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Abstract

This paper is devoted to the coupling problem of two scalar conser-
vation laws through a fixed interface located for instance at x=0. Each
scalar conservation law is associated with its own (smooth) flux function
and is posed on a half-space, namely x < 0 or x > 0. At interface x = 0 we
impose a coupling condition whose objective is to enforce in a weak sense
the continuity of a prescribed variable, which may differ from the conser-
vative unknown (and the flux functions as well). We prove existence of a
solution to the coupled Riemann problem using a constructive approach.
The latter allows in particular to highlight interesting features like non
uniqueness of both continuous and discontinuous (at interface x = 0)
solutions. The behavior of some numerical scheme is also investigated.

Introduction

The coupling of partial differential equations is of increasing interest in the
applied mathematics community, and of course of increasing importance for
industrial applications. Such a coupling arises for instance in the simulation
of nuclear reactors when different two-phase flow codes are used1. In these
codes, multiple modelling scales are applied to describe the flow. For instance,
different thermal-hydraulic models can be used for each reactor component to
take into account its specific behavior, or small scale models can be used, locally,
to obtain a better resolution. When these models are put side to side, we face
the problem of coupling. In addition to the definition of each model, such a
problematic requires to be supplemented with an interfacial model in order to
precise the nature of the information that must be exchanged at the coupling
interface. This interfacial model may be formulated for instance when imposing
the continuity of a given set of variables. It generally strongly affects the whole
solution and must therefore be defined in order to achieve a physically coherent
description of the whole operating device under consideration.

1The authors of the present paper are involved in a joint research program on multiphase
flows between CEA (French center fo nuclear research) and University Pierre et Marie Curie-
Paris6 (Laboratoire Jacques-Louis Lions) in the frame of the Neptune project [20]. See for
instance [3, 4, 5, 6, 2, 11] and the references therein
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Let us mention that similar situations appear in the modelling of networks and
traffic flows which have received a certain interest in the last few years. We refer
for instance the reader to [12, 8, 9], [16, 17, 21], and the references therein.

In this paper, we are interested in the one dimensional coupling problem
of two scalar conservation laws through a fixed interface, say x = 0, and more
precisely in the resolution of the coupled Riemann problem. Each scalar conser-
vation law is associated with its own (smooth) flux function fα, α = L, R and
is posed on a half-space, namely x < 0 (α = L) or x > 0 (α = R). Note from
now on that it will be implicitly assumed throughout the paper that the flux
functions have at most a finite number of changes of convexity, which is often
(is not always) the case for practical applications. At the coupling interface,
we assume without further details that it is physically relevant to impose the
continuity of a given function vα = vα(u) of the solution u, meaning that u is
expected to satisfy

vα(u(0−, t)) = vα(u(0+, t)), t > 0. (1)

Note that the v-variable generally depends on α.
This approach is fairly general and referred to as the state coupling method. The
theoretical study of such coupling conditions was initiated in the pioneering
papers [19, 18] in the case of scalar equations, linear systems, and the usual
Lagrangian system as well. In particular, the continuity constraint (1) has been
reformulated in a weak sense inspired by [13] for the sake of well-posedness.
This results in considering two boundary value problems and imposing ”as far
as possible” the continuity of the v-variable at the interface. We also refer the
reader to [5, 11] and the references therein. It is important to notice that this
approach does not ensure the conservativity property of the coupling problem.
It does therefore significantly differ from the flux coupling method where the
continuity of the flux is imposed at the interface (vα(u) = fα(u)). See for
instance [23, 24, 7] and [22].

This paper gives the first result of global existence of a solution to the cou-
pled Riemann problem in this context of state coupling, using a constructive
approach. Except the smoothness hypothesis, no specific assumption is made on
the flux functions fα, α = L, R. It is worth noticing right now that the solution
of the coupled Riemann problem can be either continuous or discontinuous in
the v-variable at the coupling interface. In the first situation, the coupling con-
dition (1) is satisfied in the classical sense, while in the other one, it is satisfied
in a weak sense only (to be precised hereafter). In addition, the solution to the
Riemann problem is shown to be not necessarily unique, since in particular, a 1-
parameter family of continuous solutions at the coupling interface may exist for
the same Riemann initial data. In this context, it is an open problem to know
wether or not there exists any natural criterion based for instance on entropy or
stability arguments for choosing one particular solution. Then, our approach is
different from the ones adopted for instance in [1] or [15] where the authors give
and study different concepts of physically admissible entropy weak solutions. So
as to get for instance existence and uniqueness of the corresponding Riemann
weak solutions.

The outline of the paper is as follows. In Section 1, we introduce the general
framework of the state coupling method. Section 2 is devoted to the main result
of this paper, namely the existence of a solution to the coupled Riemann prob-
lem. First of all, a geometrical description of the sets of admissible traces at the
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interface is given. Then, a characterisation is given for the solutions satisfying
the coupling condition either in the strong sense (the so-called v-continuous so-
lutions) or in the weak sense (the so-called v-discontinuous solutions). At last,
we deduce the existence of at least one self-similar solution to any coupled Rie-
mann problem. Several situations of non-uniqueness are exhibited, and a first
case of coupling of scalar conservation laws ”with phase change” is treated theo-
retically. Section 3 is devoted to numerical simulations, using both a relaxation
and a Godunov scheme as a building block for the derivation of the numerical
strategy.

1 The state coupling method

Let fα : R → R, α = L, R, be two C1 functions; given a function u0 : R → R,
we want to find a function u : (x, t) → u(x, t) ∈ R solution of

∂u

∂t
+

∂

∂x
fL(u) = 0, x < 0, t > 0 (2)

∂u

∂t
+

∂

∂x
fR(u) = 0, x > 0, t > 0 (3)

and satisfying the initial condition

u(x, 0) = u0(x), x ∈ R (4)

together with coupling constraints at x = 0 that we now define. Let θα : R → R,
α = L, R, be two strictly monotone C1 functions; we require the function u to
satisfy “as far as possible” the continuity constraint

θ−1
L (u(0−, t)) = θ−1

R (u(0+, t)), t > 0. (5)

Setting

v(x, t) =





θ−1
L (u(x, t)), x < 0

θ−1
R (u(x, t)), x > 0,

(6)

this constraint must be understood in the weak sense, following [13], [19] and
[18] 





v(0−, t) ∈ ÕL(v(0+, t))

v(0+, t) ∈ ÕR(v(0−, t)).

(7)

Let us recall the definition of the sets ÕL(vd) and ÕR(vg). Denoting by
wα(x

t ; ug, ud) the self-similar solution of the Riemann problem

∂u

∂t
+

∂

∂x
fα(u) = 0, x ∈ R, t > 0

u(x, 0) =

{
ug, x < 0
ud, x > 0

and setting

zα(
x

t
; vg, vd) = θ−1

α (wα(
x

t
; θα(vg), θα(vd)))
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we have 



ÕL(vd) = {zL(0−; v, vd); v ∈ R}

ÕR(vg) = {zR(0+; vg, v); v ∈ R} .

2 Solving the coupled Riemann problem.

We consider the coupled Riemann problem which corresponds to the initial
condition

u0(x) =

{
ug, x < 0
ud, x > 0.

(8)

We set
vg = θ−1

L (ug), vd = θ−1
R (ud).

When the flux functions fα, α = L, R are strictly convex, we are able to exhibit
all the solutions of this coupled Riemann problem (2)-(4),(7),(8). This is indeed
the goal of this section. Recall that in the general case, we always assume for
simplicity that the flux functions have at most a finite number of changes of
convexity.

2.1 Preliminaries.

Let us first recall and derive some preliminary results. Given a function f ∈
C1(R), we consider the scalar equation

∂u

∂t
+

∂

∂x
f(u) = 0. (9)

We denote by w(x
t ; ug, ud) the solution of the Riemann problem for (9) cor-

responding to the initial condition (8). In the case of a general flux function
f , w(x

t ; ug, ud) consists of a composite wave composed of shock and rarefaction
subwaves. It is constructed in the following way.
(i) For ud > ug, we introduce the lower convex envelope function fc of f in the
interval [ug, ud]. This interval is divided into rarefaction subintervals where the
function f is strictly convex (so that fc = f) separated by shock subintervals
where the function fc is affine (and the graph of f is located above the corre-
sponding chord). Then w(x

t ; ug, ud) is made of a sequence of rarefaction waves
in the rarefaction subintervals and shock waves in the shock subintervals. These
waves are bordered on the left by the constant state ug and on the right by the
constant state ud. These constant states are the only constant states which
appear in the solution of the Riemann problem.
(ii) For ud < ug, we introduce the upper concave envelope function f c of f in
the interval [ud, ug]. Again this interval is divided into rarefaction subintervals
where the function f is strictly concave (so that f = f c) separated by shock in-
tervals where f c is affine (and the graph of f is located under the corresponding
chord. Then, the solution of the Riemann problem then has the same structure
as in the case (i).

