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Self-Adaptive Network-on-Chip Interface
Rachid Dafali, Jean-Philippe Diguet, Member, IEEE, and Jean-Charles Creput

Abstract—This paper presents an original approach of
bandwidth-oriented self-adaptivity in the domain of Network-
on-Chip, where reconfiguration is handled by network interfaces
offering traffic with guarantee of service. Reconfiguration is first
based on multiple FIFOs with variables bounds and implemented
in a single dual-port memory with a dedicated controller.
Secondly, it relies on multiple and compliant TDMA tables
based on a new heuristic for path computation. Combination
of both techniques provide significant bandwidth improvement
with a negligible resource overhead. The proposed solution is
demonstrated with cycle-accurate VHDL simulation and FPGA
implementation for synthetic and image processing applications.

Index Terms—Reconfigurable Network-on-Chip, dynamic re-
configuration, self-adaptivity, FIFO, TDMA, network-interfaces

I. INTRODUCTION

NETWORK-on-Chip (NoC) have been introduced a
decade ago [1], as an innovative approach to meet the

expected bandwidth in modern System-on-Chip (SoC) that
implement an increasing number of IPs (processors, distributed
memories and peripherals). NoCs offer both performances and
scalability properties expected in large SoC. Today, the NoC
approach is completely adopted by industrial solutions.

In this paper, we explore the concept of Reconfigurable NoC
(RNoC), which aims to introduce self-adaptive mechanisms
in NoCs. Self-adaptivity is required for various reasons, we
mainly consider the two following aspects. First, in distributed
reconfigurable SoC, whatever the quality of service provided
(best effort or guaranteed traffic), the conventional NoC are
unable to handle constraints introduced by the load balancing
mechanism. Secondly, in guaranteed traffic NoC, the design
methodology is based on estimations of application traffic,
but data transfers may be very variable especially in case
of data-dependent applications (e.g. video codecs, image pro-
cessing, networking), which derive from energy-conscious
optimizations. Moreover the activation period of applications
may change over time and consequently result in various
configurations, which can be difficult to predict and model.

We can address these issues by considering the worst traffic
pattern in the NoC design flow and decide NoC topology and
parameters accordingly. Such a solution is safe and guarantees
real-time constraints but results in a significant oversizing. An-
other possibility consists in accepting performance degradation
in a proportion to be defined. This solution can be controlled
if communications are prioritized but offers no guarantee. So,
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a relevant problem is the design of an adaptive and recon-
figurable NoC, which guarantees traffic and introduces the
minimum overhead in terms of size and power consumption.

The analysis of real issues shows that the network access
time has, in practice, a major impact on the overall throughput.
So we focus our work on Network Interface (NI), which
also offer relevant and low-overhead adaptation opportuni-
ties. We propose two original and efficient mechanisms to
introduce self-reconfiguration within NIs. The first one relies
on dynamically reconfigurable memory buffers that allow for
the runtime adaptation of FIFO depths with a single shared
memory according to communication needs. The second one
is complementary and controls the Time Division Multiple Ac-
cess (TDMA) scheduler, which is dynamically reconfigurable.
It can adapt the number of time slots allocated to different
communication paths according to real bandwidth needs while
preserving guaranteed traffic property. Another contribution
is the architecture of an optimized Self-Adaptive NI (SANI)
that supports these two mechanisms and ensures the necessary
decoupling between the IP and the network.

The objective of the paper is to demonstrate the impact of
the local adaptation, it is done with a reference NI where new
mechanisms are introduced for fair comparison.

