
HAL Id: hal-00871729
https://hal.science/hal-00871729v1

Submitted on 10 Oct 2013 (v1), last revised 11 Oct 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SAT and Hybrid models of the Car-Sequencing problem
Christian Artigues, Eric Hébrard, Valentin Mayer-Eichberger, Mohamed Siala,

Toby Walsh

To cite this version:
Christian Artigues, Eric Hébrard, Valentin Mayer-Eichberger, Mohamed Siala, Toby Walsh. SAT
and Hybrid models of the Car-Sequencing problem. Third International Workshop on the Cross-
Fertilization Between CSP and SAT, in conjunction with CP 2013, Sep 2013, Uppsala, Sweden. �hal-
00871729v1�

https://hal.science/hal-00871729v1
https://hal.archives-ouvertes.fr

SAT and Hybrid models of the Car-Sequencing problem

Christian Artigues1,2, Emmanuel Hebrard1,2, Valentin Mayer-Eichberger3,4,
Mohamed Siala1,5, and Toby Walsh3,4

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

3 NICTA
4 University of New South Wales

5 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
{artigues, hebrard, siala}@laas.fr

{valentin.mayer-eichberger, toby.walsh}@nicta.com.au

Abstract. We improve the state of the art for solving car-sequencing problems
by combining together the strengths of SAT and CP. We compare both pure SAT
and hybrid CP/SAT models. Three features of these models are crucial to suc-
cess. For quickly finding solutions, advanced CP heuristics are important and
good propagation (either by a specialized propagator or by a sophisticated SAT
encoding that simulates one) is necessary. For proving infeasibility, clause learn-
ing in the SAT solver is critical.
Our models contain a number of other novelties. In our hybrid models, we de-
velop a novel linear time mechanism for explaining failure and pruning for the
ATMOSTSEQCARD constraint. In our SAT models, we describe powerful en-
codings for the same constraint. Our study demonstrates some of the potential
and complementarity of SAT and hybrid methods for solving complex constraint
models.

1 Introduction

In the car-sequencing problem [24], a set of vehicles has to be sequenced in an assembly
line. Each class of cars requires a set of options. However, the working station handling
a given option can only mount it on a fraction of the cars passing on the line. Each
option j is thus associated with a fractional number uj/qj standing for its capacity (at
most uj cars with option j occur in any sub-sequence of length qj). Several global con-
straints have been proposed in the Constraint Programming (CP) literature to model this
family of constraints (i.e. capacity constraints). Most recently, The ATMOSTSEQCARD
constraint [21] or its combination with the Global Sequencing Constraint (GSC) [19]
showed outstanding results compared to other CP models. However, based on experi-
ments, pure CP approaches suffer when the task becomes proving unsatisfiability. The
motivations over this paper comes then by exploiting Boolean-Satisfiability (SAT) as it
showed outstanding results in many applications.

We therefore propose several approaches combining ideas from SAT and CP for
solving the car-sequencing problem. First, we try to capture CP propagation into SAT by
a careful formulation of the problem into conjunctive normal form (CNF). We propose
a family of pure SAT encodings for this problem and relate them to existing encoding

techniques. To the best of our knowledge, these are the first non-trival CNF encodings
for the car-sequencing problem. They are based on extension of Sinz’s encoding for
the CARDINALITY constraint [22] and have similarities to the decomposition of the
GEN-SEQUENCE constraint given in [2]. Second, we introduce a linear time procedure
for computing compact explanations for the ATMOSTSEQCARD constraint. This algo-
rithm can be used in a hybrid CP/SAT approach such as SAT Modulo Theory, CDCL
Pseudo-Boolean, or lazy clauses generation solvers, where constraints that are not in
clausal form need a dedicated propagator and explanation algorithm. In principle, the
hybrid approach has access to all the advances from the SAT world, whilst benefiting
from constraint propagation and dedicated branching heuristics from CP. However, our
experiments reveal that in practice the tradeoff is more complex. Indeed, CDCL algo-
rithms are ever evolving. Therefore, without the best data structures and the most up to
date tuning of literal activity maintenance, clause deletion, nogood reduction, (amongst
other parameters) the hybrid approach is significantly outperformed on hard unsatisfi-
able instances.

Our evaluation also provides good empirical evidence for the three following ob-
servations: First, CP heuristics can be very useful to quickly find solutions. This was
expected, and in fact we were surprised about how robust the generic activity based
heuristic is. However, CP heuristics dedicated to the car-sequencing problem are much
faster. Second, propagation, either through finite domain propagators, or through unit
propagation via a “stronger” encoding, is extremely important to reliably find solu-
tions on the harder instances. Indeed a stronger propagation makes it less likely to enter
an unsatisfiable subproblem during search. In conjunction with this, restarting ensures
that these unlikely cases do not matter. Third, clause learning is clearly critical for
proving unsatisfiability. In that respect, the approaches that we introduce (especially
the SAT encodings) greatly improve the state of the art for the car-sequencing prob-
lem. Moreover, counter-intuitively, it does not seem that constraint propagation of the
ATMOSTSEQCARD constraint nor the “strength” of the SAT encoding, has a significant
impact on the ability of the solver to prove unsatisfiability.

The remainder of this paper is organized as follows. We give in Section 2 a short
background on CP, SAT and their hybridization. In Section 3, we recall state-of-art CP
models for this problem and show the connection with SAT. In Section 4, we show that,
based on the ATMOSTSEQCARD propagator, one can build a linear time explanation for
this constraint. Then, we present advanced SAT-encodings for this constraint in Section
5. Finally, we empirically evaluate, in Section 6, the approaches we introduce against
pure CP and a pseudo Boolean model.

