
HAL Id: hal-00871706
https://hal.science/hal-00871706

Submitted on 11 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explaining the AtMostSeqCard constraint
Mohamed Siala, Christian Artigues, Emmanuel Hébrard

To cite this version:
Mohamed Siala, Christian Artigues, Emmanuel Hébrard. Explaining the AtMostSeqCard constraint.
Doctoral Program Workshop at CP2013, Sep 2013, Uppsala, Sweden. �hal-00871706�

https://hal.science/hal-00871706
https://hal.archives-ouvertes.fr

Explaining the ATMOSTSEQCARD constraint∗

Mohamed Siala1,2, Christian Artigues1,3, and Emmanuel Hebrard1,3

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France

3 Univ de Toulouse, LAAS, F-31400 Toulouse, France
{siala, artigues, hebrard}@laas.fr

Abstract. We propose an O(n) propagation-based procedure for explaining the
ATMOSTSEQCARD constraint. We evaluate it against pure CP models for solving
car-sequencing benchmarks. The experimental evaluation emphasizes the impor-
tance of combining CP with SAT for solving this problem.

1 Introduction

The ATMOSTSEQCARD constraint, recently proposed in [6], has been shown to be ex-
tremely efficient for solving Car-sequencing and Crew-rostering benchmarks. However,
efficient propagators might be not enough for solving hard problems without powerful
learning mechanisms. In this sense, several hybrid approaches combining the strengths
of SAT and CP were proposed. These methods are based on the notion of explanation.
The idea is to keep some constraints in their implicit form (i.e. with a specific propaga-
tor) with the ability to explain themselves. In particular, whenever a pruning/failure is
triggered by a constraint C, the latter should be able to generate a relevant explanation.

In this context, we introduce a linear time procedure for computing compact expla-
nations for the ATMOSTSEQCARD constraint. This algorithm can be used in a hybrid
CP/SAT approach such as SAT Modulo Theory, CSP Solvers with learning, or Lazy
Clause Generation. Our experimental evaluation provides good empirical evidence for
the two following observations regarding the Car-sequencing problem: First, we em-
phasize the hypothesis that propagation, even with state-of-the-art heuristics, does not
seem as important for proving unsatisfiability than clause learning. Second, as expected,
specific CP heuristics are very useful to quickly find solutions. Moreover, they can be
combined with adaptive heuristics (VSIDS) in order to keep clause learning strength
for building proofs.

The remainder of this paper is organized as follows. We give in Section 2 a short
background on the hybridisation of CP and SAT. In Section 3, we show that, based
on the ATMOSTSEQCARD propagator, one can build a linear time explanation for this
constraint. Finally, we empirically evaluate, in Section 4, the hybrid model based on
this explanation against the related pure-CP one.

2 Constraint Programming and its hybridisation with SAT

A Constraint Satisfaction Problem (CSP) is defined by a triplet P = (X ,D, C) where
X is a set of variables, D is a mapping of variables to finite sets of values and C is a set
? Mohamed Siala is the student ; Dr. Artigues and Dr. Hebrard are the supervisors

of constraints that specify allowed combinations of values for subsets of variables. We
assume thatD(x) ⊂ Z for all x ∈ X . We denote x← v the assignment of the value v to
the variable x, and x 8 v the pruning of the value v fromD(x). An instantiation S is a
set of assignments and/or pruning such that no variable is assigned more than one value
and no value is pruned and assigned for the same variable. Let⊥ be a failure or a domain
wipe-out, by convention equal to the set of all possible assignments and prunings. We
consider a closure of instantiations with respect to domains. That is, if the assignment
x ← v belongs to S, we also assume that x 8 v′ for all v′ ∈ D(x) \ v, belongs to
S. Similarly, if all but one of the values are pruned, the remaining value is added as
an assignment. A constraint C defines a relation Rel(C), that is, a set of instantiations,
over the variables in Scope(C). Throughout the paper we shall associate a constraint
C to a propagator, that is, a function mapping instantiations to instantiations or to the
failure⊥. Given an instantiation S we denote C(S) the instantiation or failure obtained
by applying the propagator associated to C on S, and we have S ⊆ C(S). Let p be an
assignment or a pruning. The level of p (denoted by lvl(p)) is its ”position” in the order
of all assignments and prunings. We say that the instantiation S implies p w.r.t C iff p 6∈
S & p ∈ C(S). We denote S(x) the domainD(x) updated by the assignment or pruning
associated to x in S. Moreover, we shall denote min(S(x)) (respectively. max(S(x)))
the minimum (respectively. maximum) value in S(x). We say that an instantiation S is
an explanation of the pruning x 8 v with respect to a constraint C if it implies x 8 v
(that is, x 8 v ∈ C(S) \ S). Moreover, S is a valid explanation iff lvl(x 8 v) >
max({lvl(p) | p ∈ S}). For instance, if C is the clause p ∨ ¬q ∨ r, the only possible
explanation for p 8 0 with respect to C is {q ← 1, r ← 0}.

