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A Multi-Machine Scheduling Problem with Global Non Idling Constraint

Philippe Chretienne*, Samuel Deleplanque**, Alain Quilliot**

*LIP6, PARIS VI, 75015 PARIS
*LIMOS, UMR CNRS 6158, Bat. ISIMA,, Labex IMOBS3
BLAISE PASCAL University, France (e-mail: quil@isima.fr)

Abstract: We deal here with a multi-machine scheduling peob with non idling constraints, i.e
constraints which forbids the interruption of thee wf the processors. We reformulate the problemiew
using specific pyramidal profile functions, nextt ge min-max feasibility criterion and finally deev
exact polynomial algorithms for both the feasiilitroblem and the makespan optimization problem.

Keywords multi-machine scheduling, non idling constrainpastite graph matching.

scheduled within time windows in such a way that tlon-
1. INTRODUCTION idling constraint be satisfied not only for eachcimae but
Most scheduling problems assume that no cost isried also for every subset of machines. In section @ pitoblem,
when a machine waits between the completion ofoagjod as well as the key notions pfyramidal profile functionk-
the start of the next job. Moreover, it is well-kmothat such hole m-matching pre-schedulek-scheduleandscheduleare
waiting delays are often necessary to get optigpjalihatever defined. Section 3 is devoted to structural analgsid to the
be the related performance criterion. This is thg feature derivation of feasibility criteria. It first examés the case of a
which explains why list algorithms, which do notoal a m-matching and next the case of a pre-schedule finatly
machine to wait for a more urgent job, do not galterield provides a necessary and sufficient condition foirestance
optimal schedules. However, it happens that in sonte admit at least a feasible schedule. Sectionc¥iges a
applications such (see Landis 1985), the cost dfimgaa polynomial algorithm which solves both the relatedstence
running machine stop and restart later is so higtt & non problem and the makespan minimization problem.

idling constraint is put on the machine so thay@dhedules

without any intermediate delays are accepted. fsiance, if
the machine is an oven which must heat non corﬂpatibz' A PYRAMIDAL FORMULATION of the MULTI-

pieces of work at a given high temperature. keepimg MACHINE SCHEDULING PROBLEM with NON IDLING

required temperature of the oven while it is emptay CONSTRAINTS
clearly become too costly. Problems concerning powe ) ) _
management policies may also yields similar coirgggsee 2-1 Notations: Time Representation
Irani and Al. 2005), where for example each idlpggiod has ) )
a cost and the total cost has to be minimized Bmmtiste N denotes the discrete time space {0, }, whose
2005). Note that the non idling constraint doeserature full €lements are calletime-units A subseQ of N is aninterval
machine utilization but remove the cost of machimestarts, if it is made of consecutive time-units. The smelle
maybe at the price of processing the jobs later. (respectively largest) time-unit of an intena@l is denoted
Contrarily to the well-known no-wait constraints job  mMin(Q) (respectivelymaxQ)). If p and g are two distinct
scheduling, where no idle time is allowed betweér t natural numbers, the interval whose boundspendq is
successive operations of a same job, the non-igtiaghine denoted byl(p, ). Interval Q, dominatesinterval Q, if
constraints have been scarcely studied. To the dfesur maxQ;) + 1 <min(Q,), which we denote denoted B Dom
knowledge, the first work on such problems concesee Q,. If Q; Dom Q,, then we denote bylid(Q,, Q) the (non
Valente and Al. 2005) the earliness-tardiness simgachine empty) interval fnaxQ,) +1 ,..,min(Q.) - 1}. Two intervals
scheduling problem with no unforced idle time. Morereconnectedf their union is an interval.

recently, the impact of the non-idling constraimts the 2.2. The Feasibility Multi-Machine Scheduling Preinl with
complexity of single-machine scheduling problemsvali as  Global Non Idling Constraints

the role played by the earliest starting time afcm-idling

schedule has been studied in Chretienne 2008. Meredm \ye now suppose that we are given aJset{J, .. ,J;} of n
Jouglet 2012, a Branch/Bound method has been d@elo pt-time jobs that are to be processed on avket {Mj, ..,
for the one-machine non-idling scheduling problem. ~ — \ 1 of m'identical machines. Jab must be executed inside
In this paper, we study the basic globaimachine non-idling 5 given time-windowF(i) = {r;, .. ,d} which is an interval. It
problem, where weakly dependant unit-time jobs Havbe il pe convenient to denote., (respectivelydms) the



smallestr; (respectively the smalledf) and byH the interval 4 ni(t)
{rminy --» dmag. The jobs are also constrained byweak ,

precedence relation denoted by << whgre< J; means that

Jj must not be performed beford. Jobs are further 3

constrained by the so-called homogeneous non-idlirz
constraint KINI in short) which imposes that, for any subse, ‘ ‘