We shall say that such a composite wave has a nonnegative (resp. nonposi-
tive) speed if all of its subwaves (shocks or rarefactions) have nonnegative (resp.
nonpositive) speeds. In order to characterize the composite waves w(.; ug, ud)
whose speeds are nonnegative or nonpositive, we determine the minimal and
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maximal speeds σmin and σmax of such a composite wave. Denote by I(ug, ud)
the closed interval whose end points are ug and ud. Then, we can state

Lemma 1 We have

σmin = min
u∈I(ug,ud)

f(u) − f(ug)

u − ug
(10)

and

σmax = max
u∈I(ug,ud)

f(u) − f(ud)

u − ud
(11)

with the following convention

f(u) − f(ua)

u − ua
= f ′(ua) for u = ua, a = g, d. (12)

Proof. Let us check (10) for instance. We begin by observing that σmin is the
speed of the left boundary of the fan of the composite wave w(.; ug, ud). Assume
first ud > ug. If the left subwave of w(.; ug, ud) is a shock that connects ug and
a state u1, its speed is

σmin =
f(u1) − f(ug)

u1 − ug
.

On the other hand, it is clear geometrically (cf. Fig. 1a) that we have for all
u ∈ (ug, ud]

f(u) − f(ug)

u − ug
>

f(u1) − f(ug)

u1 − ug
.

Hence, using the convention (12), we obtain

σmin = min
u∈[ug,ud]

f(u) − f(ug)

u − ug
. (13)

If this left subwave is a rarefaction, σmin is the speed of the left side of the
rarefaction fan which is given by

σmin = f ′(ug)

Again, it is obvious geometrically (cf. Fig. 1b) that we have for all u ∈ (ug, ud]

f ′(ug) <
f(u) − f(ug)

u − ug
.

Therefore (13) still holds.
Consider next the case where ug > ud. Using Fig. 2 and a fairly similar

analysis, one can check that

σmin = min
u∈[ud,ug ]

f(u) − f(ug)

u − ug
.

This proves (10). The property (11) is established exactly in the same way. �

As a consequence of Lemma 1, we obtain that a (composite) wave w(.; ug, ud)
has a nonnegative speed if and only if

min
u∈I(ug,ud)

f(u) − f(ug)

u − ug
≥ 0
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f(u)

u

ug

ud

f(u)

u

ud

ug

Figure 1: ug < ud and the left subwave is a shock (a) or a rarefaction (b)

f(u)

u

ud

ug

f(u)

u

ud

ug

Figure 2: ug > ud and the left subwave is a shock (a) or a rarefaction (b)

and a nonpositive speed if and only if

max
u∈I(ug,ud)

f(u) − f(ud)

u − ud
≤ 0.

In other words, we get





w(0−; ug, ud) = ug ⇐⇒ min
u∈I(ug,ud)

f(u) − f(ug)

u − ug
≥ 0,

w(0+; ug, ud) = ud ⇐⇒ max
u∈I(ug,ud)

f(u) − f(ud)

u − ud
≤ 0.

(14)

Now, given a state u0, we look for the set E+(u0) (resp. E−(u0)) of all
states u 6= u0 which can be connected to u0 on the left (resp. on the right)
by a nontrivial (composite) wave w(·; u, u0) (resp. w(·; u0, u)) whose speed is
nonnegative (resp. nonpositive). The above results yield

Lemma 2 We have

E+(u0) =

{
u 6= u0; min

v∈I(u0,u)

f(v) − f(u)

v − u
≥ 0

}
(15)

and

E−(u0) =

{
u 6= u0; max

v∈I(u0,u)

f(v) − f(u)

v − u
≤ 0

}
. (16)
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It remains to give a geometric characterization of the conditions (15) and
(16). This is easily done when the flux function f is either monotone or strictly
convex.

Example 2.1. the case of a monotone flux function. If the function f is strictly
increasing so that

f(v) − f(u)

v − u
> 0 for all v 6= u,

we obtain
E+(u0) = R \ {u0} , E−(u0) = ∅

while if the function f is strictly decreasing, we find

E+(u0) = ∅, E−(u0) = R \ {u0} . �

Example 2.2. the case of a strictly convex flux function. When the function f is
strictly convex, we denote by ū the sonic state of f characterized by f ′(ū) = 0
with the convention that ū = −∞ (resp. ū = +∞) if the function f is strictly
increasing (resp. strictly decreasing). With the state u0, we associate the state
ũ0 defined by





f(ũ0) = f(u0), ũ0 6= u0 if ū exists,

ũ0 = ū = −∞ if f is strictly increasing,

ũ0 = ū = +∞ if f is strictly decreasing.

(17)

Lemma 3 Assume that the function f is strictly convex. Then

E+(u0) = {u 6= u0; u ≥ max(ū, ũ0)} (18)

and
E−(u0) = {u 6= u0; u ≤ min(ū, ũ0)} . (19)

Proof. Let us check for instance the property (18). Given u ∈ R, we define the
function g by

g(v) =
f(v) − f(u)

v − u
, v 6= u, g(u) = f ′(u).

Since

g′(v) =
f(u) − f(v) + f ′(v)(v − u)

(v − u)2

and by the strict convexity of f

f(u) − f(v) + f ′(v)(v − u) > 0, v 6= u,

this function g is strictly increasing. Hence we obtain

min
v∈I(u0,u)

g(v) =






g(u0) =
f(u0) − f(u)

u0 − u
if u0 < u

g(u) = f ′(u) if u0 > u

7



u

f(u)

u0

f(u)

u

u0

Figure 3: In bold-face, the sets E−(u0) (a) and E+(u0) (b), u0 being excluded
in both cases, and the other circle points being included

so that

min
v∈I(u0,u)

g(v) ≥ 0 ⇐⇒






f(u) ≥ f(u0) if u0 < u

f ′(u) ≥ 0 if u0 > u.

Now the condition f(u) ≥ f(u0) for u0 < u holds trivially if u0 ≥ ū but means
u ≥ ũ0 if u0 ≤ ū. On the other hand, the condition f ′(u) ≥ 0 means u ≥ ū.
The property (18) is then proved. �

In the above examples, E±(u0) is an interval or the whole real line, the state
u0 being excluded. In the case of a general flux function, E±(u0) consists of an
interval or a union of disjoint intervals (cf. Fig. 3).

We next give another useful characterization of the sets E±(u0)

Lemma 4 We have

E+(u0) = {u = w(0−; y, u0), y ∈ R; u 6= u0} (20)

and
E−(u0) = {u = w(0+; u0, y), y ∈ R; u 6= u0} . (21)

Proof. Let u = w(0−; y, u0) 6= u0 for some y ∈ R. Then, u is connected to u0

by a wave w(·; u, u0) whose speed is nonnegative, i.e., u ∈ E+(u0). Conversely,
if u ∈ E+(u0), then u = w(0−; u, u0) 6= u0 which proves (20). The property (21)
is established in a similar way. �

In the sequel, we will make use of the following sets:




F+(u0) = {u = w(0+; y, u0), y ∈ R; u 6= u0}

F−(u0) = {u = w(0−; u0, y), y ∈ R; u 6= u0} .
(22)

that we now characterize.

Lemma 5 We have

F+(u0) =

{
u 6= u0;

f(v) − f(u)

v − u
> 0 ∀v ∈ I(u, u0), v 6= u

}
. (23)

and

F−(u0) =

{
u 6= u0;

f(v) − f(u)

v − u
< 0 ∀v ∈ I(u, u0), v 6= u

}
. (24)
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x

t

0

y u0

wL
(.;

y, u−
)

uu
−

w
R (.;u, u

0 )

Figure 4: u ∈ F+(u0), i.e. u = w(0+; y, u0), y ∈ R.

Proof. Let us check (23). We first prove

F+(u0) =
{
u ∈ E+(u0); w(0−; u, u0) = w(0+; u, u0)

}
.