The Boolean Satisfiability Problem (SAT) is a particular case of CSP where all
the domains are {0, 1} and constraints are clauses. Modern SAT Solvers implement
extremely efficient techniques like CDCL, 2-Watched literals scheme, etc [1]. Several
hybrid approaches trying to exploit these techniques into CP Solvers were proposed.
The idea is to incorporate a SAT engine with finite domain propagators. For instance
Katsirelos’s generalized nogoods [3] enable this type of approaches for arbitrary do-
mains. However, to simulate the behaviour of CDCL, it is necessary to explain either a
failure or the pruning of a domain value. Lazy-clause generation [4] solvers add a clause
whenever pruning is performed in order to provide an explanation for the pruning. In
this paper we use a solver with an architecture based on lazy explanations [2].

3 Explaining the ATMOSTSEQCARD constraint

Let X = [x1..xn] be a be a sequence of Boolean variables, u, q and d be integer
variables. The ATMOSTSEQCARD constraint is defined as follows :

Definition 1. ATMOSTSEQCARD(u, q, d, [x1, . . . , xn]) ⇔
∧n−q

i=0 (
∑q

l=1 xi+l ≤ u) ∧
(
∑n

i=1 xi = d)

In [6], the authors proposed a complete filtering algorithm on this constraint. We
outline the main idea of the propagator. Let S be an instantiation. The leftmost pro-
cedure returns an instantiation −→w S ⊇ S of maximum cardinality by greedily assigning
the value 1 from left to right while respecting the ATMOST constraints. Let −→w i

S de-
notes the instantiation −→w S at the beginning of iteration i, and let −→w 1

S = S. The value

maxS(i) denotes the maximum minimum cardinality, with respect to the current do-
main −→w i

S , of the q subsequences involving xi. It is computed alongside −→w S and will
be useful to explain the subsequent pruning. It is formally defined as follows (where
min(−→w i

S(xk)) = 0 if k < 1 or k > n):

maxS(i) = max
j∈[1..q]

(

i+j−1∑
k=i−q+j

min(−→w i
S(xk)))

Definition 2. The outcome of the procedure leftmost can be recursively defined
using maxS: at each step i, leftmost adds the assignment xi ← 1 iff this assignment
is consistent with −→w i

S and maxS(i) < u, it adds the assignment xi ← 0 otherwise.

In order to express declaratively the full propagator, we need the following further
steps: The same procedure is applied on variables in reverse order [xn..x1], yielding the
instantiation←−w S . We denote respectively LS(i) and RS(i) the sum of the values given
by −→w S (respectively.←−w S) to the i first variables (respectively. n− i+1 last variables):

LS(i) =

i∑
k=1

min(−→w S(xk)) , RS(i) =

n∑
k=i

min(←−w S(xk))

Now we have all the tools to define the propagator associated to this constraint de-
scribed in [6], and which is a conjunction of ATMOST constraints on each subsequence,
of CARDINALITY constraint

∑n
i=1 xi = d, and of the following:

ATMOSTSEQCARD(S) =


S, if LS(n) > d
⊥, if LS(n) < d
S ∪ {xi ← 0 | S(xi) = {0, 1}& LS(i) + RS(i) ≤ d}
∪ {xi ← 1 | S(xi) = {0, 1}& LS(i− 1) + RS(i + 1) < d} otherwise

(3.1)

If a failure/pruning is detected by the CARDINALITY or an ATMOST constraint,
then it is easy to give an explanation. However, if a failure or a pruning is due to the
propagator defined in equation 3.1, then we need to specify how to generate a relevant
explanation. We start by giving an algorithm explaining failure then show how to use it
to explain pruning. We suppose in the following that failure/pruning was fired at level l.

3.1 Explaining Failure

The original instantiation S would be a possible naive explanation expressing this fail-
ure. We propose in the following a procedure returning more compact explanations with
no guarantee regarding the optimality (see later example 1).

Let I = [xk+1..xk+q] be a (sub)sequence of variables of size q and S be an instan-
tiation. We denote card(I, S) the minimum cardinality of I under the instantiation S,
that is: card(I, S) =

∑
xi∈I min(S(xi)).

Lemma 1. If S∗ = S \ ({xi ← 0 | maxS(i) = u} ∪ {xi ← 1 | maxS(i) 6= u}) then
−→w S = −→w S∗ .