M’ of M, the time units at which the machinesMifare busy ‘ ‘
define an interval. Then scheduleof the job seM is a pair ° T > 3 a2 s & 7 8 o5
(T, 4), whereT and are two functions, which assign, to any Figure 1: A pyramidal profile functiomq(t)

job J;, respectively a time-unit(i) and a maching(i). The

schedule T, m) is said to bdeasibleif: Then we say thaff( 1) is aflat scheduleof the instancé, if

- Forany jobg;, T(i) U F(i); for any time unit such than(t) > 0, we haveqt) = {M,, ..,
- For any paitJ;, J;, such that; << J,, we haveT(i) < T(j); Mnrp}. Clearly any feasible scheduld,(4) can be turned,

- For any paitJ, J,, we have eithef(i) # T(j) or i) # 4); through reassignment of the jobs onto the machimés, a
- TheHNI condition is satisfied: for any subset M’ of M flat feasible schedule, and, in the case of asithiedule, the

o L knowledge ofT determinesu. So, the following statement
the sgt {to N, _SUCh _that there exist i = 1..n, willfi) =t provides a reformulation of the NON-IDLEproblem as a
andT(i) O M}is aninterval. problem which only involves the time function T bgect to
For any such a schedulg, (1), we define thective time-unit somepyramidal shaperoperty related to the profile function
set of the functionT as the image set @i that means as the t -> n(t).
subsetACT(T) of N defined by:ACT(T) = {t O N such that
there exists at least some index valgel.n, with T(i) = t}. Theorem 1: Solving the NON-IDLE problem in the case of
instance | = (J, F, <<, m) only means computing fhaction
Then we define the relatedreasibility Multi-Machine T, which with any job ;Jassociates some time-unit T(i) in
Scheduling Problem with Global Non Idling Consttain such a way that:
NON-IDLE, = (P, HNI|p; = 1,1, d;, preced-) as the problem 1. Forany job J T(i) ZF();
which consists in deciding whether the given instag, F, 2. For any pair of jobs J J, such that J<< J;, we
<<, m) admits at least one feasible schedule. If thavanss have T(i)< T(j):

yes, we say that this instancdésasible 3. For any time-unit t, f(t) = Card(T(t)) < m = the

It must be pointed out that the precedence relati@teq number of machines;

which we handle here has not the same meaning es th 4. The function t->gt) has a pyramidal shape
classical one, since when we det< J;, we allow J; andJ, ] _ o )

to be processed at the same time-unit. Clearly, tduthe A functionT which satisfies 1 and 3 above will be calleata
machine constraint, there is no difference whes 1. Itis Mmatching In case it also satisfies 2, it will be callegre-
also of interest to notice that the problePniNI|p, = 1,r;, d;, Scheduleln case it satisfies all conditions 1..4, we bhédo
preceq-)' Whereprec is the usual precedence re|ation, is Npca” T afeasiblescheduleof the NON-'DLE) of the instancé
Complete, since the NP-Complefe|, = 1, predCmax < d), =, F, <<,m).

polynomially reduces to the probler®, (HNI|p; = 1, r;, d,

preced), by adding rhd - n) filling jobs and setting; = 1 2.4. The Makespan Minimization NON-IDLFroblem
andd, = d for all the jobs.

Letl = (J, F, <<, m) as above, and I€k be some feasible

2.3 A Pyramidal Reformulation of the NON-IDJFroblem.  schedule forl. The Makespan of is the cardinality of its
active time-unit sef\ct(T). Then theMakesparMinimization

Letl = (3, F, <<, m) be an instance of NON-IDlg&and [, z) Multi-Machine Problem with Global Non-ldling Probfe
some schedule df If t O N, we denote byn(t) = Cardr NON-IDLE; comes as follows:

Y(t)) the number of jobs which are scheduled at timi¢-u NON-IDLE;: {Compute a feasible schedule T of I = (J, F,
according toT, and we call this function thesource profile <<, m) with a minimal makespan Card(Act(J.))
functionof the schedule. We say that this functior n(t)
is a pyramidal profile functionif for any time unitg, t’, t”
such that’ <t < t”, we have Inf((t'), ni(t")) < n(t) (see
figure 1).

