3 4 6 0 1 0 – – – 1 – – 2 – unitr3 g-perp unitr
87 11 3 4 6 0 1 0 – – – 1 – – 2 – unitr3 g-perp unitr
88 11 3 4 5 2 0 0 – – – 1 – – 2 – g-perp4 unitr unitr
89 11 3 4 5 2 0 0 – – – 1 – – 2 – g-perp4 unitr unitr
90 11 2 6 4 1 0 0 – 1 – – – – 1 1 line unitr ovoid
91 11 2 6 4 1 0 0 – – – 2 – – – 1 unitr g-perp unitr
92 11 2 6 4 1 0 0 – – – 1 1 – 1 – tritr unitr g-perp
93 11 2 6 4 1 0 0 – – – 1 – 1 1 – tritr g-perp unitr
94 11 2 6 4 1 0 0 – – – 1 – – 2 – g-perp unitr unitr
95 11 1 8 3 0 0 0 – – 2 – – – – 1 ovoid point ovoid
96 11 1 8 3 0 0 0 – – 1 – – – 2 – unitr unitr ovoid
97 11 0 11 0 0 0 0 1 – – – – – – 2 unitr unitr ovoid
98 11 0 11 0 0 0 0 – 1 – – – – 1 1 tritr ovoid unitr
99 9 6 0 0 9 0 0 – – – – 3 – – – line line line
100 9 4 0 8 0 0 1 – 1 – – – – – 2 perp point point
101 9 3 2 6 0 1 0 – – 1 – – 1 – 1 perp point point
102 9 3 2 6 0 1 0 – – – 1 – – 1 1 point g-perp unitr
103 9 3 0 9 0 0 0 – – – – 3 – – – line line line
104 9 3 2 5 2 0 0 – – – – 2 1 – – line tritr line
105 9 3 0 9 0 0 0 – – – – 1 2 – – line line line
106 9 3 2 5 2 0 0 – – – – 1 – 2 – tritr g-perp point
107 9 3 1 7 1 0 0 – – – – 1 – 2 – point g-perp line
108 9 3 0 9 0 0 0 – – – – – 3 – – tritr tritr tritr
109 9 3 1 7 1 0 0 – – – – – 1 2 – point g-perp line
110 9 3 0 9 0 0 0 – – – – – – 3 – unitr unitr unitr
111 9 2 4 4 1 0 0 – – – 1 – 1 – 1 line unitr unitr
112 9 2 4 4 1 0 0 – – – 1 – – 1 1 g-perp point unitr
113 9 2 4 4 1 0 0 – – – – 1 – 2 – line unitr5 unitr
114 9 2 4 4 1 0 0 – – – – 1 – 2 – line unitr5 unitr
115 9 2 4 4 1 0 0 – – – – 1 2 – – tritr tritr line
116 9 2 3 6 0 0 0 – – – – – 3 – – line line tritr
117 9 2 4 4 1 0 0 – – – – – 1 2 – tritr g-perp point
118 9 2 3 6 0 0 0 – – – – – 1 2 – tritr unitr unitr
119 9 2 4 4 1 0 0 – – – – – – 3 – point6 g-perp unitr
120 9 2 4 4 1 0 0 – – – – – – 3 – point6 g-perp unitr
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Table 3: (Continued.)