2 Background

2.1 Constraint Programming

A constraint network is defined by a triplet P = (X ,D, C) where X is a set of vari-
ables, D is a mapping of variables to finite sets of values and C is a set of constraints
that specify allowed combinations of values for subsets of variables. We assume that
D(x) ⊂ Z for all x ∈ X . We denote x ← v the assignment of the value v to the
variable x, that is the restriction of its domain D(x) to {v}, similarly, we denote x 8 v

the pruning of the value v from D(x). A partial instantiation S is a set of assignments
and/or pruning such that no variable is assigned more than one value and no value is
pruned and assigned for the same variable. Let ⊥ be a failure or a domain wipe-out, by
convention equal to the set of all possible assignments and prunings. On finite domains
one should consider a closure of partial instantiations with respect to domains. That is,
if the assignment x← v belongs to S, we also assume that x 8 v for all v ∈ D(x) \ v
belong to S. Similarly, if all but one of the values are pruned, the remaining value is
added as an assignment. This is similar to expanded solutions in [14]. However, we
shall restrict ourselves to Boolean domains in this paper. We therefore have S ⊆ S′ iff
S′ is a stronger (tighter) partial instantiation than S.

A constraint C defines a relation Rel(C), that is, a set of instantations, over the
variables in Scope(C). It is generalized arc consistent (GAC) iff, for every value v of
every variable x in Scope(C), there exists a consistent instantiation S in Rel(C) such
that x ← v ∈ S. Conversely, we say that a constraint is dis-entailed with respect to a
partial instantiation S iff there is no t in Rel(C) such that S ⊆ t.

Throughout the paper we shall associate a constraint C to a propagator, that is, a
function mapping partial instantiations to partial instantiations or to the failure⊥. Given
a partial instantiation S we denote C(S) the partial instantiation (or failure) obtained by
applying the propagator associated to C on S, and we have S ⊆ C(S). We say that the
partial instantiation S implies the assignment or pruning p with respect to the constraint
C iff p 6∈ S & p ∈ C(S). Given an initial domain D and a partial instantiation S,
we can derive a current domain taking into account the pruning and assignments of S
in D. There will not be ambiguities about the original domains, therefore we simply
denote S(x) the domain D(x) updated by the assignment or pruning associated to x
in S. Moreover, we shall denote min(S(x)) (resp. max(S(x))) the minimum (resp.
maximum) value in S(x).

Finally, the level of an assignment or a pruning p is the order of appearance of the
assignment (respectively pruning) in the tree search, and we denote it lvl(p).

2.2 SAT-Solving

The Boolean Satisfiability problem (SAT) is a particular case of CSP where domains
are Boolean and constraints are only clauses (disjunction of literals). A SAT solver is
thus a program that computes a satisfying instantiation of a formula of propositional
logic in conjunctive normal form (CNF) or proves that no such instantiation exists. The
most widely used method to solve SAT problems is based on the DPLL algorithm ([8]),
which is a depth first search with backtracking using a special propagator for clauses.
Unit propagation (UP) prunes the assignment of the remaining literal in a clause when
all other literals have become false. An important improvement to the DPLL algorithms
goes under the name of Conflict-Driven Clause Learning (CDCL). These solvers record
for each conflict an appropriate reason in form of a clause, add it to the clause database
and can then potentially prune unseen parts of the search tree. Furthermore, SAT solvers
are equipped with robust domain-independent branching and decision heuristics (for
instance VSIDS [15]). For a comprehensive introduction to SAT solving in general and
its techniques we refer to [4].

Modelling in CNF is a crucial step for the success of solving problems with SAT.
A natural approach to find a good SAT model is to describe the problem with higher
level constraints and then translate these constraints to CNF. In accordance with this
methodology the representation of integer domains and encodings of a variety of global
constraints have been proposed and analyzed [2, 11, 26]. Similarly the notion of GAC
adapts to SAT. Unit propagation is said to maintain GAC on the CNF encoding of a
constraint if it forces all assignments to the variables representing domain values that
must be set to avoid unsatisfiability of the constraint. A quality measure for an encod-
ing in SAT is a good compromise between its size and its level of consistency by UP.
Moreover, it has to be taken into account that SAT solvers cannot distinguish between
variables representing domains and auxiliary variables to compactify the translation. So
when aiming for a good CNF encoding one has to ensure to relate auxiliary variables to
facilitate better propagation.

2.3 Hybrid SAT/CP

The notion of nogood learning in constraint programming is not new, in fact it pre-
dates [20] similar concepts in SAT. However, CDCL learns and uses nogoods in a par-
ticular way, and recently CDCL based methods have been reintroduced into CP. For
instance Katsirelos’s generalized nogoods [13] [14] enable this type of algorithms for
arbitrary domains. Moreover, propagation does not need to be restricted to unit propa-
gation. As in standard CP, a given constraint may be associated to a specific propagator.
However, to simulate the behavior of CDCL, it is necessary to explain either a fail-
ure or the pruning of a domain value. Lazy-clause generation [16] solvers add a clause
whenever pruning is performed in order to provide an explanation for the pruning.

In this paper we use a solver with a slightly different architecture, where constraints
are associated with a propagator and an explanation algorithm. However, as opposed
to explanation based constraint programming [6, 7], the explanations are used exactly
as in CDCL, i.e., literals are replaced by their explanation until the current nogood
contains a Unique Implication Point of the current level’s pruning. In this sense it is very
close to the way some Pseudo-Boolean CDCL solvers, such as PBS [1], PBChaff [9]
or SAT4JPseudo [3] integrate unit propagations on clauses, dedicated propagators and
explanations (cutting planes) for linear equations.