Indeed, let u ∈ F+(u0); clearly u is connected to u0 on the left by a wave whose
speed is nonnegative (cf. Fig. 4) so that u ∈ E+(u0). In addition, we have

u = w(0−; u, u0) = w(0+; u, u0). (25)

Conversely, if u ∈ E+(u0) satisfies (25), u belongs obviously to F+(u0). We
next show that u ∈ E+(u0) satisfies (25) if and only if

f(v) − f(u)

v − u
> 0 ∀v ∈ I(u, u0), v 6= u.

Observe that the equality w(0−; u, u0) = w(0+; u, u0) holds if and only if the left
subwave of w(·; u, u0) is not a stationary shock. Since u ∈ E+(u0), we already
know from Lemma 2 that (15) holds and therefore

f ′(u) ≥ 0,
f(u) − f(u0)

u − u0
≥ 0.

Then, if we assume u > u0, it is clear geometrically (cf. Fig. 5) that we must
have

f(v) < f(u) ∀v ∈ [u0, u).

Indeed, we have a stationary shock if and only if it exists a state u1 ∈ [u0, u)
such that f(u) = f(u1). Hence, there does not exist such a stationary shock if
and only if

f(v) − f(u)

v − u
> 0 ∀v ∈ [u0, u).

Similarly, for u < u0, a stationary shock does not exist if and only if

f(v) < f(u) ∀v ∈ (u, u0]

or equivalently
f(v) − f(u)

v − u
> 0 ∀v ∈ (u, u0].

This proves (23). The characterization (24) of F−(u0) is obtained analogously.
�
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u

f(u)

u

u0

Figure 5: In bold-face, the set F+(u0), u0 being excluded, and the other circle
points being included (note the difference with respect to Fig. 3b). Here u ∈
F+(u0).

Example 2.1. (contd.) If the flux function f is strictly increasing, we have

F+(u0) = E+(u0) = R \ {u0} , F−(u0) = E−(u0) = ∅

while for a strictly decreasing function f

F+(u0) = E+(u0) = ∅, F−(u0) = E−(u0) = R \ {u0} . �

Example 2.2. (contd.) Here we can state

Lemma 6 Assume that the function f is strictly convex. Then

F+(u0) = {u 6= u0; u ≥ max(ū, ũ0), u 6= ũ0} (26)

and
F−(u0) = {u 6= u0; u ≤ min(ū, ũ0), u 6= ũ0} . (27)

Proof. We check for instance the property (26). It follows from (20) that we
have to restrict ourselves to the states u ≥ max(ū, ũ0). Assume first u ≥ ū so
that ū ≥ ũ0. Then, we observe that, for u ≥ ū, we have indeed

f(v) − f(u)

v − u
> 0 ∀v ∈ I(u0, u), v 6= u

and thus u ∈ F−(u0). Consider next the case ū ≥ u0 for which ũ0 ≥ ū. For
u ≥ ũ0, we obtain

f(v) − f(u)

v − u
> 0 ∀v ∈ [u0, u)

if and only if u > ũ0 (cf. Fig. 6) which proves (26). �

Now, let θ ∈ C1(R) be a strictly monotone function; only for the sake of
convenience, we will assume that θ satisfies θ′ > 0 and maps R onto itself. We
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u0 ũ0

ū

f(u)

u

Figure 6: In bold-face, the set F+(u0), ũ0 being excluded.

set f̃(v) = f(θ(v)) and we denote by z(x
t ; vg, vd) the solution of the Riemann

problem expressed in the variable v = θ−1(u), i.e.,

z(
x

t
; vg, vd) = θ−1(w(

x

t
; θ(vg), θ(vd)).

With a given state v0 we associate the sets of states





Ẽ+(v0) = {v = z(0−; y, v0), y ∈ R; v 6= v0}

F̃+(v0) = {v = z(0+; y, v0), y ∈ R; v 6= v0}

(28)

and 




Ẽ−(v0) = {v = z(0+; v0, y), y ∈ R; v 6= v0}

F̃−(v0) = {v = z(0−; v0, y), y ∈ R; v 6= v0} .

(29)

Using Lemmas 2 and 5, we have





Ẽ+(v0) =

{
v 6= v0; min

w∈I(v0,v)

f̃(w) − f̃(v)

w − v
≥ 0

}

F̃+(v0) =

{
v 6= v0;

f̃(w) − f̃(v)

w − v
> 0 ∀w ∈ I(v0, v), w 6= v

} (30)

and




Ẽ−(v0) =

{
v 6= v0; max

w∈I(v0,v)

f̃(w) − f̃(v)

w − v
≤ 0

}

F̃−(v0) =

{
v 6= v0;

f̃(w) − f̃(v)

w − v
< 0 ∀w ∈ I(v0, v), w 6= v

}
.

(31)
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Example 2.1. (contd.) If the function f is strictly increasing, we have

Ẽ+(v0) = F̃+(v0) = R \ {v0} , Ẽ−(v0) = F̃−(v0) = ∅

while if f is strictly decreasing

Ẽ+(v0) = F̃+(v0) = ∅, Ẽ−(v0) = F̃−(v0) = R \ {v0} . �

Example 2.2. (contd.) When the function f is strictly convex, we denote by
v̄ = θ−1(ū) the sonic state of f̃ . Given a state v0, we set u0 = θ(v0) and
ṽ0 = θ−1(ũ0). Then we obtain

Ẽ+(v0) = {v 6= v0; v ≥ max(v̄, ṽ0)} , F̃+(v0) =
{

v ∈ Ẽ+(v0); v 6= ṽ0

}

and

Ẽ−(v0) = {v 6= v0; v ≤ min(v̄, ṽ0)} , F̃−(v0) =
{
v ∈ Ẽ−(v0); v 6= ṽ0

}
. �

2.2 v-continuous solutions.

Let us now look for all possible self-similar solutions u = u(x
t ) of the coupled

Riemann problem. Again, for convenience, we assume that both functions θL

and θR are strictly increasing and map R onto itself. We begin with those self-
similar solutions which are v-continuous at the interface (in the strong sense),
i.e., which satisfy

v(0−) = v(0+) = v(0) (32)

where v is defined from u as in (6), or equivalently which satisfy the constraint

v(0) ∈
(
{vg} ∪ F̃−

L (vg)
)
∩

(
{vd} ∪ F̃+

R (vd)
)

. (33)

Hence, besides the trivial solution corresponding to v(0) = vg = vd
2, we obtain

three types of v-continuous solutions.

(i) The first type of v-continuous solution. If

v(0) = vd ∈ F̃−

L (vg),

the solution of the coupled Riemann problem coincides with the solution zL(·; vg, vd)
of the L-Riemann problem: it consists of a (composite) L-wave whose speed is
nonpositive. Such a solution is characterized by

f̃L(v) − f̃L(vd)

v − vd
< 0 ∀v ∈ I(vg, vd), v 6= vd.

(ii) The second type of v-continuous solution. If

v(0) = vg ∈ F̃+
R (vd),

2which is excluded since, once for all, we have supposed vg 6= vd.
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the solution of the coupled Riemann problem coincides with the solution zR(·; vg, vd)
of the R-Riemann problem: it consists of a (composite) R-wave whose speed is
nonnegative. Such a solution is characterized by

f̃R(v) − f̃R(vg)

v − vg
> 0 ∀v ∈ I(vg, vd), v 6= vg.

(iii) The third type of v-continuous solution. The general case is indeed
obtained by choosing

v(0) ∈ F̃−

L (vg) ∩ F̃+
R (vd)

Obviously, this requires the condition

F̃−

L (vg) ∩ F̃+
R (vd) 6= ∅.

Then a solution of the coupled Riemann problem coincides with zL(·; vg, v(0))
in the domain (x < 0, t > 0) and with zR(·; v(0), vd) in the domain (x >, t > 0).
It consists of two (composite) waves: a L-wave whose speed is nonpositive and
a R-wave whose speed is nonnegative. Such a solution is characterized by the
conditions





f̃L(v) − f̃L(v(0))

v − v(0)
< 0 ∀v ∈ I(vg, v(0)), v 6= v(0)

f̃R(v) − f̃R(v(0))

v − v(0)
> 0 ∀v ∈ I(v(0), vd), v 6= v(0).

We thus find a one-parameter family of solutions depending on the parameter
v(0) ∈ F̃−

L (vg) ∩ F̃−

R (vd).