Notice that, while setting this problem, we do rexquire our
scheduleT to start at instant O, and, also, that it would be
possible to take into account co€igrelated, for any jol, to

the date whenj is run.

[ll. STRUCTURAL ANALYSIS of NON-IDJ-E

In order to proceed to the analysis of the feasjbdroblem
NON-IDLE,, we need to introduce some additional concepts.



3.1. Blocks, Holes, k-schedules, Time Window Sabil

Let T some pre-schedule of the NON-IDd.iBstancel = (J,
F, <<, m). We denote bg(T) (respectivelye(T)) the smallest
(respectively largest) time-unit such that at least job is
performed at time-unit. We say that an intervad [
ACT(T) = {<(T), ..,e(T)} is a T-blockif every jobJ; which is
scheduled insid® is such thaF(i) /7Q. A time-unitt is then

a k-hole for T, where k is some positive number, if ther

exists time-unitg, t', t” such that:

- P <t<ty

- Inf(ng(t'), ne(t”)) > ny(t) = k (in the following figure 2,
time—unit 6 is a 2-hole and time-unit 7 is a 1-hole

Clearly, T is a feasible schedule if only if, for akyn {0..m-

3.2. Existence of a m-matchiagd of a pre-schedule

Let | = (3, F, <<, m) some NON-IDLE instance. For any
interval Q, we denote by(Q) the set of all jobs;, such that
F(i) O Q.Then one may derive in a straightforward way
from classical Konig-Hall Theorem related to thésence of
generalized matching in bipartite graphs that:

é?roposjtion 2. The instance (J, F, <<, m) admits a m-

matching if and only if, for any interval of N, we have
Card(J(Q)) < m.Card().

The next property mainly derive from the stabildf/ F. It
will help us in dealing with the precedence relatss.

1}, it has no k-hole. This leads us to introduce theproposition 3: The instance (‘], F, <<, m) admits a pre-

intermediate notion ok-schedulethe pre-schedul& is ak-
schedulef T has nol-hole forl = 0.k-1, or, equivalently, if

schedule if an only if it admits a m-matching.

the functiont -> Inf(k, n+(t)) has a pyramidal shape. The timeprinciple of the proof: starting from ammatchingT, one

diagram of Figure 2 represents a pre-schedule wisieh1-
schedule, but not a 2-schedule since time-unit & ishole.
Clearly, a feasible schedule isreschedule and conversely.

A n(t)
k=2 S B R
| |
1 s(T)=2 3 a 5 6 7  e(T)=8 time
Tis a 1-schedule but is not a 2-schedule
Figure 2: k holes
The family of time-windowsF(i), i = 1.n, is stable with

respect to the precedence relation << if, for aay pf jobs
Ji, J such that); << J;, we haver; < rjand d; < d. The
following result states that we may assume, witteanyt loss
of generality, that our input family of time windevis stable
with respect to the precedence relation <<:

only has to iteratively exchanggi), T(j) values in order to
makeT compatible with the << precedence relation.

3.3. Existence of A Feasible Schedule

Let | = (J, F, <<, m) our NON-IDLE, instance. If the
condition provided by Proposition 3 is satisfiede wasily
become able to produce some pre-schet@iutldowever, such
a pre-schedule may have k-holes and thus may hahdi
“pyramidal” property required for the feasible sdhkes.
This section will provide an additional necessamd a
sufficient condition so that an instante= (J, F, <<, m)
admits some feasible schedule. Before deriving this
condition, we first give two simple lower bound pesties
which must be met by such a feasible schedule hed t
introduce the notion of propagation path which pilbve to
be a quite useful tool either to transform a preesitile into a
feasible schedule or to prove the no existenceush sa
feasible schedule.