We say that a partial instantiation S is an explanation of the pruning x 8 v with
respect to a constraint C if it implies x 8 v (that is, x 8 v ∈ C(S) \ S). Moreover,
S is a valid explanation iff lvl(x 8 v) > max({lvl(p) | p ∈ S}). For instance, if C
is the clause p ∨ ¬q ∨ r, the only possible explanation for p 8 0 with respect to C is
{q ← 1, r ← 0}. Consider now the CARDINALITY constraint

∑n
i=1 xi = t such that

for all i, D(xi) = {0, 1}. Here is the characterisation of a propagator for this constraint:

CARDINALITY(S) =

⊥ if |{xj |S(xj) = {1}}| > t
⊥ if |{xj |S(xj) = {0}}| > n− t

S ∪ {xi ← 0 | S(xi) = {0, 1}} if |{xj |S(xj) = {1}}| = t
S ∪ {xi ← 1 | S(xi) = {0, 1}} if |{xj |S(xj) = {0}}| = n− t

S otherwise

(2.1)

Now, one can explain this constraint as follows:

– Explaining failure: if the failure was triggered by the first case, we already exceed
the required demand, hence the explanation would be {xj ← 1|S(xj) = {1}},
otherwise, it is impossible to meet the demand and the explanation would be {xj ←
0|S(xj) = {0}}.

– Explaining pruning: if the assignment xk ← 0 was triggered by the third case, we
are sure that we already met the demand, hence the explanation would be {xj ←
1|S(xj) = {1}}, otherwise, the assignment xk ← 1 would be explained by {xj ←
0|S(xj) = {0}}.

On Boolean domains, the hybrid SAT/CP approach we use works as follows:

Propagation: The propagation is performed by a standard CP engine, except that for
each pruned value we record the constraint responsible for this pruning (a simple pointer
to the constraint is stored). Both original and learned clauses are handled by a dedicated
propagator simulating the behavior of a clause base (i.e., using watched literals).

Learning: When a failure is raised, the CDCL standard conflict analysis algorithm is
used. The constraint C responsible for the failure is asked to provide an explanation for
this failure. The literals of this explanation form the base nogood Ng. Subsequently,
any assignment x ← v such that lvl(x← v) ≥ lvl(d) where d is the last decision, is
removed from Ng and replaced by its explanation by the constraint marked as respon-
sible for it. This process continues until Ng has a Unique Implication Point.

Search: Since a CP library (Mistral1) was used to implement this approach, it is possi-
ble to use hand made CP heuristics as well as built-in strategies such as VSIDS, back-
jumping and branching, however, is done as in CDCL algorithms.

3 The Car-Sequencing problem

3.1 Problem description

In the car-sequencing problem, n vehicles have to be produced on an assembly line.
There are c classes of vehicles and m types of options. Each class k ∈ {1, . . . , c} is
associated with a demand Dclass

k , that is, the number of occurrences of this class on
the assembly line, and a set of options Ok ⊆ {1, . . . ,m}. Each option is handled by
a working station able to process only a fraction of the vehicles passing on the line.
The capacity of an option j is defined by two integers uj and qj , such that no subse-
quence of size qj may contain more than uj vehicles requiring option j. A solution
of the problem is then a sequence of cars satisfying both demand and capacity con-
straints. For convenience, we shall also define, for each option j, the corresponding set
of classes of vehicles requiring this option Cj = {k | j ∈ Ok}, and the option’s demand
Dj =

∑
k∈Cj D

class
k .

1 https://github.com/ehebrard/Mistral-2.0

3.2 CP Modelling

As a standard CP Model, we use two sets of variables. The first set corresponds to n
integer variables {x1, . . . , xn} taking values in {1, . . . , c} and standing for the class of
vehicles in each slot of the assembly line. The second set of variables corresponds to
nm Boolean variables {o11, . . . , omn }, where oji stands for whether the vehicle in the ith

slot requires option j. For the constraints, we distinguish three sets :

1. Demand constraints : for each class k ∈ {1..c}, |{i | xi = k}| = Dclass
k . This

constraint is usually enforced with a Global Cardinality Constraint (GCC) [18] [17].
2. Capacity constraints : for each option j ∈ {1..m}, we post the constraint

ATMOSTSEQCARD(uj , qj , Dj , [o
j
1..o

j
n]) using the propagator introduced in [21].

3. Channelling : Finally, we channel integer and Boolean variables : ∀j ∈ {1, ...,m},∀i ∈
{1, ..., n}, oji = 1⇔ xi ∈ Cj

3.3 Default Pseudo-Boolean and SAT Models

The above CP Model can be easily translated into a pseudo Boolean model since the
majority of the constraints are sum expressions.

Variables:

– cji : ∀i ∈ [1..n], ∀j ∈ [1..c], cji is true iff the class of the ith vehicle is j.
– oji : ∀i ∈ [1..n], ∀j ∈ [1..m], oji is true iff the ith vehicle requires option j.

Constraints:

– First we have to ensure that at each position i, we have only one class of vehicles:
∀i ∈ [1..n],

∑
j c

j
i = 1

– Second, we link class variables with options:

• ∀i ∈ [1..n], ∀l ∈ [1..c], we have :

∗ ∀j ∈ Ol, cli ∨ oji
∗ ∀j /∈ Ol, cli ∨ oji

• For better propagation, we add the following redundant clause :
∀i ∈ [1..n], j ∈ [1..m], oji∨∨ l∈Cj c

l
i

– Demand constraints : ∀j ∈ [1..c],
∑

i c
j
i = Dj

– Capacity constraints :
∑i+qj−1

l=i ojl ≤ uj , ∀i ∈ {1, . . . , n− qj + 1}

A SAT Encoding for this problem could translate each sum constraint (in this case
only CARDINALITY constraints) into a CNF formula. We will show in Section 5 how
such a translation can be improved.