II. RELATED WORK

The use of RNoCs aims to optimize or to modify the
management of communications by meeting unpredictable
needs and events. These unpredictable requirements vary from
a simple increase in data bandwidth, to the connection of a
new IP. Thus, the first criteria, which characterizes a RNoC,
is the set of services it can satisfy in real-time. The study
of these services allowed us to build a first classification
of RNoCs, we can distinguish three types. i) Expanding (E)
RNoCs allow the connection of new IPs to the network by
adapting the physical topology. ii) Multimode (M) RNoCs
adapt the communications and their constraints according
to the application (mode) performed. The multimode ap-
proach aims to avoid the network oversizing by sharing its
resources. However, it requires an upstream computation of
different RNoC configurations. Also, the transition from one
configuration to another requires suspending transmissions
and a full initialization of the network. iii) Optimization (O)
RNoCs allow efficient use of network resources to increase
performance. The reconfiguration mechanisms introduced by
RNoC, combined with efficient configuration decisions, is used
to continuously track network optimality. Another aspect is
where the reconfiguration occurs, it can be at the architecture
(e.g. router, topology, DVFS) or protocol level (e.g. packet
vs circuit switching). Finally the important point is how the
reconfiguration decision is made and implemented, it can
be centralized (C) or distributed (D). With respect to this
classification, we summarize the state of the art in table I.
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Reference Type Compu- Deci- Exec- Architecure
tation sion cution Protocol

Nollet [5] O online C Stop BE TDMA slots
Pionteck [2] E online C Stop (DPR) Routers

Stensgaard [3] M offline C Reset Topology, policy,
Stop packet/CC switching

Nicopoulos [4] O online D Runtime BE Buffers, VC
Marescaux [7] O online C Reset BE TDMA slots
Hansson [8] M offline C Reset paths reorganization

Stop
Huebner [9] M offline C Reset BE, multipaths

Stop Crossbar Switches
Bogdan [6] O offline C Runtime DVFS

online
This work M offline C Runtime GT TDMA, NI,

(global/local) O online D Runtime FIFOs
TABLE I

RNOC COMPARISON: TYPE, METHODOLOGY AND MAIN FEATURES.

Regarding architecture reconfiguration, CoNoChi [2] is one of
the most complete solution that enables topology expansion,
meaning that it is designed to adapt the architecture by adding
or removing routers. This solution is limited to topology
adaptation and dedicated to network configuration on FPGA
with dynamic partial reconfiguration (DPR) capabilities. In [3]
authors combine architecture and protocol reconfigurations. A
router can be reconfigured according to logical topologies,
routing policies and protocols that can be either packet or
circuit switching but at the cost of significant extra resources.
Another distinguishable work is ViChaR [4], where buffer can
be dynamically allocated to different virtual channels (VC),
this solution fits best-effort type (BE) traffics and the cost
of VC combined with memory management lead to costly
routers implementations. Online reconfiguration strategy is
rarely explored, except in [5], where a new OS service is
proposed to adapt access time windows in a BE context.
The decision is based on collected statistics that require
a second monitoring network and to stop execution during
reconfiguration. Finally we don’t consider dynamic voltage
and frequency scaling (DVFS), which is complementary to
our work, however we might refer it as a dimension RNoC. A
remarkable method is proposed in [6], this is an online DVFS
approach applied on a multi region SOC that relies on a linear
controller according to a fractal modeling of traffic.

NI are rarely considered in RNoC, however we believe that
this is where major impacts on NoC performances can be
obtained in practice with a low resource overhead. First, in
multiprocessor architectures delays between the execution of
read/write instructions on processors and the first header emis-
sion can be much larger than the number of cycles required
for inter-router hops, it is so worth working on the NoC access
latency. Secondly, NoC can offer impressive bandwidths but
sequential IP/NI communications are real bottlenecks. Finally,
hardware reconfiguration of routers is costly, whereas NIs can
be simply configurable. In our project we consider TDMA as
a solution to guarantee and control minimum bandwidths. The
two reconfiguration techniques we propose are based on this
choice and are handled by a local manager (LM). They also lie
on our NoC design framework that includes topology selection
and memory sizing, it also comes after offline profiling steps
that allow to identify typical scenarios that will be used to
specify TDMA tables. In the next sections, we first describe
these techniques and then the LM implementation.
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Fig. 1. Reconfigurable FIFOs principle