Proof. Suppose that there exists an index i ∈ [1..n] s.t.−→w S(xi) 6= −→w S∗(xi) and let k be
the smallest index verifying this property. Since the instantiation S∗ is a subset of S (i.e.,
S∗ is weaker than S) and since leftmost is a greedy procedure assigning the value
1 whenever possible from left to right, it follows that −→w S(xk) = 0 and −→w S∗(xk) = 1.

Moreover, it follows that maxS(k) = u and maxS∗(k) < u. In other words, there
exists a subsequence I containing xk s.t the cardinality of I in −→w k

S (card(I,−→w k
S))

is equal to u, and the cardinality of I in −→w k
S∗ (card(I,−→w k

S∗)) is less than u. From
this we deduce that there exists a variable xj ∈ I such that min(−→w k

S(xj)) = 1 and
min(−→w k

S∗(xj)) = 0.
First, we cannot have j < k. Otherwise, both instantiations −→w k

S(xj) and −→w k
S∗(xj)

contain an assignment for xj , and therefore we have −→w k
S(xj) = {1} and −→w k

S∗(xj) =
{0}, which contradicts our hypothesis that k is the smallest index of a discrepancy.

Second, suppose now that j > k. Since we have card(I,−→w k
S) = u, we can deduce

that card(I,−→w j
S) = u. Indeed, when going from iteration k to iteration j, leftmost

only adds assignments, and therefore card(I,−→w j
S) ≥ card(I,−→w k

S). It follows that
maxS(j) = u, and by construction of S∗, we cannot have xj ← 1 ∈ S \ S∗. However,
it contradicts the fact that min(−→w k

S(xj)) = 1 and min(−→w k
S∗(xj)) = 0. ut

Theorem 1. If S is a valid explanation for a failure and S∗ = S\({xi ← 0 |maxS(i) =
u} ∪ {xi ← 1 |maxS(i) 6= u}), then S∗ is also a valid explanation.

Proof. By Lemma 1, we know that the instantiations −→w S and −→w S∗ , computed from,
respectively the instantiations S and S∗ are equal. In particular, we have LS(n) =
LS∗(n) and therefore ATMOSTSEQCARD(S) =⊥ iff ATMOSTSEQCARD(S∗) =⊥.

ut
Theorem 1 gives us a linear time procedure to explain failure. In fact, all the values

maxS(i) can be generated using one call of leftmost.

Example 1.

S 1 0 1 0 0 . . 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1
maxS(i) 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
−→w S(xi) 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1
LS(i) 1 1 2 2 2 3 3 3 3 3 4 5 5 5 5 5 6 6 6 6 6 7
S∗ 1 . 1 1 1 . . . 0 . 0 0 0 0 .

maxS∗(i) 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
−→w S∗(xi) 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1

We illustrate in Example 1 the explanation of a failure on ATMOSTSEQCARD(2, 5, 8, [x1..x22]).
The propagator returns a failure since LS(22) = 7 < d = 8. The default explanation
corresponds to the set of all the assignments in this sequence, whereas our procedure
shall generate a more compact explanation by considering only the assignments in S∗.
Bold face values in the maxS(i) line represent the variables that will not be included in
S∗. As a result, we reduce the size of the default explanation from 20 to 9 assignments.
Note, however, that S∗ is not optimal (w.r.t the size) since leftmost returns exactly
the same result on S∗ and S∗ \ x1 ← 1 (hence the same failure).

3.2 Explaining Pruning

Suppose that a pruning xi 8 v was triggered by the propagator in equation 3.1 at a
given level l on S (i.e. propagating ATMOSTSEQCARD(S) implies xi 8 v). Consider
the instantiation Sxi←v identical to S on all assignments at level l except for xi ← v
instead of xi 8 v. By construction Sxi←v is unsatisfiable. Let S∗ be the explanation
expressing this failure using the previous mechanism. We have then S∗ \ xi ← v as a
valid explanation for the pruning xi 8 v.

4 Experimental results

To evaluate the proposed explanation, we compare it against pure CP models for solving
the car-sequencing problem [8]. In the latter, a set of vehicles has to be sequenced in
an assembly line. Each class of cars requires a set of options. However, the working
station handling a given option can only mount it on a fraction of the cars passing on
the line. Each option j is thus associated with a fractional number uj/qj standing for
its capacity (at most uj cars with option j occur in any sub-sequence of length qj).
We used the benchmarks available from the CSPLib. We grouped the instances into
three categories sat[easy] (74 instances), sat[hard] (7 instances) and unsat
(28 instances). All experiments ran on Intel Xeon CPUs 2.67GHz under Linux. For
each instance, we launched 5 randomized runs with a 20 minutes time cutoff. We ran
the following methods (all using the ATMOSTSEQCARD propagator):

– Mistral as a hybrid CP/SAT solver implementing standard CDCL features and using
the proposed explanation. We tested four branching heuristics :
1. hybrid (VSIDS) uses VSIDS;
2. hybrid (Slot) uses a cp heuristic based on the usage rate[7].
3. hybrid (Slot → VSIDS) first uses hybrid (Slot) then switches after 100 non-

improving restarts to VSIDS.
4. hybrid (VSIDS → Slot) uses VSIDS and switches after 100 non-improving

restarts to hybrid (Slot).
– pure-CP: Mistral without clause learning using the Slot branching.