Let us notice that a solution of type (i) or type (ii) is that of a classical L
or R-Riemann problem and may be viewed as a quasi trivial solution of this
coupling problem.

We now apply these results to the case where both flux functions fL and fR

are either strictly monotone or strictly convex.

Example 2.3. The case of strictly monotone flux functions.
(a) Suppose first that the functions fL and fR are strictly decreasing so that

F̃−

L (vg) = R \ {vg} , F̃+
R (vd) = ∅.

Then, clearly the solution of type (i) alone is admissible.
(b) Similarly, if the functions fL and fR are strictly increasing so that

F̃−

L (vg) = ∅, F̃+
R (vd) = R \ {vd} ,

the solution of type (ii) alone is admissible.
(c) Suppose next that fL is strictly increasing and fR is strictly decreasing.

We have F̃−

L (vg) = F̃+
R (vd) = ∅. Then, none of the existence conditions of

a v-continuous solution holds: there does not exist any v-continuous solution
of the coupled Riemann problem (except the trivial solution corresponding to

13



v(0) = vg = vd).
(d) If fL is strictly decreasing and fR is strictly increasing , we have

F̃−

L (vg) = R \ {vg} , F̃+
R (vd) = R \ {vd} .

Hence any above condition of existence of a v-continuous solution holds: there
exists a one-parameter family of solutions of type (iii) depending on the param-
eter v(0) ∈ R. Clearly this family contains the solution of type (i) and that
of type (ii). Hence the coupled Riemann problem has an infinite number of v-
continuous solutions and it is enough to specify v(0) for determining the unique
corresponding solution.

Example 2.4. The case of strictly convex flux functions with sonic states.
Here we assume that fα, α = L, R, is a strictly convex function and possesses a
sonic state ūα. We set: v̄α = θ−1

α (ūα). With the pair (vg , vd), we associate the
pair (ṽg, ṽd) defined by





f̃L(ṽg) = f̃L(vg), ṽg 6= vg if vg 6= v̄L

ṽg = v̄L if vg = v̄L

,





f̃R(ṽd) = f̃R(vd), ṽd 6= vd if vd 6= v̄R

ṽd = v̄R if vd = v̄R.

Using the results of Example 2.2, we thus have

F̃−

L (vg) = {v 6= vg; v < min(v̄L, ṽg), v 6= ṽg}

F̃+
R (vd) = {v 6= vd; v > max(v̄R, ṽd), v 6= ṽd} .

(a) If

vd ∈ F̃−

L (vg) ⇔ vd ≤ min(v̄L, ṽg), vd 6= ṽg,

there exists a solution of type (i) (a L-wave) to the coupled Riemann problem.
This is the only solution of this kind.
(b) If

vg ∈ F̃+
R (vg) ⇔ vg ≥ max(v̄R, ṽd), vg 6= ṽd,

there exists a solution of type (ii) (a R-wave) to the coupled Riemann problem.
This is the only solution of this type.
(c) When

F̃−

L (vg) ∩ F̃+
R (vd) 6= ∅ ⇔ max(v̄R, ṽd) ≤ min(v̄L, ṽg),

we can construct a family of solutions of type (iii) (a L-wave followed by a R-
wave) depending on the parameter v(0) ∈ [max(v̄R, ṽd), min(v̄L, ṽg)]. They are
the only solutions of type (iii).

It is worthwile to notice that, given a pair (vg, vd), we may have v-continuous
solutions of several types. For instance, if

vd ≤ max(v̄R, ṽd) ≤ min(v̄L, ṽg)

solutions of types (i) and (iii) are valid.
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Figure 7: A v-discontinuous solution to the coupled Riemann problem

2.3 v-discontinuous solutions.

We next look for the self-similar solutions of the coupled Riemann problem
which are v-discontinuous at the interface x = 0. Setting

v− = v(0−), v+ = v(0+),

the coupling constraints (7) read here






v− ∈ ÕL(v+) ⇔ v− = zL(0−; v−, v+),

v+ ∈ ÕR(v−) ⇔ v+ = zR(0+; v−, v+).

Since we assume v− 6= v+, zL(·; v−, v+) and zR(·; v−, v+) are both non triv-
ial waves. The coupling constraints mean that zL(·; v−, v+) is a wave with a
nonnegative speed while zR(·; v−, v+) is a wave with a nonpositive speed.

On the other hand, any solution of the coupled Riemann problem consists
necessarily of a L-wave whose speed is nonpositive and a R-wave whose speed
is nonnegative. In other words, the wave zL(·; vg , v−) has a nonpositive speed
while zR(·; v+, vd) has a non negative speed (see Fig. 7).

Let us then state

Lemma 7 One of the two following situations holds:
(i) v− = vg ⇒ f̃ ′

L(vg) ≥ 0;

(ii) v− 6= vg ⇒ f̃ ′
L(v−) = 0 and the right subwave of zL(·; vg, v−) is a rarefaction.

In the case (ii), it is worthwile to notice that v− is a sonic state of the right
rarefaction subwave of zL(·; vg , v−).
Proof. We begin by proving the lemma when θL = id, i.e., when v = u is the
conservative variable. Since wL(·; u−, u+) has a nonnegative speed, we have

min
u∈I(u

−
,u+)

fL(u) − fL(u−)

u − u−

≥ 0

which implies f ′
L(u−) ≥ 0. If we assume u− = ug, we obtain f ′

L(ug) ≥ 0.
Assume next u− 6= ug. Then wL(·; ug, u−) has a nonpositive speed so that

max
u∈I(ug,u

−
)

fL(u) − fL(u−)

u − u−

≤ 0
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Figure 8: The first type of v-discontinuous solution : a stationary discontinuity.

which yields f ′
L(u−) ≤ 0. Hence we find f ′

L(u−) = 0. As a consequence, the
right subwave of wL(·; ug, u−) is either a rarefaction with u− as a sonic state or
a stationary shock. But, since wL(0−; ug, u−) = u−, a stationary shock is not
allowed. This proves the lemma when v = u.

Let us now turn to the general case of a nonconservative variable v. Since
f̃ ′

L(v) = f ′
L(θL(v))θ′L(v) and θ′L(v) > 0, the above properties (i) and (ii) become

respectively
v− = vg ⇒ f̃ ′

L(vg) ≥ 0

v− 6= vg ⇒ f̃ ′
L(v−) = 0

and the proof is complete. �

Similarly, one can state

Lemma 8 One of the two following situations holds:
(i) v+ = vd ⇒ f̃ ′

R(vd) ≤ 0;

(ii) v+ 6= vd ⇒ f̃ ′
R(v+) = 0 and the left subwave of zR(·; v+, vd) is a rarefaction.

As a consequence of Lemmas 7 and 8, we find that the self-similar v-discontinuous
solutions of the coupled Riemann problem are necessarily of the four following
types.

(i) The first type of v-discontinuous solution (see Fig. 8). It con-
sists of a stationary discontinuity with v− = vg and v+ = vd. Such a solution
exists if and only if we have

f̃ ′
L(vg) ≥ 0 ≥ f̃ ′

R(vd)

together with the coupling conditions which read here

min
v∈I(vg,vd)

f̃L(v) − f̃L(vg)

v − vg
≥ 0,

max
v∈I(vg,vd)

f̃R(v) − f̃R(vd)

v − vd
≤ 0.

(ii) The second type of v-discontinuous solution (see Fig. 9). It consists
of a L-wave whose right subwave is a rarefaction with v− as a sonic state followed
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Figure 9: The second type of v-discontinuous solution : a L-wave whose right
subwave is a rarefaction, followed by a stationary discontinuity.

by a stationary discontinuity with v+ = vd. Such a solution exists under the
following conditions. On the one hand, we have

f̃ ′
R(vd) ≤ 0

and there exists a sonic state v̄L of f̃L, v̄L 6= vg, such that

max
v∈I(vg,v̄L)

f̃L(v) − f̃L(v̄L)

v − v̄L
= f̃ ′

L(v̄L) = 0

and v− = v̄L. On the other hand, we require the associated coupling conditions

min
v∈I(v̄L,vd)

f̃L(v) − f̃L(v̄L)

v − v̄L
≥ 0,

max
v∈I(v̄L,vd)

f̃R(v) − f̃R(vd)

v − vd
≤ 0.