III. RECONFIGURABLE FIFO

FIFOs are required in NIs, to store data according to
destinations and sources, FIFOs also represent a major part
of NI area. In most cases a NI is connected to a processor or
memory bus and to a router port, it means that in the worst
case one read and one write operations can occur at the same
time. It also means that a double port memory is enough,
multiple in and output ports are not necessary. So we propose
to implement multiple FIFOs within a standard shared RAM,
so that costly multiplexers, to control accesses to independent
FIFOs, are removed. This implementation also allows us to
dynamically manage the size of each FIFO by means of
push and pop pointers that can be moved within boundaries
adapted to traffic requirements. The principle of FIFOs self
adaptation is given in Fig.1. Push and pop pointers as well
as the adaptation management is implemented in hardware.
Based on rules checking such as the availability of free slots
in adjacent FIFOs and the boundary constraints, FIFO can be
expanded every cycle without performance penalty.

IV. RECONFIGURABLE TDMA

a) Architecture: TDMA is a well known solution to guar-
antee traffic by means of joint path computation and time
slots allocation. A TDMA table is simply implemented as
a circular buffer that contains FIFO IDs. At every cycle,
each NI writes in the output FIFO corresponding to the
destination the time slot is allocated to. The new approach
we propose is to compute multiple compliant TDMA tables
so that one NI can switch locally from a table to another
without introducing conflicts in the NoC, whatever are the
local choices of the other NIs. The configuration process
doesn’t introduce any performance penalty since in practice
the choice of the next FIFO ID can be read from all available
TDMA tables according to a switch controlled by the LM.
TDMA slot allocations and paths are jointly computed offline
with the method described hereafter.

b) Path computation: The requirement of traffic guarantee
and dynamic reconfiguration is modeled as a combinatorial
optimization problem. The problem is an extension and com-
bination of a classical k-shortest paths problem, with a bin
packing problem. It allows the sharing of non-conflicting
time-slots between reconfigurable communication paths. The
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Fig. 2. Reconfigurable TDMA principle

problem is new, and it is strongly NP-hard since bin packing
is. Accordingly, we found that only heuristic and metaheuristic
methods were able to generate admissible solutions, for rea-
sonable size instances, within reasonable computation time. To
solve the problem, we adopt a time-expended graph represen-
tation to memorize temporal channel occupation and represent
necessary and sufficient conditions for the reuse of time-slots.
An important requirement is that adaptation of TDMA tables
must occur in real-time with no re-initialization. Based on this
structure, a local search procedure and a genetic algorithm
were developed. They both operate by using a set of low-
level solution construction operators. They can be an emission
dates management, a greedy parallel paths construction and
a single-path optimal Dijkstra procedure, or a neighborhood
improvement operator. The local search is able to quickly
find a solution of good quality. The population based genetic
algorithm is able to diversify solutions when addressing con-
strained problems having many reconfigurable TDMAs. We
found out that a cost function equal to the ”cumulated length
of paths” was a good choice to introduce solution diversity
while minimizing communication latencies. The algorithms
were extensively tested on problem instances of different sizes.
Computation time to build an admissible solution is about few
milliseconds for a moderate size application with a dozen of
IPs and about 30 communication paths. It increases to about
7 seconds for a larger size problem with 50 or so IPs and
about 200 paths. A moderate size problem with reconfigurable
TDMAs, where 3 IPs among 10 have 2 TDMAs each, can be
solved within about 10 seconds. Our method can also be used
to derive partially new solutions from existing ones.