For each considered data set, we report the total number of successful runs (#suc).Then,
we report the number of fails (fails) and the CPU time (time) in seconds both averaged
over all successful random runs on every instance. We emphasize the statistics of the
best method (w.r.t. #suc) for each data set using bold face fonts.
Finding solutions quickly: We observe that pure CP approaches are difficult to outper-
form. It must be noticed that the results reported here are significantly better than those
previously reported for similar approaches. For instance, the best methods introduced
in [9] take several seconds on most instances of the first category and were not able to
solve two of them within a one hour time cutoff. Moreover in [6], the same solver on
the same model had a similar behaviour on the first category (sat[easy]), however
was only able to solve 2 instances of the second category (sat[hard]). The only
difference with the method we ran in this paper is that restarts according to the Luby
sequence were used. However, overall, the best method on satisfiable instances is the
hybrid solver using a pure CP heuristic. This study shows that propagation is very im-
portant to find solution quickly when they exist, by keeping the search “on track” and
avoiding exploring large unsatisfiable subtrees. In fact, previous CP approaches that did
not enforce Arc-Consistency on the ATMOSTSEQCARD constraint are all dominated by
pure-CP.
Proving unsatisfiability: The hybrid models are far better than pure CP approach that
was not able to prove any case of unsatisfiability. To mitigate this observation, how-
ever, notice that other CP models with strong filtering, using the Global Sequencing
Constraint [5], or a conjunction of this constraint and ATMOSTSEQCARD [6, 9] were
able to build proofs for some of the 5 known unsatisfiable instances of the CSPLib.
However, these models were not sufficient to solve any of the 23 larger unsatisfiable in-
stances. These results clearly show that clause learning is by far the most critical factor.

Table 1: Experimental Evaluation

Method
sat[easy] (74× 5) sat[hard] (7× 5) unsat (28× 5)
#suc avg fails time #suc avg fails time #suc avg fails time

hybrid (VSIDS) 370 903 0.23 16 207211 286.32 35 177806 224.78
hybrid (VSIDS→ Slot) 370 739 0.23 35 76256 64.52 37 204858 248.24
hybrid (Slot→ VSIDS) 370 132 0.04 34 4568 2.50 37 234800 287.61

hybrid (Slot) 370 132 0.04 35 6304 3.75 23 174097 299.24
pure-CP 370 43.06 0.03 35 57966 16.25 0 - -

5 Conclusion

We proposed a linear time procedure for explaining the ATMOSTSEQCARD constraint
and empirically evaluate it with car-sequencing benchmarks. Experimental results em-
phasize the importance of advanced propagation as well as built-in heuristics for search-
ing feasible solutions and of clause learning for building unsatisfiability proof for this
problem.

References

1. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

2. Ian P. Gent, Ian Miguel, and Neil C.A. Moore. Lazy Explanations for Constraint Propagators.
In Practical Aspects of Declarative Languages, pages 217–233. 2010.

3. G. Katsirelos. Nogood Processing in CSPs. PhD thesis, University of Toronto, 2008.
4. Olga. Ohrimenko, P-J. Stuckey, and M. Codish. Propagation via Lazy Clause Generation.

Constraints, 14(3):357–391, 2009.
5. J-C Régin and J-F Puget. A Filtering Algorithm for Global Sequencing Constraints. In Pro-

ceedings of CP, pages 32–46, 1997.
6. M. Siala, E. Hebrard, and M-J. Huguet. An Optimal Arc Consistency Algorithm for a Chain

of Atmost Constraints with Cardinality. In Proceedings of CP, pages 55–69, 2012.
7. B. Smith. Succeed-first or Fail-first: A Case Study in Variable and Value Ordering, 1996.
8. C. Solnon, V-D. Cung, A-N, and C Artigues. The car sequencing problem: Overview of

state-of-the-art methods and industrial case-study of the ROADEF’2005 challenge problem.
European Journal of Operational Research, 191:912–927, 2008.

9. W-J. van Hoeve, G. Pesant, L-M. Rousseau, and A. Sabharwal. New Filtering Algorithms for
Combinations of Among Constraints. Constraints, 14(2):273–292, 2009.