(iii) The third type of v-discontinuous solution (see Fig. 10). It consists
of a stationary discontinuity with v− = vg followed by a R-wave whose left
subwave is a rarefaction with v+ as a sonic state. This solution exists under the
following conditions. On the one hand, we have

f̃ ′
L(vg) ≥ 0

and there exists a sonic state v̄R of f̃R, v̄R 6= vd such that

min
v∈I(v̄R,vd)

f̃R(v) − f̃R(v̄R)

v − v̄R
= f̃ ′

R(v̄R) = 0

and v+ = v̄R. On the other hand, the associated coupling conditions read

min
v∈I(vg,v̄R)

f̃L(v) − f̃L(vg)

v − vg
≥ 0,

max
v∈I(vg,v̄R)

f̃R(v) − f̃R(v̄R)

v − v̄R
≤ 0.
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Figure 11: The fourth type of v-discontinuous solution : a L-wave whose right
subwave is a rarefaction, followed by a stationary discontinuity, itself followed
by a R-wave whose left subwave is a rarefaction.

(iv) The fourth type of v-discontinuous solution (see Fig. 11). It
consists of a L-wave whose right subwave is a rarefaction with v− as a sonic
state followed by a stationary discontinuity and a R-wave whose left subwave
is a rarefaction with v+ as a sonic state. For obtaining such a solution, the
following conditions hold: there exist sonic states v̄L 6= vg and v̄R) 6= vd of f̃L

and f̃R respectively such that

max
v∈I(vg,v̄L)

f̃L(v) − f̃L(v̄L)

v − v̄L
= f̃ ′

L(v̄L) = 0,

min
v∈I(v̄R,vd)

f̃R(v) − f̃R(v̄R)

v − v̄R
= f̃ ′

R(v̄R) = 0

and v− = v̄L, v+ = v̄R. In addition, we require the coupling conditions

min
v∈I(v̄L,v̄R)

f̃L(v) − f̃L(v̄L)

v − v̄L
≥ 0

and

max
v∈I(v̄L,v̄R)

f̃R(v) − f̃R(v̄R)

v − v̄R
≤ 0.

Again we apply the above results to the cases where both flux functions are
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either strictly monotone or strictly convex.

Example 2.3. The case of strictly monotone flux functions. (contd.)
(a) If the functions fL and fR are strictly decreasing, we have f̃ ′

L ≤ 0 and f̃ ′
R ≤ 0

and no v-discontinuous solution can exist. This is obvious for solutions of types
(i) and (iii). On the other hand, due to the coupling conditions, solutions of
types (ii) and (iv) are not admissible. For instance, in the case of a solution of
type (ii), the first coupling condition implies the existence of a sonic state v̄L

such that v̄L = vd, i.e., v− = v+ which is clearly excluded.
(b) If fL and fR are strictly increasing, a similar analysis shows again that there
cannot exist any v- discontinuous solution.
(c) If fL is strictly increasing and fR is strictly decreasing, only the v-discontinuous
solution of type (i), i.e., a stationary discontinuity, is admissible. Indeed, such a
solution is clearly admissible. On the other hand, a solution of type (ii) cannot
exist since the condition

max
v∈I(vg,v̄L)

f̃L(v) − f̃L(v̄L)

v − v̄L
= f̃ ′

L(v̄L) = 0

implies v̄L = vg and therefore v− = vg so that the L-wave does not exist. Using
similar arguments, one can check that the solutions of types (iii) and (iv) are
also excluded.
(d) If fL is strictly decreasing and fR is strictly increasing, no v-discontinuous
solution may exist since the coupling conditions are never satisfied.

To summarize, a v-discontinuous solution exists only when fL is strictly in-
creasing and fR is strictly decreasing . This is a stationary discontinuity. �

Example 2.4.(contd.) Consider again the case where both flux functions fL

and fR are strictly convex and possess sonic states ūL and ūR respectively.
Since, for α = L, R, the function θα is assumed to satisfy θ′α > 0, the function
f̃α has a unique sonic state v̄α = θ−1

α (ūα) and is strictly decreasing in (−∞, v̄α)
(resp. strictly increasing in (v̄α, +∞)). We introduce again the states ṽg and ṽd

defined above. Note that, in this strictly convex case, the sonic state v̄L 6= vg

of f̃L satisfies the condition

max
v∈I(vg,v̄L)

f̃L(v) − f̃L(vg)

v − vg
= f̃ ′

L(v̄L) = 0

if and only if vg < v̄L or equivalently f̃ ′
L(vg) < 0. Similarly, the sonic state

v̄R 6= vd of f̃R satisfies the condition

min
v∈I(v̄R,vd)

f̃R(v) − f̃R(vd)

v − vd
= f̃ ′

R(v̄R) = 0

if and only if vd > v̄R or equivalently f̃ ′
R(vd) > 0.

On the other hand, for va = vg ≥ v̄L or va = v̄L, a coupling condition of the
form

min
I(va,vb)

f̃L(v) − f̃L(va)

v − va
≥ 0
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holds if and only if vb ≥ ṽa where

ṽa =

{
ṽg if va = vg

v̄L if va = v̄L.

Similarly, for vb = vd ≤ v̄R or vb = v̄R, a coupling condition of the form

max
I(va,vb)

f̃R(v) − f̃R(vb)

v − vb
≤ 0

holds if and only if va ≤ ṽb where

ṽb =

{
ṽd if vb = vd

v̄R if vb = v̄R.

Then, it is an easy matter to check that a v-discontinuous solution exists in the
following situations.
(a) If

v̄L ≤ vg ≤ ṽd, ṽg ≤ vd ≤ v̄R,

we obtain a v-discontinuous solution of type (i), i.e., a stationary discontinuity.
(b) If

vg < v̄L < vd ≤ v̄R,

we find a v-discontinuous solution of type (ii), i.e., a L-wave followed by a
stationary discontinuity.
(c) If

v̄L ≤ vg < v̄R < vd,

we obtain a v-discontinuous solution of type (iii), i.e., a stationary discontinuity
followed by a R-wave.
(d) If

vg < v̄L < v̄R < vd,

we find a v-discontinuous solution of type (iv), i.e., a L-wave followed by a
stationary discontinuity and a R-wave.
Note that each case (i)-(iv) is disclosed from the others and each v-discontinuous
solution is uniquely defined. �

2.4 Solution of the coupled Riemann problem.

We are now able to solve the coupled Riemann problem for all pair (ug, ud) or
(vg, vd). We begin with the cases where the flux functions fα, α = L, R, are
either strictly monotone or strictly convex.

Example 2.3.(contd.) We first assume that fα, α = L, R is a strictly mono-
tone function. Combining the above results, we obtain the following conclusions.
(a) The functions fL and fR are strictly decreasing. The solution is v-continuous:
it is a L-wave.
(b) The functions fL and fR are strictly increasing. The solution is v-continuous:
it is a R-wave.
(c) The function fL is strictly increasing and the function fR strictly decreasing.
The solution is v- discontinuous: it is a stationary discontinuity.
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(d) The function fL is strictly decreasing and the function fR is strictly increas-
ing. The solutions are v- continuous and form a one-parameter family depending
on thre parameter v(0) ∈ R. For v(0) 6= vg, vd, we obtain a L-wave followed by
a R-wave. For v(0) = vd, we obtain a L-wave while, for v(0) = vg, we get a
R-wave.

To summarize, in this case, the coupled Riemann problem has always a so-
lution. This solution is unique except in the subcase (d). Note that, as in [19],
one could have obtained directly the above results by using a method of char-
acteristics.

Example 2.4.(contd.) Assume now that the flux functions fL and fR are strictly
convex and possess sonic states ūL and ūR respectively.Let us check that the
coupled Riemann problem has at least one solution. First of all, we already
know from the results of section 2.1.2 that a v- continuous solution exists in the
following cases.
(a) For vd ≤ min(v̄L, ṽg), vd 6= ṽg, the solution is a L-wave.
(b) For vg ≥ max(v̄R, ṽd), vg 6= ṽd, the solution is a R-wave.
(c) If max(v̄R, ṽd) ≤ min(v̄L, ṽg), we obtain a family of v-continuous solutions
consisting of a L-wave followed by a R-wave and depending on the parameter
v(0) ∈ [max(v̄R, ṽd), min(v̄L, ṽg)].

It remains to exhibit a v-discontinuous solution when a v- continuous one
does not exist, i.e., when the pair (vg, vd) satisfies the conditions





vd > min(v̄L, ṽg)
vg < max(v̄R, ṽd)
max(v̄R, ṽd) > min(v̄L, ṽg).