4 Explaining the ATMOSTSEQCARD constraint

We present here a propagation-based algorithm explaining the ATMOSTSEQCARD con-
straint. For that, we need to recall the corresponding propagator. Let [x1, x2..xn] be a
sequence of Boolean variables, u, q and d be integer variables. The ATMOSTSEQCARD
constraint is defined as follows :

Definition 1.

ATMOSTSEQCARD(u, q, d, [x1, . . . , xn])⇔
n−q∧
i=0

(

q∑
l=1

xi+l ≤ u) ∧ (

n∑
i=1

xi = d)

In [21], the authors proposed a O(n) filtering algorithm achieving AC on this con-
straint. We outline the main idea of the propagator.

Let X = [x1..xn] be a sequence of variables, and S a partial instantiation over
these variables. The procedure leftmost returns an instantiation −→w S ⊇ S of max-
imum cardinality by greedily assigning the value 1 from left to right while respecting
the ATMOST constraints. Let −→w i

S denote the partial instantiation −→w S at the beginning
of iteration i, and let −→w 1

S = S. The value maxS(i) denotes the maximum minimum
cardinality, with respect to the current domain −→w i

S , of the q subsequences involving xi.
It is computed alongside −→w S and will be useful to explain the subsequent pruning. It is
formally defined as follows (where min(−→w i

S(xk)) = 0 if k < 1 or k > n):

maxS(i) = max
j∈[1..q]

(

i+j−1∑
k=i−q+j

min(−→w i
S(xk)))

Definition 2. The outcome of the procedure leftmost can be recursively defined
using maxS: at each step i, leftmost adds the assignment xi ← 1 iff this assignment
is consistent with −→w i

S and maxS(i) < u, it adds the assignment xi ← 0 otherwise.

Example 1. For instance, consider the execution of the procedure leftmost on the
constraint ATMOSTSEQCARD(2, 4, 6, [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10]). We sup-
pose that we start from the partial instantiation {x2 ← 0, x6 ← 1, x8 ← 0}. Initially,
we have the following structures, for each i representing an iteration (and also the index
of a variable):

1 2 3 4 5 6 7 8 9 10
−→w 1

S(xi) {0, 1} 0 {0, 1} {0, 1} {0, 1} 1 {0, 1} 0 {0, 1} {0, 1}
−→w 2

S(xi) 1 0 {0, 1} {0, 1} {0, 1} 1 {0, 1} 0 {0, 1} {0, 1}
−→w 3

S(xi) 1 0 {0, 1} {0, 1} {0, 1} 1 {0, 1} 0 {0, 1} {0, 1}
−→w 4

S(xi) 1 0 1 {0, 1} {0, 1} 1 {0, 1} 0 {0, 1} {0, 1}
. . .

−→w 11
S (xi) 1 0 1 0 0 1 1 0 0 1

maxS(i) 0 1 1 2 2 1 1 2 2 1
The partial solution −→w 1

S is equal to S. Then at each step i, leftmost adds the as-
signment xi ← 1 or xi ← 0 according to Definition 2. For instance, at the begining of

step 4, the subsequences to consider are [x1, x2, x3, x4], [x2, x3, x4, x5], [x3, x4, x5, x6]
and [x4, x5, x6, x7], of cardinality 2, 1, 2 and 1, respectively, with respect to the instan-
tiation −→w 4

S(xi). The value of maxS(4) is therefore 2.

To detect failure, we simply need to run this procedure and check that the final
cardinality of−→w S is greater than or equal to the demand d, and we shall see that we can
explain pruning by using essentially the same procedure.

However, in order to express declaratively the full propagator, we need the following
further steps: The same procedure is applied on variables in reverse order [xn..x1],
yielding the instantiation ←−w S . Observe that the returned instantiations −→w S and ←−w S

assign every variable in the sequence to either 0 or 1. We denote respectively LS(i)
and RS(i) the sum of the values given by −→w S (resp.←−w S) to the i first variables (resp.
n− i+ 1 last variables). That is:

LS(i) =

i∑
k=1

min(−→w S(xk)) , RS(i) =

n∑
k=i

min(←−w S(xk))

Now we have all the tools to define the propagator associated to the constraint
ATMOSTSEQCARD described in [21], and which is a conjunction of GAC on the
ATMOST constraints on each subsequence, of CARDINALITY constraint

∑n
i=1 xi = d,

and of the following:

ATMOSTSEQCARD(S) =

S, if LS(n) > d
⊥, if LS(n) < d
S ∪ {xi ← 0 | S(xi) = {0, 1}

& LS(i) +RS(i) ≤ d}
∪ {xi ← 1 | S(xi) = {0, 1}

& LS(i− 1) +RS(i+ 1) < d} otherwise

(4.1)

If a failure/pruning is detected by the CARDINALITY or an ATMOST constraint,
then it is easy to give an explanation similarly to Section 2. However, if a failure or a
pruning is due to the propagator defined in equation 4.1, then we need to specify how
to generate a relevant explanation.

We start by giving an algorithm explaining a failure. We show after that how to use
this algorithm to explain pruning.

4.1 Explaining Failure

Suppose that the propagator detects a failure at a given level l. The original instantiation
S would be a possible naive explanation expressing this failure. We propose in the
following a procedure generating more compact explanations.

In example 2, the instantiation S = {x1 ← 1, x3 ← 0, x6 ← 0} is subject to
ATMOSTSEQCARD(2, 5, 3, [x1..x6]). S is unsatisfiable since LS(6) < d. Consider
now the sequence S∗ = {x6 ← 0}. The result of leftmost on S and S∗ is the
identical. Therefore, S∗ and S are both valid explanations for this failure, however

S∗ is shorter. The idea behind our algorithm for computing shorter explanations is to
characterise which assignments will have no impact on the behavior of the propagator,
and thus are not necessary in the explanation.

Example 2.