# of Points of Order Composition
Tp Pt Ln 0 1 2 3 4 H1 H2 H3 H4 H5 H6 H7 H8 1st 2nd 3rd

121 9 1 6 3 0 0 0 – – – 1 1 – – 1 unitr line unitr
122 9 1 6 3 0 0 0 – – – – 3 – – – tritr tritr line
123 9 1 6 3 0 0 0 – – – – 1 2 – – line tritr tritr
124 9 1 6 3 0 0 0 – – – – 1 – 2 – line unitr unitr
125 9 1 6 3 0 0 0 – – – – – 3 – – tritr tritr tritr
126 9 1 6 3 0 0 0 – – – – – 1 2 – line unitr unitr
127 9 1 6 3 0 0 0 – – – – – 1 2 – tritr unitr unitr
128 9 1 6 3 0 0 0 – – – – – – 3 – unitr unitr unitr
129 9 0 9 0 0 0 0 – 1 – – – – – 2 tritr point ovoid
130 9 0 9 0 0 0 0 – – 1 – – – 1 1 ovoid unitr point
131 9 0 9 0 0 0 0 – – – 1 1 – – 1 tritr unitr unitr
132 9 0 9 0 0 0 0 – – – 1 – 1 – 1 tritr unitr unitr
133 9 0 9 0 0 0 0 – – – 1 – – 1 1 unitr7 unitr unitr
134 9 0 9 0 0 0 0 – – – 1 – – 1 1 unitr7 unitr unitr
135 9 0 9 0 0 0 0 – – – – 2 1 – – tritr tritr tritr
136 9 0 9 0 0 0 0 – – – – 1 – 2 – tritr unitr unitr
137 9 0 9 0 0 0 0 – – – – – 1 2 – tritr unitr unitr
138 9 0 9 0 0 0 0 – – – – – – 3 – unitr unitr unitr
139 7 2 2 4 1 0 0 – – – – 1 – 1 1 point unitr line
140 7 2 2 4 1 0 0 – – – – – – 2 1 point g-perp point
141 7 1 4 3 0 0 0 – – 1 – – – – 2 ovoid point point
142 7 1 4 3 0 0 0 – – – – – 1 1 1 line unitr point
143 7 1 4 3 0 0 0 – – – – – – 2 1 unitr8 unitr point
144 7 1 4 3 0 0 0 – – – – – – 2 1 point unitr8 unitr
145 7 0 7 0 0 0 0 – – – 1 – – – 2 unitr unitr point
146 7 0 7 0 0 0 0 – – – – 1 – 1 1 tritr point unitr
147 7 0 7 0 0 0 0 – – – – – 1 1 1 tritr point9 unitr
148 7 0 7 0 0 0 0 – – – – – 1 1 1 tritr point9 unitr
149† 7 0 7 0 0 0 0 – – – – – – 2 1 point10 unitr unitr
150 7 0 7 0 0 0 0 – – – – – – 2 1 point10 unitr11 unitr
151 7 0 7 0 0 0 0 – – – – – – 2 1 point10 unitr11 unitr
152 5 1 2 3 0 0 0 – – – – 1 – – 2 line point point
153 5 0 5 0 0 0 0 – – – – – 1 – 2 tritr point point
154 5 0 5 0 0 0 0 – – – – – – 1 2 unitr point point
155 3 1 0 3 0 0 0 – – – – – – – 3 point point point
156 3 0 3 0 0 0 0 – – – – – – – 3 point point point
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Explanatory remarks:
1Two (25) or no two (26) of the g-perps are such that their centers are joined by a type-one

line.
2The center of the g-perp does (77) or does not (76) lie on the type-one line passing through

the center of one of the two unicentric triads.
3The centers of the two unicentric triads are (86) or are not (87) joined by a type-one line.
4One line (88) or no line (89) of the g-perp is incident with the type-one line passing through

the center of one of the two unicentric triads.
5The five type-one lines through the points of the two triads do (114) or do not (113) cut a

doily-quad in an ovoid.
6One line (120) or no line (119) of type-two through the point is incident with the type-one

line through the center of the g-perp.
7One (133) or none (134) of the unicentric triads is such that the type-one lines through

two of its points pass through the centers of the other two triads.
8The centers of the two unicentric triads are (143) or are not (144) joined by a type-one

line.
9The point does (147) or does not (148) lie on the type-one line passing through a center of

the tricentric triad.
10The point does (149) or does not (150 and 151) lie on the type-one line passing through

the center of one of the two unicentric triads.
11The centers of the two unicentric triads do (150) or do not (151) belong to the same

grid-quad.
⋆This type splits into two distinct orbits according as the type-one line through the center

of the triad passes through the center of the one or the other g-perp.
†This type splits into two distinct orbits according as the point is incident with the type-one

line through the center of the one or the other unicentric triad.
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[4] S.E. Payne, J.A. Thas, Finite Generalized Quadrangles, Pitman, Boston – London – Mel-
bourne, 1984; see also K. Thas, Symmetry in Finite Generalized Quadrangles, Birkhäuser,
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[7] M. Saniga, R.M. Green, P. Lévay, P. Pracna, P. Vrana, The Veldkamp space of GQ(2, 4),
Int. J. Geom. Methods Mod. Phys. 7 (2010) 1133–1145 (arXiv:0903.0715).

12



[8] E.E. Shult, On Veldkamp lines, Bull. Belg. Math. Soc. 4 (1997) 299–316.
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