V. CONFIGURATION DECISION

A Local Manager (LM) is in charge of fast and local config-
uration decisions. The LM monitoring sensors are mainly the
FIFO status, given FIFO full or empty signals, it authorizes
or not the extension of FIFOs over their neighbors and the
switch to an alternative TDMA table. Different policies may
be implemented as a set of simple rules. In the current version
we consider that local decisions must be instinctive and sim-
ple, and the implementations are designed accordingly. Thus,
FIFOs extensions are always allowed if slots are available
regarding the position of Pop and Push pointers of neighbors.
Regarding TDMA tables, reconfiguration is considered when

full or empty FIFO signals are raised. For instance in Fig.2
priority is given to configuration 0. The LM decides a con-
figuration from table 0 to table 1 if and only if IP1 FIFO is
empty and if IP2 or IP3 FIFO is full. But the LM is back
to configuration 0 when the IP1 FIFO isn’t empty anymore.
Out of the scope of this paper we also we also consider a low
rate global manager (GM) that can for instance decide the
set of TDMA tables to be instantiated in the different SANI.
Contrary to the LM the GM is a software task.

VI. ARCHITECTURE

The protocol adapter (wrapper) and the SANI architectures
are detailed in Fig.3, they have been designed to decouple IP
and NoC routers, which may have different clocks and variable
communication rates. The wrapper is connected to the IP bus
and can use a DMA, if it is authorized, to write and read data
in a shared memory without involving the local processor if
any. In emission the IP specifies the local address in a shared
memory, the amount of data and the destination ID. Then
the DMA transfers the blocks of data from the memory to
the wrapper cache, the size of blocks is equal to the cache
size. In reception the controller sends a request to the IP
(Interrupt), which can authorize a transfer to the wrapper cache
if it is empty and if no concurrent transfers are in progress,
finally the DMA completes the transfer from the wrapper
cache to the shared memory. The SANI itself is composed of
7 components. The input port is connected to the wrapper and
transfers data to the FIFOs controller according to a destination
mapping table. The output port transfers received packets,
stored in FIFOs, to the wrapper if a read order is received.
The network input ports receives packets from the network
and transmits data and the sender ID to the reception FIFO
controller. The network output port manages packet injection
according to the TDMA-based scheduling, this output port has
been modified in order to manage switches between multiple
TDMAs without loss of cycle. The controllers of emission and
reception FIFOs manage read and write pointers of the differ-
ent FIFO in a single dual port memory, they implement two
MIN and MAX vectors that store FIFO bounds and counters
that give the use ratio. Finally the LM implements rules to
decide FIFO and TDMA configuration. The VHDL code of
the SANI is automatically generated such that resources are
minimized according to specifications choices. Our prototypes
are designed on Xilinx FPGA, the FIFO are implemented in
a distributed (LUT) dual port and dual clock RAM. BRAM
could be used if bigger memories (e.g. 18Kb) are required but
would mean a larger granularity and impose another resource
constraint optimization problem.

VII. RESULTS

a) Object tracking, VHDL CABA simulation: The first
experiment is based on the real traffic generated by an object
tracking application. The application is organized in five tasks
(Ti) running on dedicated hardware modules, the following
percentages represent the ratio of the total execution time
without parallelism. T1 (15%) computes in a row, for each
pixel, the mean value from the four previous frames, the
difference with the background frame and the binarization.
T2 (2%) executes subsequently two classical image processing
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functions (erosion and dilation), while T3 (31%) achieves
object extraction by means of a reconstruction algorithm.
Then, T4 (24%) labels objects and T5 (28%) draws rectangles
around labelled objects. A pipeline implementation is adopted
to maximize the data rate that reaches 80 fps. Nine dedicated
processors are considered, P1 and P2 execute T1 as well
as acquisition and display tasks, P3, P4, P5 run multiple
instances of T2 and T3 and P6, P7, P8 and P9 execute
multiple instances of T4 and T5. For simulation purpose,
processors are replaced by traffic generators, which reproduce
data transfers according to tasks dependencies. An ad hoc
NoC topology has been obtained with our methodology and
unused ports are removed. It results in 9 routers and 36
links (32 bits). 2D mesh NoC and spidergon topologies would
require {9,42} and {10,52} routers and links respectively. The
simulation is cycle and bit accurate. With this implementation
a 80 fps data rate is achieved. In a second step, the NI are
replaced by SANI implementing both FIFO and TDMA self-
reconfiguration mechanisms. The size of a SANI is 3.6% larger
than the size of a NI, however the multi-TDMA path compu-
tation results in solution with less links and the RNOC cost
is finally equivalent (-0.8%). The main important achievement
is the data-rate improvement since the RNOC provides 97 fps
(+21.25%) with a better use of link bandwidths.