S 1 . 0 . . 0
−→w (S) 1 1 0 0 0 0

max(S) 1 1 2 2 2 1
L(S) 1 2 2 2 2 2

d = 3
L(6) = 2
→ Failure

S∗ 0
−→w (S∗) 1 1 0 0 0 0

max(S∗) 1 1 2 2 2 1
L(S∗) 1 2 2 2 2 2

d∗ = 3
L∗(6) = 2
→ Failure

Let I = [xk+1..xk+q] be a (sub)sequence of variables of size q and S be a partial in-
stantiation. We denote card(I, S) the minimum cardinality of I under the instantiation
S, that is: card(I, S) =

∑
xi∈I min(S(xi)).

Lemma 1. If S∗ = S \ ({xi ← 0 | maxS(i) = u} ∪ {xi ← 1 | maxS(i) 6= u}) then
−→w S = −→w S∗ .

Proof. Suppose that there exists an index i ∈ [1..n] s.t.−→w S(xi) 6= −→w S∗(xi) and let k be
the smallest index verifying this property. Since the instantiation S∗ is a subset of S (i.e.,
S∗ is weaker than S) and since leftmost is a greedy procedure assigning the value
1 whenever possible from left to right, it follows that −→w S(xk) = 0 and −→w S∗(xk) = 1.
Moreover, it follows that maxS(k) = u and maxS∗(k) < u. In other words, there
exists a subsequence I containing xk s.t the cardinality of I in −→w k

S (i.e. card(I,−→w k
S))

is equal to u, and the cardinality of I in −→w k
S∗ (card(I,−→w k

S∗)) is less than u. From
this we deduce that there exists a variable xj ∈ I such that min(−→w k

S(xj)) = 1 and
min(−→w k

S∗(xj)) = 0.
First, we cannot have j < k. Otherwise, both instantiations −→w k

S(xj) and −→w k
S∗(xj)

contain an assignment for xj , and therefore we have −→w k
S(xj) = {1} and −→w k

S∗(xj) =
{0}, which contradicts our hypothesis that k is the smallest index of a discrepancy.

Second, suppose now that j > k. Since we have card(I,−→w k
S) = u, we can deduce

that card(I,−→w j
S) = u. Indeed, when going from iteration k to iteration j, leftmost

only adds assignments, and therefore card(I,−→w j
S) ≥ card(I,−→w k

S). It follows that
maxS(j) = u, and by construction of S∗, we cannot have xj ← 1 ∈ S \ S∗. However,
it contradicts the fact that min(−→w k

S(xj)) = 1 and min(−→w k
S∗(xj)) = 0.

ut

Theorem 1. If S is a valid explanation for a failure and S∗ = S\({xi ← 0 |maxS(i) =
u} ∪ {xi ← 1 |maxS(i) 6= u}), then S∗ is also a valid explanation.

Proof. By Lemma 1, we know that the instantiations −→w S and −→w S∗ , computed from,
respectively the instantiations S and S∗ are equal. In particular, we have LS(n) =
LS∗(n) and therefore ATMOSTSEQCARD(S) =⊥ iff ATMOSTSEQCARD(S∗) =⊥.

ut
Theorem 1 gives us a linear time procedure to explain failure. In fact, all the val-

ues maxS(i) can be generated using one call of leftmost. Example 3 illustrates the
explanation procedure.

Example 3.

S 1 0 1 0 0 . . 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1
maxS(i) 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
−→w S(xi) 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1
LS(i) 1 1 2 2 2 3 3 3 3 3 4 5 5 5 5 5 6 6 6 6 6 7
S∗ 1 . 1 1 1 . . . 0 . 0 0 0 0 .

maxS∗(i) 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
−→w S∗(xi) 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1

We illustrate here the explanation of a failure on ATMOSTSEQCARD(2, 5, 8, [x1..x22]).
The propagator returns a failure since LS(22) = 7 < d = 8. The default explanation
corresponds to the set of all the assignments in this sequence, whereas our procedure
shall generate a more compact explanation by considering only the assignments in S∗.
Bold face values in the maxS(i) line represent the variables that will not be included in
S∗. As a result, we reduce the size of the explanation from 20 to 9 assignments. Note,
however, that S∗ is not optimal (w.r.t the size) since leftmost returns exactly the
same result on S∗ and S∗ \ x1 ← 1 (hence the same failure).

4.2 Explaining Pruning

Suppose that a pruning xi 8 v was triggered by the propagator in equation 4.1 at a
given level l on S (i.e. propagating ATMOSTSEQCARD(S) implies xi 8 v). Consider
the partial instantiation Sxi←v identical to S on all assignments at level l except for
xi ← v instead of xi 8 v. By construction Sxi←v is unsatisfiable. Let S∗ be the expla-
nation expressing this failure using the previous mechanism. We have then S∗ \xi ← v
as a valid explanation for the pruning xi 8 v.

5 SAT-Encoding for the ATMOSTSEQCARD constraint

In this section we present SAT-encodings for the ATMOSTSEQCARD constraint and
relate them to existing encoding techniques. First we describe a translation of Boolean
cardinality constraints by a variant of the sequential counter encoding [22]. This encod-
ing can be used to translate the decomposition of ATMOSTSEQCARD into cardinality
and ATMOST. Then we introduce an encoding taking advantage of the globality of
ATMOSTSEQCARD by reusing the auxiliary variables for the cardinality constraint and
integrating the sequence of ATMOST constraints. This technique is similar to the en-
coding of GEN-SEQUENCE in [2] and the decomposition of SEQUENCE into cumulative
sums in [5]. Finally, for our last encoding we add redundant clauses for each capacity
constraint in order to increase propagation.

5.1 Sequential Counter

We describe the translation of
∑

i∈[1..n] xi = d to CNF by a sequential counter encod-
ing (SC). For technical reasons we use an additional variable x0 s.t. D(x0) = {0}.