(34)

In fact, it is convenient to distinguish the following cases:

(vg ≥ v̄L, vd ≤ v̄R), (vg ≥ v̄L, vd > v̄R), (vg < v̄L, vd ≤ v̄R), (vg < v̄L, vd > v̄R).

(d) For (vg ≥ v̄L, vd ≤ v̄R), the conditions (34) become respectively

vd < ṽg, vg < ṽd, ṽd > ṽg.

This case is therefore characterized by

v̄L ≤ vg < ṽd, ṽg < vd ≤ v̄R.

Then, applying the results of section 2.1.3, we obtain that the solution of the
coupled Riemann problem is a stationary discontinuity.
(e) For (vg ≥ v̄L, vd > v̄R), the conditions (34) read

vd > ṽg, vg < v̄R, v̄R > ṽg

so that this case is characterized by

v̄L ≤ vg < v̄R < vd.

This implies that the solution is a L-wave followed by a stationary discontinuity.
(f) For (vg < v̄L, vd ≤ v̄R), (34) gives

vd > v̄L, vg < ṽR, ṽd > v̄L.
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This leads us to the characterization

vg < v̄L < vd ≤ v̄R

and we obtain a solution consisting of a stationary discontinuity followed by a
R-wave.
(g) For (vg < v̄L, vd > v̄R), the conditions (34) become

vd > v̄L, vg < v̄R, v̄R > v̄L

and therefore
vg < v̄L < v̄R < vd.

We find a solution consisting of a L-wave followed by a stationary discontinuity
and a R-wave.

Observe that, in each case (d)-(g), the conditions (34) are exactly the condi-
tions obtained in the previous section which ensure the existence and uniqueness
of a v-discontinuous solution. We thus have proved

Theorem 1 Assume that the functions fL and fR are strictly convex and pos-
sess sonic states. Then the coupled Riemann problem has at least one solution.
The solution is unique except in the case (c) where there exists a one-parameter
family of v-continuous solutions. �

We pass to the general case of arbitrary flux functions. The situation is not
as simple as in the above examples due to the possible presence of several sonic
states. The purpose of the remaining part of this section is to prove

Theorem 2 Assume that the flux functions fL and fR are C1 functions. Then
the coupled Riemann problem has at least one self-similar solution.

We know already that we can construct a v-continuous solution in the following
cases:

vd ∈ F̃−

L (vg), vg ∈ F̃+
R (vd), F̃−

L (vg) ∩ F̃+
R (vd) 6= ∅.

It remains to construct at least one v-discontinuous solution of the coupled
Riemann problem when

vd /∈ F̃−

L (vg), vg /∈ F̃+
R (vd), F̃−

L (vg) ∩ F̃+
R (vd) = ∅. (35)

We begin with the following remarks. The condition vd /∈ F̃−

L (vg) means that
zL(·; vg, vd) possesses a nontrivial subwave whose speed is nonnegative. Other-

wise, we would get zL(x
t ; vg, vd) = vd for all x ≥ 0 and therefore vd ∈ F̃−

L (vg).
Hence, we have

vL(0−)
def
= zL(0−; vg, vd) 6= vd.

Similarly, the condition vg /∈ F̃+
R (vd) means that zR(·; vg, vd) possesses a non-

trivial subwave whose speed is nonpositive so that

vR(0+)
def
= zR(0+; vg, vd) 6= vg.

Note that the hypotheses (35) imply vL(0−) 6= vR(0+). Otherwise the function

z(
x

t
; vg, vd) =






zL(x
t ; vg, vL(0−)), x

t < 0

zR(x
t ; vR(0+), vd),

x
t > 0
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would be a v-continuous solution of the coupled Riemann problem. On the
other hand, we have either vL(0−) = vg (resp. vR(0+) = vd) or vL(0−) (resp.

vR(0+)) is a sonic state of f̃L (resp. f̃R). Hence, it appears fairly natural to
consider the function

z(
x

t
; vg, vd) =





zL(
x

t
; vg, vd), x < 0

zR(
x

t
; vg, vd), x > 0

(36)

as a possible solution of the coupled Riemann problem. Indeed, we can state

Lemma 9 Assume the hypotheses (35) together with





vL(0−) < vR(0+) if vg < vd

vL(0−) > vR(0+) if vg > vd.
(37)

Then (36) is a solution of the coupled Riemann problem.

Proof. We have only to check the coupling conditions which read here

min
v∈I(vL(0

−
),vR(0+))

f̃L(v) − f̃L(vL(0−))

v − vL(0−)
≥ 0

and

max
v∈I(vL(0

−
),vR(0+))

f̃R(v) − f̃R(vR(0+))

v − vR(0+)
≥ 0.

Assume for instance vd > vg. Since, in that case, zL(·; vg, vd) and zR(·; vg, vd)
are monotonically increasing functions, we have by (37)

vg ≤ vL(0−) < vR(0+) ≤ vd.

Now, we observe that zL(·; vL(0−), vd) has a nonnegative speed, i.e.,

min
v∈I(vL(0

−
),vd)

f̃L(v) − f̃L(vL(0−))

v − vL(0−)
≥ 0

which implies the first coupling condition. On the other hand, zR(·; vg, vR(0+))
has a nonpositive speed, i.e.,

max
v∈I(vg,vR(0+)

f̃R(v) − f̃R(vR(0+))

v − vR(0+)
≤ 0

which yields the second coupling condition. The case vg > vd is analyzed in the
same way. �

Note that the proof of the above lemma only uses the first two hypotheses
(35). Observe that this proof fails if the conditions (37) do not hold. It remains
to construct a solution of the coupled Riemann problem when either

vg < vd and vL(0−) > vR(0+) (38)
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or
vg > vd and vL(0−) < vR(0+). (39)

Assume first (38). Let us then check that there exists at least one sonic state
of f̃L in [vg, vR(0+)]. It is here convenient to work with the conservative variable
u : setting ug = θL(vg), uR(0+) = θL(vR(0+)), we introduce the lower convex
envelope of fL in the interval [ug, uR(0+)]. This envelope function cannot be
strictly decreasing. Otherwise, wL(·; ug, uR(0+)) and therefore zL(·; vg, vR(0+)),
would be a wave whose speed is negative. One then could exhibit a v-continuous
solution of the coupled Riemann problem, namely

z(
x

t
; vg, vd) =





zL(
x

t
; vg, vR(0+)),

x

t
< 0

zR(
x

t
; vR(0+), vd),

x

t
> 0.

Hence the above envelope function has either a unique minimum which is a sonic
state of fL or an interval of minima which contains such sonic states (at least
the end points of this interval). Denote by ū− the smallest of all sonic states
of both fL and its lower convex envelope in [ug, uR(0+)]. Then, v̄− = θ−1

L (ū−)

is a sonic state of f̃L in [vg, vR(0+)]. In the same way, there exists at least one
sonic state of both fR and its lower convex envelope in the interval [uL(0−), ud]
and we denote by ū+ the largest of all such sonic states. Then, v̄+ = θ−1

R (ū+)

is a sonic state of f̃R in [vL(0−), vd]. Now, it appears natural to consider the
functions

z(
x

t
; vg, vd) =





zL(
x

t
; vg, v̄−),

x

t
< 0

zR(
x

t
; vR(0+), vd),

x

t
> 0

(40)

and

z(
x

t
; vg, vd) =






zL(
x

t
; vg, vL(0−)),

x

t
< 0

zR(
x

t
; v̄+, vd),

x

t
> 0

(41)

as possible candidates to the solution of the coupled Rieman problem. In fact,
we can state

Lemma 10 Assume the hypotheses (35) and (38). Then (40) and (41) are
solutions of the coupled Riemann problem.

Proof. Let us show that (40) is indeed solution. Again, we have to check the
associated coupling conditions

v̄− = zL(0−; v̄−, vR(0+)) ⇔ ū− = wL(0−; ū−, uR(0+))

and

vR(0+) = zR(0+; v̄−, vR(0+)) ⇔ uR(0+) = wR(0+; ū−, uR(0+)).