b) FPGA implementation, Inter Microblaze communica-
tions: The second experiment relies on a complete implemen-
tation of 4 Xilinx microblazes that communicate through a
NoC composed of 7 routers. The objective is first to validate
software API and network interfaces and secondly to evaluate
the impact of FIFO and TDMA self-reconfigurations. Random
data are transferred, but the communications of each processor
respect the communication dependency graph (CDG) of a
video coder. Communication schemes are implemented as
infinite loops so that all the available bandwidth is used.
Processor 0 is the only one to communicate with all other pro-
cessors. In this experiment, we observe the bandwidth use for
four different cases: non reconfigurable NI, NI+reconfigurable
FIFO, NI+reconfigurable TDMA, NI+reconfigurable FIFO and
TDMA. Bandwidth as well as area results are given in Table II
for communications from P0 to other Processors (P0, P1, P2).
We observe that use of reconfigurable FIFOs depends on buffer
extensions opportunities. These opportunities are frequent for

Bandwidth (Mbits/s)
Static Reconfigurable Reconfigurable Reconfigurable.

FIFOs TDMA FIFOs & TDMA
Com P0/P1 287 304 (5, 9%) 354 (23, 5%) 421, 9 (46, 7%)
Com P0/P2 289 282 (−2, 5%) 367 (27%) 382, 5 (32, 3%)
Com P0/P3 290 322 (10, 9%) 362 (24, 9%) 358, 9 (23, 8%)

Total Area
Slices 2190 2212 (1%) 2082 (-4,9%) 2017 (-7,9%)
LUTs 3942 4060 (3%) 3982 (1%) 4101 (4%)

Total Bandwidth 866 +4,8% +25,1% +34,2%
Bandwidth/LUT 0,219 +2,1% +24,3% +29,4%

TABLE II
BANDWIDTH AND RESOURCE COST FOR 4 VERSIONS OF NI/SANI0

P1 and P3 FIFOs but not for the P2 FIFO. On the other hand,
TDMA reconfiguration can systematically take advantage of
available bandwidth. It is also due to the strategy of the LM,
which allocates at least the minimum FIFO size according to
the number of TDMA slots. Finally the best solution is the
combination of the two techniques, which allows to maximize
the opportunities to improve bandwidth. In this case study, the
total bandwidth is improved of 34%.

VIII. CONCLUSION & PERSPECTIVES

This paper presents a simple and efficient implementation
of distributed self-adaptivity in a NoC, which is fully im-
plemented in network interfaces. Our results show that the
combination of reconfigurable FIFOs and compliant TDMAs
can be efficiently used with a local manager to achieve a better
use of available bandwidth and memory resource with a very
limited resource overhead. FIFO adaptation takes advantage of
extension opportunities that are application dependent, TDMA
table selection amplifies the extension effects with the adap-
tation of allocated slots. Two immediate perspectives can be
proposed to overcome current limitations. The order of FIFO
can be optimized to improve FIFO extension opportunities and
new TDMA tables can be additionally computed online by a
global manager with a slower adaptation rate. The proposed
solution is scalable, the cost of the SANI is mainly related to
the number of FIFO for each processor interface, if necessary
this cost can be controlled with dynamic FIFO allocation
within the SANI that also offers this possibility.
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