– Variables:
• si,j : ∀i ∈ [0..n], ∀j ∈ [0..d+ 1], si,j is true iff for the positions [0..i] xi is at

least j times true.

– Encoding: ∀i ∈ [1..n]
• Clauses for restrictions on the same level: ∀j ∈ [0..d+ 1]

1. ¬si−1,j ∨ si,j
2. xi ∨ ¬si,j ∨ si−1,j

• Clauses for increasing the counter, ∀j ∈ [1..d+ 1]
3. ¬si,j ∨ si−1,j−1
4. ¬xi ∨ ¬si−1,j−1 ∨ si,j

• Initial values for the bounds of the counter:
5. s0,0 ∧ ¬s0,1 ∧ sn,d ∧ ¬sn,d+1

We refer to the clauses by numbers 1 to 5. The variables si,j represent the bounds
for cumulative sums of the sequence x1 . . . xi. The encoding is best explained by visu-
alising si,j as a two dimensional grid with positions (horizontal) and cumulative sums
(vertical). The binary clauses 1 and 3 ensures that the counter (i.e. the variables repre-
senting the cumulative sums) is monotonically increasing. Clauses 2 and 4 control the
interaction with the variables xi. If xi is true, then the counter has to increase at position
i whereas if xi is false an increase is prevented at position i. The conjunction 5 sets the
initial values for the counter to start counting at 0 and ensures that the partial sum at
position n is equal to d.

Example 4. We illustrate the auxiliary variables of SC. Given a sequence of 8 variables
and d = 2. To the left the initial condition of the variables, followed assigning x2 to
true and then to the right x7 to true.

3 0 0 0 0 0 0 0 0 0
2 0 0 1
1 0 1 1
0 1 1 1 1 1 1 1 1 1
si,j 0 1 2 3 4 5 6 7 8
xi

3 0 0 0 0 0 0 0 0 0
2 0 0 1
1 0 . 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
si,j 0 1 2 3 4 5 6 7 8
xi . 1

3 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 1
1 0 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
si,j 0 1 2 3 4 5 6 7 8
xi 0 1 0 0 0 0 1 0

The SC encoding has the following property regarding propagation:

Proposition 1. Unit Propagation on the SC encoding enforces GAC on the cardinality
constraint

∑
i∈[1...n] xi = d.

The encoding introduces n · (d + 2) auxiliary variables. However, preprocessing
prunes the lower and upper row j = 0 and j = d+1 and further d2 variables by clause
2. The number of unassigned variables is thus (n− d) · d and the number of clauses is
bounded by 4 · n · d.

By a variant of conjunction 5 we can encode an ATMOST constraint in the same
way. If sn,d is removed from 5 the counter allows all assignments where at most d
variables of xi, i ∈ [1..n] are true. We refer to this encoding as SCA, Sequential Counter
for ATMOST constraints.

The encoding in [22] translates inequalities (as SCA) but uses only half the number
of clauses and also enforces GAC on ATMOST. However, their encoding does not force
all auxiliary variables when all xi are assigned and this effectively increases the model
count which can lead to unnecessary search. Furthermore, the auxiliary variables used

here are tightened by the redundant clauses 1 and 3 and branching on these variables is
facilitated. The encoding in [2] of the more general AMONG constraint has similarities
to a counter encoding. Our encoding consists only of binary and ternary clauses whereas
their encoding due to the more general constraint they translate, introduces long clauses
up to the size of d literals.

5.2 Extension to ATMOSTSEQCARD

For the ATMOSTSEQCARD we add the following clauses by reusing the auxiliary vari-
ables si,j . ∀i ∈ [q..n], ∀j ∈ [u..d+ 1]:

6. ¬si,j ∨ si−q,j−u

We refer to this encoding using clauses 1 to 6 as SCS, Sequential Counter with Se-
quence. The number of additional clauses is bounded by n ·d, so the complete encoding
consists of 5 · n · d clauses.

Proposition 2. Unit Propagation on the SCS encoding representing the ATMOSTSEQCARD
constraint detects dis-entailment on any partial assignment.

Proof. We omit the proof for this proposition due to space limits. It follows a similar
structure as the proof for Theorem 3 in [2] since the encoding SCS resembles a special
case of the encoding of the GEN-SEQUENCE constraint. A difference to their encoding
lies in the auxiliary variables that encode the equality

∑i
l=1 xl = j and the resulting

change for the clauses. ut
Observe that SCS will have improved propagation on the auxiliary variables due

to the binary clauses 1, 3 and 6 that restrict the counter to be in a consistent state and
branching on these variables is promoted independently of the concrete assignment to
xi. Note also that SCS is checking dis-entailment and pruning values in many cases,
however, it does not fully enforce GAC on ATMOSTSEQCARD. See the following ex-
ample.

Example 5.

Let u = 1,q = 2,d = 2,n = 5 and let x3 be
true, then UP does not enforce x2 nor x4 to false.
Setting them to true will lead to a conflict by UP
through clauses 4 and 6 on positions 2, 3 and 4.

3 0 0 0 0 0 0
2 0 0 0 . . 1
1 0 . . 1 1 1
0 1 1 1 1 1 1
si,j 0 1 2 3 4 5
xi . . 1 . .

This example motivates us to define an encoding on ATMOSTSEQCARD extend-
ing SCS by re-encoding each ATMOST constraints to enforce this missing propagation.
Each ATMOST constraint is separately translated to CNF by an SCA encoding in ad-
dition to clauses 6. We expect this complete encoding to have the advantages of both
previous encodings.