The first coupling condition holds since, by construction, wL(·; ū−, uR(0+)) is a
monotonically increasing function in [ū−, uR(0+)] and the corresponding wave
has a nonnegative speed. Consider next the second coupling condition. We
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−
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−

ū+
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Figure 12: A typical example where vd /∈ F̃−

L (vg), vg /∈ F̃+
R (vd), F̃−

L (vg) ∩

F̃+
R (vd) = ∅.

know that the lower convex envelope of fR in [ug, ud] is a monotonically de-
creasing function in the interval [ug, uR(0+)] and is strictly convex in an in-
terval [uR(0+), uR(0+) + ε], ε > 0 small enough (cf. Fig. 12). Then, as
ug < ū− < uR(0+), it is clear geometrically that the lower convex envelope
of fR in the interval [ū−, uR(0+)] is a monotonically decreasing function so that
uR(0+) = wR(0+; ū−, uR(0+)) and our assertion is proved.
By using similar arguments, one can prove that (41) is also solution. �

Remark. At first glance it would seem natural to consider the function

z(
x

t
; vg, vd) =





zL(
x

t
; vg, v̄−),

x

t
< 0

zR(
x

t
; v̄+, vd),

x

t
> 0

as a possible solution of the coupled Riemann problem. However, this is not
true since one can easily check that the coupling conditions

v̄− = zL(0−; v̄−, v̄+), v̄+ = zR(0+; v̄−, v̄+)

are not satisfied in general (cf. Fig. 12). �

We can also state the analogue of Lemma 10 whose proof follows the same
lines as above.

Lemma 11 Assume the hypotheses (35) and (39). Then the coupled Riemann
problem has at least two v-discontinuous solutions.

Theorem 3 is now an obvious consequence of Lemmas 10 and 11.
A natural question now arises: when the coupled Riemann problem posesses

several solutions, does there exist any “reasonable” criterion based on entropy
or stability arguments for choosing the “right solution”? As a first step in this
direction, we conjecture that, if a v-continuous solution exists, the eventual
v-discontinuous solutions should be considered as parasitic ones.
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2.5 The coupled Riemann problem for two conservation

laws “with phase change”.

One can extend the above results to the case where the flux functions fα, α =
L, R, are only piecewise C1. For simplicity, we will restrict ourselves in this
section to continuous functions fα which satisfy the following properties:
(i) fα is a C1 strictly increasing function in the intervals (−∞, aα) and (bα, +∞),
aα < bα;
(ii) fα is constant in the interval [aα, bα].
One can think of each flux function fα as modeling a diphasic behavior: the
states u < aα and u > bα correspond to different phases while the states u ∈
[aα, bα] correspond to a mixture of the two phases.

Again for simplicity, we will restrict ourselves to the u-coupling method. Be-
fore constructing the solution of the coupled Riemann problem, let us recall the
properties of the solution w(·; ug, ud) of the usual Riemann problem associated
with such a function f = fα

3. By introducing the lower convex envelope (resp.
the upper concave envelope) of f between the states ug and ud if ug < ud (resp.
ug > ud), it is a simple matter to check the following properties of w(·; ug, ud):
(i) the associated (composite) wave has a nonnegative speed;
(ii) the function x → w(x

t ; ug, ud) is continuous at x = 0 in the following cases





ug < a, ud ∈ R

ug = a, ud < a
ug > b, ud ∈ R

ug = b, ud > b;

(42)

(iii) the function x → w(x
t ; ug, ud) is discontinuous at x = 0 in the following

cases 




ug, ud ∈ [a, b]
ug ∈ [a, b), ud > b
ug ∈ (a, b], ud < a.

(43)

In the first case, w(·; ug, ud) consists of a stationary shock while, in the last two
cases, w(·; ug, ud) is a composite wave whose left subwave is a stationary shock.

Let us now consider the coupled Riemann problem. Instead of establishing
general results for piecewise C1 flux functions, it is here far simpler to use a
direct approach. Since the function fL is monotonically increasing, the solution
of the coupled Riemann problem cannot include a L-wave. Therefore a solution
consists of a possible stationary shock wave connecting ug and u+ and a R-wave
connecting u+ and ud.
Assume first ug = u+ so that the solution is continuous at the interface x = 0.
Then, using (42), we know that this is indeed the case if and only if the pair
(ug, ud) satisfies one of the following properties





ug < aR, ud ∈ R

ug = aR, ud < aR

ug > bR, ud ∈ R

ug = bR, ud > bR.

(44)

Assume next ug 6= u+. This occurs if and only if, on the one hand, the coupling
conditions hold and, on the other hand, wR(·; u+, ud) is either a trivial wave

3we drop the subscript α for simplicity.
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(i.e., ud = u+) or a wave whose speed is positive. Since the function fL is
monotonically increasing, the first coupling condition

min
u∈I(ug,u+)

fL(u) − fL(ug)

u − ug
≥ 0

holds trivially. The second coupling condition

max
u∈I(ug,u+)

fR(u) − fR(u+)

u − u+
≤ 0

means that the wave wR(·; ug, u+) has a nonpositive speed. Hence wR(·; ug, u+)
is necessarily a stationary shock or equivalently (cf. property (iii) above) we
have

ug, u+ ∈ [aR, bR].

If u+ = ud, we thus have an admissible stationary shock for the solution of the
coupled Riemann problem as soon as

ug, ud ∈ [aR, bR], ug 6= ud.

Consider next the case u+ 6= ud. For the speed of the wave wR(·; u+, ud) to be
positive, it follows from (42) that we must have either

u+ = aR, ud < aR

or
u+ = bR, ud > bR.

In both cases, one can easily check that the speed of the wave is indeed positive.
As a conclusion, we obtain that the coupled Riemann problem has a unique

solution. This solution is u-continuous at the interface x = 0 in the cases (44)
and is u-discontinuous otherwise, i.e., when either

ug, ud = u+ ∈ [aR, bR], ug 6= ud (45)

or {
ug ∈ (aR, bR], u+ = aR, ud < aR

ug ∈ [aR, bR), u+ = bR, ud > bR.
(46)

This result is easily extended to the case of a v-coupling method. It may be
viewed as a generalization of the results of Example 2.3 when both flux functions
fα are strictly increasing.

3 Numerical experiments

Our objective in this section is to illustrate numerically the theoretical results
we obtained in the previous sections. For that, the following configurations will
be considered :

• the case of two strictly monotone flux functions (example 2.3 above),

• the case of two strictly convex flux functions (example 2.4 above),
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• a particular configuration where two discontinuous and none continuous
(at the coupling interface) solutions are admissible,

• a particular configuration where several discontinuous solutions and con-
tinuous solutions exist,

• and the coupling of two conservation laws “with phase change”.

The situations leading to several admissible solutions (continuous or discontinu-
ous at interface) are of particular interest since different numerical schemes may
capture different solutions. We begin with a brief description of the proposed
numerical strategy and then present some numerical results.

3.1 Numerical strategy

We consider a finite volume approach. Let ∆x and ∆t denote the uniform
space and time steps and Cj+1/2 be the cells defined by Cj+1/2 = (xj , xj+1)
with xj = j∆x and whose centers are xj+1/2 = (j + 1/2)∆x for all j ∈ Z.
We set λ = ∆t/∆x and tn = n∆t for n ∈ N. The approximate solution is
assumed to be piecewise constant on each cell Cj+1/2 and at each time tn and
the corresponding value is denoted un

j+1/2.
To begin with, we set as usual

u0
j+1/2 =

1

∆x

∫

Cj+1/2

u0(x)dx, j ∈ Z,

where u0 denotes a given initial condition of the coupling problem.
Then, let Gα, α = L, R be two two-point numerical flux functions that we
assume to be consistant with fα, α = L, R. We propose the following update
formula for un+1

j+1/2 :

un+1
j−1/2 = un

j−1/2 − λ(Gn
L,j − Gn

L,j−1), j ≤ 0, n ≥ 0,

un+1
j+1/2 = un

j+1/2 − λ(Gn
R,j+1 − Gn

R,j), j ≥ 0, n ≥ 0,
(47)

with Gn
α,j = Gα(un

j−1/2, u
n
j+1/2) for j 6= 0. In other words, this consists in

a classical finite volume scheme outside of the interface, and only both fluxes
Gn

L,0 and Gn
R,0 remain to be precised in order to define the numerical coupling

procedure at the interface. Following the previous works [19], [18], [3] (see also
[4], [5]), we set

Gn
L,0 = GL(un

−1/2, θL(vn
1/2)),

Gn
R,0 = GR(θR(vn

−1/2), u
n
1/2),

(48)

where ghost states vn
±1/2 are obtained as

vn
−1/2 = θ−1

L (un
−1/2),

vn
1/2 = θ−1

R (un
1/2).