6 Experimental results

We tested the different approaches on the three data sets available on the CSPLib [12].
The first set of “historical” instances contains 5 unsatisfiable and 4 satisfiable instances
of relatively small size (100 cars). The second set contains 70 instances generated with
varying usage rate. All instances in this set are satisfiable and involve 200 cars. These
two sets were used in most of the CP literature on this problem. The third set, proposed
by Gagné, features larger instances divided into three sets of ten each, involving respec-
tively 200, 300 and 400 cars. Seven of these instances were solved using local search
algorithms. To the best of our knowledge the remaining 23 instances have never been
proved unsatisfiable.

We grouped the instances into three categories to help us better outline the differ-
ences between the methods we tested.

– In the first category (sat[easy]), we consider the 70 satisfiable instances of the
second set as well as the 4 satisfiable instances of the first set. All these instances
are extremely easy for all the methods we introduce in this paper.

– In the second category (sat[hard]), we consider the 7 known satisfiable in-
stances of the second set. These instances are challenging and were often out of
reach of previous systematic approaches.

– In the third category (unsat/unknown), we consider the remaining 5 unsatisfi-
able instances of the first set as well as the 23 unknown instances form the third set.
Those instances are challenging and indeed open for 23 of them.

All experiments ran on Intel Xeon CPUs 2.67GHz under Linux. For each instance,
we launched 5 randomized runs with a 20 minutes time cutoff. We ran the following
methods:

– Minisat (version 2.2.0) with default parameter settings on three variants of the SAT
encoding. Links between classes and options as well as the constraint for exactly
one class of vehicle per position are translated as in the basic model. For each option
and for each class we encode one ATMOSTSEQCARD. The capacity constraint for
options is given by the problem specification whereas for each class we choose the
strictest capacity constraints among all its options. The three models differ only in
how the ATMOSTSEQCARD constraint is translated (w.r.t Section 5):
1. SAT (1) encodes the basic model by using SC for the global demand and SCA

for each window of the capacity constraint.
2. SAT (2) encodes each ATMOSTSEQCARD by the SCS.
3. SAT (3) combines SAT (1) and SAT (2).

– Mistral as a hybrid CP/SAT solver (Section 2) using the proposed explanation for
the ATMOSTSEQCARD constraint. We tested four branching heuristics :
1. hybrid (VSIDS) uses VSIDS;
2. hybrid (Slot) uses the following CP heuristic (denoted by Slot) : we branch on

option variables from the middle of the sequence and towards the extremities
following the first unassigned Slot. The options are firstly evaluated by their
dynamic usage rate[23] then lexicographically compared.

3. hybrid (Slot→ VSIDS) first uses the CP heuristic, then switches after 100 non-
improving restarts to VSIDS.

4. hybrid (VSIDS → Slot) uses VSIDS and switches after 100 non-improving
restarts to the CP heuristic.

We also used two “control” approaches ran in the same setting:

– pseudo Boolean: MiniSat+ [10] on a straightforward pseudo-Boolean encoding,
similar to that described in Section 3 except that the ATMOSTSEQCARD constraint
is decomposed into CARDINALITY and ATMOST constraints.

– CP: Mistral without clause learning on the model described in Section 3 using the
Slot branching.

For each considered data set, we report the total number of successful runs (#suc).2

Then, we report the number of fail nodes (fails) and the CPU time (time) in seconds
both averaged over all successful random runs on every instance. We emphasize the
statistics of the best method (w.r.t. #suc, ties broken by CPU time) for each data set
using bold face fonts.

Table 1: Evaluation of the models

Method
sat[easy] (74× 5) sat[hard] (7× 5) unsat/unknown (28× 5)
#suc avg fails time #suc avg fails time #suc avg fails time

SAT (1) 370 2073 1.71 28 337194 282.35 85 249301 105.07
SAT (2) 370 1077 1.18 30 42790 33.02 67 217103 182.23
SAT (3) 370 667 1.30 35 50233 66.23 74 137639 70.47

hybrid (VSIDS) 370 903 0.23 16 207211 286.32 35 177806 224.78
hybrid (VSIDS→ Slot) 370 739 0.23 35 76256 64.52 37 204858 248.24
hybrid (Slot→ VSIDS) 370 132 0.04 34 4568 2.50 37 234800 287.61

hybrid (Slot) 370 132 0.04 35 6304 3.75 23 174097 299.24
CP 370 43.06 0.03 35 57966 16.25 0 - -

pseudo Boolean 277 538743 236.94 0 - - 43 175990 106.92

Overall efficiency We first observe that most of the approaches we introduce in this
paper significantly improve the state of the art, at least for systematic methods. For
instance, in the experiments reported in [21] several instances of the set sat[hard]
were not solved within a 20 minutes cutoff. Moreover we are not aware of other sys-
tematic approaches being able to solve these instances.

More importantly, we are able to close 13 out of the 23 large open instances pro-
posed by Gagné. The set of open instances is now reduced to pb 200 02, pb 200 06,
pb 200 08, pb 300 02, pb 300 06, pb 300 09, pb 400 01, pb 400 02, pb 400 07,
pb 400 08.

2 They all correspond to solutions found for the two first categories, and unsatisfiability proofs
for the last.

Finding solutions quickly: Second, on satisfiable instances, we observe that pure CP
approaches are difficult to outperform. It must be noticed that the results reported for
CP are significantly better than those previously reported for similar approaches. For
instance, the best methods introduced in [25] take several seconds on most instances of
the first category and were not able to solve two of them within a one hour time cutoff.
Moreover in [21], the same solver on the same model had a similar behavior on the
first category (sat[easy]), however was only able to solve 2 instances of the second
category (sat[hard]). The only difference with the method we ran in this paper is
that restarts according to the Luby sequence were used.

However, overall, the best method on satisfiable instances is the hybrid solver using
a pure CP heuristic. Moreover, we can see that even with a “blind” heuristic, MiniSat
on the strongest encodings has extremely good results (all satisfiable instances could be
solved with a larger time cutoff).

This study shows that propagation is very important to find solutions quickly when
they exist, by keeping the search “on track” and avoiding exploring large unsatisfi-
able subtrees. There are several evidences for this: First, the pure pseudo Boolean
model (pseudo Boolean) features no non-trivial propagation and is indeed very poor
on sat[easy] and sat[hard]. Second, the best SAT models for those two cate-
gories are those providing the tightest propagation. Last, previous CP approaches that
did not enforce GAC on the ATMOSTSEQCARD constraint are all dominated by CP.

Proving unsatisfiability: Third, for proving unsatisfiability, our results clearly show
that clause learning is by far the most critical factor. Surprisingly, a stronger propa-
gation is not always beneficial when building a proof using clause learning, as shown
by the results of the different encodings. One could even argue for a negative correla-
tion, since the “lightest” encodings are able to build more proofs than stronger ones.
Similarly, the pure pseudo Boolean model performs much better comparatively to the
satisfiable case. The hybrid models are slightly worse than pseudo Boolean but far bet-
ter than pure CP approach that was not able to prove any case of unsatisfiability. To
mitigate this observation, however, notice that other CP models with strong filtering,
using the Global Sequencing Constraint [19], or a conjunction of this constraint and
ATMOSTSEQCARD [21, 25] were able to build proofs for some of the 5 unsatisfiable
instances of the CSPLib. However, these models were not sufficient to solve any of the
23 larger unsatisfiable instances.

7 Conclusion

We proposed and compared hybrid CP/SAT models for the car-sequencing problem
against several SAT-encodings. Both approaches exploit the ATMOSTSEQCARD con-
straint. In particular, we proposed a linear time procedure for explaining failure and
pruning as well as advanced SAT-encodings for this constraint. Experimental results
emphasize the importance of advanced propagation for searching feasible solutions and
of clause learning for building unsatisfiability proofs.

References

1. Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Generic ILP versus
specialized 0-1 ILP: an update. In Proceedings of ICCAD, pages 450–457, 2002.

2. Fahiem Bacchus. GAC Via Unit Propagation. In Proceedings of CP, pages 133–147, 2007.
3. Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability,

Boolean Modeling and Computation, 7:59–64, 2010.
4. Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Sat-

isfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

5. Sebastian Brand, Nina Narodytska, Claude-Guy Quimper, Peter J. Stuckey, and Toby Walsh.
Encodings of the Sequence Constraint. In Proceedings of CP, pages 210–224, 2007.

6. Hadrien Cambazard. Résolution de problmes combinatoires par des approches fondées sur
la notion dexplication. PhD thesis, Ecole des mines de Nantes, 2006.

7. Hadrien Cambazard and Narendra Jussien. Identifying and exploiting problem structures
using explanation-based constraint programming. Constraints, 11(4):295–313, 2006.

8. Martin Davis and Hilary Putnam. A Computing Procedure for Quantification Theory. Jour-
nal of the ACM, 7(3):201–215, 1960.

9. Heidi Dixon. Automating Pseudo-Boolean Inference within a DPLL Framework. PhD thesis,
University of Oregon, 2004.

10. Niklas Eén and Niklas Sörensson. Translating Pseudo-Boolean Constraints into SAT. Jour-
nal on Satisfiability, Boolean Modeling and Computation, 2:1–26, 2006.

11. Ian P. Gent. Arc Consistency in SAT. In Proceedings of ECAI, pages 121–125, 2002.
12. Ian P. Gent and Toby Walsh. CSPlib: a benchmark library for constraints, 1999.
13. George Katsirelos. Nogood Processing in CSPs. PhD thesis, University of Toronto, 2008.
14. George Katsirelos and Fahiem Bacchus. Generalized NoGoods in CSPs. In Proceedings of

AAAI, pages 390–396, 2005.
15. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: Engineering an Efficient SAT Solver. In DAC, pages 530–535, 2001.
16. Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via Lazy Clause Gen-

eration. Constraints, 14(3):357–391, 2009.
17. Claude-Guy Quimper, Alexander Golynski, Alejandro López-Ortiz, and Peter van Beek. An

Efficient Bounds Consistency Algorithm for the Global Cardinality Constraint. Constraints,
10(2):115–135, 2005.

18. Jean Charles Régin. Generalized Arc Consistency for Global Cardinality Constraint. In
Proceedings of AAAI, volume 2, pages 209–215, 1996.

19. Jean-Charles Régin and Jean-François Puget. A Filtering Algorithm for Global Sequencing
Constraints. In Proceedings of CP, pages 32–46, 1997.

20. Thomas Schiex and Gérard Verfaillie. Nogood Recording for Static and Dynamic CSP. In
Proceeding of ICTAI, pages 48–55, 1993.

21. Mohamed Siala, Emmanuel Hebrard, and Marie-Jose Huguet. An Optimal Arc Consistency
Algorithm for a Chain of Atmost Constraints with Cardinality. In Proceedings of CP, pages
55–69, 2012.

22. Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In
Proceedings of CP, pages 827–831, 2005.

23. Barbara M. Smith. Succeed-first or Fail-first: A Case Study in Variable and Value Ordering,
1996.

24. Christine Solnon, Van Dat Cung, Alain Nguyen, and Christian Artigues. The car se-
quencing problem: Overview of state-of-the-art methods and industrial case-study of the
ROADEF’2005 challenge problem. European Journal of Operational Research, 191:912–
927, 2008.

25. Willem J. van Hoeve, Gilles Pesant, Louis-Martin Rousseau, and Ashish Sabharwal. New
Filtering Algorithms for Combinations of Among Constraints. Constraints, 14(2):273–292,
2009.

26. Toby Walsh. SAT v CSP. In Proceedings of CP, pages 441–456, 2000.