(49)

Note from now on that for convenience, we will restrict ourselves to the simple
case θL = θR = id, so that condition (5) reads u(t, 0−) = u(t, 0+) and the ghost
states at the interface are simply

vn
−1/2 = un

−1/2,

vn
1/2 = un

1/2.
(50)
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At last and as far as the numerical flux functions Gα, α = L, R are concerned,
we will consider the celebrated Godunov scheme :

Gα(u, v) =

{
minw∈[u,v] fα(w), u ≤ v,
maxw∈[v,u] fα(w), v < u,

(51)

and a relaxation scheme (see for instance [25]) defined by :

Gα(u, v) =
1

2

(
fα(u)+fα(v)

)
+

a(u, v)

2
(u−v) with a(u, v) = max

[min(u,v),max(u,v)]
|f ′|.

(52)

3.2 Numerical results

Let us now present the numerical tests and results.

Test 1. The case of strictly monotone flux functions.
As Riemann initial data, we take

u0(x) =

{
ug if x < 0,
ud if x > 0,

with ug = −2 and ud = 2 and we consider the following cases :

(a) fL(u) = −u and fR(u) = −2u : the unique solution is continuous at the
coupling interface.

(b) fL(u) = u and fR(u) = 2u : the unique solution is continuous at the
coupling interface.

(c) fL(u) = u and fR(u) = −2u : there is no continuous solution but a unique
discontinuous solution.

(d) fL(u) = −u and fR(u) = 2u : there is no discontinuous solution and a
continuum of continuous solutions.

Numerical results, obtained for both relaxation and Godunov approaches, are
presented on Fig.13. These results are in agreement with the above theoretical
results. Note that in the last case both numerical schemes capture the same
continuous solution.

Test 2. The case of strictly convex flux functions with sonic states.
We consider two different cases, according to the relative position of the sonic
points v̄L and v̄R.

Test 2.1. fL(u) = u2/2, fR(u) = (u − 1)2/2.
The sonic points are v̄L = 0 and v̄R = 1 and we consider the following four
Riemann problems :

(a) ug = −1 and ud = 2 : the unique solution is a discontinuous solution of the
fourth type (composite wave consisting of a L-wave, a discontinuity and a
R-wave).

(b) ug = 2 and ud = −1 : the unique solution is a discontinuous solution of the
first type.
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Figure 13: Monotone fluxes. 1000 pts. t = 0.2. ug = −2, ud = 2.

(c) ug = 0.5 and ud = −2 : the solutions are a continuous solution of the first
type and a discontinuous solution of the first type.

(d) ug = −1 and ud = −1.5 : the solutions are a continuous solution of the
first type and a discontinuous solution of the second type (that is not a
monotonous solution).

Numerical solutions are presented on Fig.14. We observe that both numerical
schemes select the continuous solutions when more are presents (cases (c) and
(d)).

Test 2.2. fL(u) = u2/2, fR(u) = (u + 1)2/2.
The sonic points are v̄L = 0 and v̄R = −1 and we consider the following four
Riemann problems. The numerical solutions are presented on Fig.15.

(a) ug = −0.6 and ud = −0.2 : the solutions are a continuous solution of the
first, second or third type, and a discontinuous solution of the fourth type.
Both numerical schemes capture the continuous solution of the third type,
here with two rarefaction waves connecting a constant state, that slightly
differs for both schemes.

(b) ug = −0.2 and ud = −0.6 : the solutions are a continuous solution of the
first, second or third type, and a discontinuous solution of the fourth type.
Both numerical schemes capture the continuous solution of the third type,
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(c) ug = 0.5, ud = −2
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(d) ug = −1, ud = −1.5

Figure 14: Convex fluxes. 1000 pts. t = 0.2

here with two shock waves connecting a constant state, that slightly differs
for both schemes.

(c) ug = 0.5 and ud = 1 : the solutions are a continuous solution of the sec-
ond type, and a discontinuous solution of the third type. Both numerical
schemes capture the unique continuous solution of the second type.

(d) ug = 1 and ud = −1.5 : the solutions are a continuous solution of the first,
second or third type, and a discontinuous solution of the first type. Both
numerical schemes capture the continuous solution of the second type.

Test 3. A particular configuration where only two discontinuous solutions are
admissible.

31



-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Relaxation
Godunov
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(c) ug = 0.5, ud = 1
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(d) ug = 1, ud = −1.5

Figure 15: Convex fluxes. 1000 pts. t = 0.2

The flux functions fL and fR are defined from the derivatives f ′
L and f ′

R given
by

f ′
L(u) = (u + 1)(u +

1

10
)(u − 1),

f ′
R(u) = −(u +

1

2
)(u −

2

5
)(u −

3

2
).

The sonic points are thus u−

L = −1, u0
L = −1/10 and u+

L = 1 for the left flux fL

and u−

R = −1/2, u0
R = 2/5 and u+

R = 3/2 for the right flux fR. The Riemann
initial data is such that ug = −1.25 and ud = 1.75. This configuration is such

that ug /∈ F̃+
R (ud), ud /∈ F̃−

L (ug). Moreover the set F̃−

L (ug) ∩ F̃+
R (ud) is empty

and therefore there is no continuous solution. Fig. 16 represents both fluxes
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and in bold-face the sets F̃+
R (ud) and F̃−

L (ug).
The proposed coupled Riemann problem admits only discontinuous solutions,

u

fL

fR

f(u)

ug
u
−

L u
−

R u
+
L u

+
R

ud

Figure 16: A case where ug /∈ F̃+
R (ud), ud /∈ F̃−

L (ug), and F̃+
R (ud)∩F̃−

L (ug) = ∅.

each one of the third type. More precisely, they are

(a) a L-wave (whose speed is nonpositive) connecting ug to u+
L , followed by a

R-wave (whose speed is nonnegative) connecting u+
R to ud,

(b) a L-wave (whose speed is nonpositive) connecting ug to u−

L , followed by a
R-wave (whose speed is nonnegative) connecting u−

R to ud.

Numerical solutions are presented on Fig. 17. We observe that the Godunov
scheme captures the solution (b), while the relaxation scheme captures the so-
lution (a).
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Figure 17: Multiple disc. solutions. 10000 pts. uL = −1.25, uR = 1.75, t = 1.5

Test 4. A particular configuration where several discontinuous solutions are
admissible, and continuous solutions also exist.
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Here again, both fluxes are obtained from the derivatives given by

f ′
L(u) = (u + 1)(u +

1

2
)(u − 1),

f ′
R(u) = −(u −

5

4
)(u −

3

4
)(u +

3

4
).

We take ug = −1.5 and ud = 1.75 so that ug /∈ F̃+
R (ud), ud /∈ F̃−

L (ug), but

the set F̃−

L (ug) ∩ F̃+
R (ud) is not empty. Fig. 18 represents both fluxes and in

bold-face the sets F̃+
R (ud) and F̃−

L (ug).
We can see that both numerical schemes capture the same continuous solution.

u

fL

fR

f(u)

ug
u
−

L u
−

R u
+
L u

+
R

udeF−
L

(vg) ∩ eF+
R

(vd)

Figure 18: A case where ug /∈ F̃+
R (ud), ud /∈ F̃−

L (ug), and F̃+
R (ud)∩F̃−

L (ug) 6= ∅.
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Figure 19: Multiple disc. solutions. 10000 pts. t = 0.5. uL = −1.5, uR = 1.75.

Test 5. The coupling of two conservation laws “with phase change”
The rest of this section is devoted to the coupling of two scalar conservation
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laws “with phase change”. We consider the following fluxes

fL(u) =





−
u2 − 1

2
, u < −1,

0, −1 ≤ u ≤ 1,
u2 − 1

2
, u > 1,

fR(u) = fL(u − 1/2)− 1,

that are represented on Fig. 20. The numerical solutions are shown on Fig.21

Figure 20: Scalar flux for the coupling “with phase change”.

for both relaxation and Godunov schemes and these match with the expected
theoretical results. They correspond to the solution for the right-problem, that
consists here in a shock transition wave connecting the left-state of the Riemann
problem to the point of C1-discontinuity (u = 3/2), a constant part and finally
a rarefaction wave to the right-state.
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Figure 21: Phase change. 1000 pts. uL = −1.5, uR = 2.0, t = 0.3.
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