Let Q be an interval oN. We denote bynt(Q) the set of
intervals which are contained inf» and byA(Q) the integer

Proposition 1: Let | = (J, F, <<, m) be an instance of the Value SUp , oinya) [ Card@(wy))/Card@) |. Then the meaning
NON-IDLE, problem. There exists an instance I' = (J, F,0f those definitions comes in an immediate way ugfothe

<<, m), which may be obtained from | through coastt
propagation, which admits the same set of feasblation
as f, which is such that: F’ is stable with resp® << and,
forany I, F'(i) 7 F(i).

Since the goal of this paper is mainly to provide
characterization of the feasible instances of tlikNNDLE,
problem, together with recognition
minimization algorithms, we proceed in several stdfirst,
we use the Konig-Hall Theorem related teatchings in

almost trivial following lemma:

Lemma 1: Let T some be m-matching of | = (J, F, <<, m)
and let2be an interval olN. There must exist at least one
time-unit inQ2 such that at least(£2) machines are busy

a
We understand the main role XfQ) is to provide us with a

and makespalower bound of the number of machines which arengado

be necessary if we want to succeed in scheduliagaths of
J(Q). Notice that ifQ is aT-block, then we hava(Q) >[= ,

bipartite graphsin order to characterize the instances which o n(t)/Card@Q) ], since, in this casd(Q) is exactly the set

admits amrmatching. Then, we show that amymatching
may be turned into a pre-schedule. We keep ondatifying
a structural property which is going to make pdsstbrning
this pre-schedule into a feasible schedule. Finalke
translate this mathematical characterization intecagnition
algorithm.

of the jobs which are scheduled inside

Let us assume now th&; and Q, are two intervals ofN
such thatQ; Dom Q,. If we denote byu(Qi, Q,) the value
CardMid(Q1, Q2)).Inf(A(Q1), A(Q,)), then we get:



Lemma 2: In any feasible schedule of | = (J, F, <<, m), at

least (2, ) jobs are scheduled in the interval Mi2l{  Proof: Assume thay is not no-cross and lgt(2<r < q) be

Q). the first node off such that min; = 1,1t <t,;< max;=q,1t.
From the definition of;, we know that there is a smallest

Also, the following two properties, which come in aindexs (0<s<r - 2) such that, belongs td(t,, ts.1). Thus

straightforward way and which are relatedTilocks, will [t t,] is an arc of5(T) and the concatenatiofty, to). [ts, t,] is

be useful in order to derive the main charactennatesult: no-cross. The above transformation may then beatédr
while the current propagation path is not no-cross.

Lemma 3: Let T be some m-matching of | = (J, F, <<, m)

and let;, and 2, be two connected T-blocks. Th@n// 2, Lemma6: Let T be a pre-schedule and let us assume)that

is a T-block andi(Q,7 ) > Sup@(2,),A(£2,). (to, .-, &) is a propagation path of G(T) frorp+ u to § = v,
where Card(T(t)) < m. Then there exists a no-cross and

Lemma4: Let T be some m-matching of | = (J, F, <<, m), lek<-compatible propagation path from u to v in G(T)

0, be a T-block, and le®, be an interval such tha?, n

is empty. If, for any pair (u, t) g2, * Q, n(u) > n(t) Sketch of the proof. Define the extended length of such a

(respectively f(u) > n(t)), thenA(Q2y) > A(Q2,) (respectively pathy in G(T) as the sunx ; - x [t —t., 0, and consider a

MRy > A(2)). propagation patly from u to v with minimal extended length
and whose length is maximal among the paths withinmail

Given am-matchingT, we now define what is a propagationextended length. Assume also tlyais not <<-compatible

path of T. We first define thepropagation graphG = (H, and leto = (Jio), .., Jix1) be a labeling of. The jobs of the

E(T)) as the labeled directed graph whose node séteis labeling are called thenovingjobs, while the other jobs are

interval H = {rmin, .., dmag Of the possible values fof, and called thestatic jobs. SinceT is a pre-schedule andis not

the arc seE(T) is defined by: <<-compatible, << is violated i’ = TrangT, y, o) because
- [t t] OEM) iff t #t" and there is at least one jdp an inversion either between a static jblscheduled at and
which is scheduled atand which is such that O F(i). a moving jobJi scheduled ats,; or between two moving
- If job J; is scheduled dtandt’ O F(i), thenJ; is said to be jobsJ andJ; respectively scheduled at tirhg, andt,.,. In
alabd of the arc {, t']. both case, one checks that it is possible to reger@athy in
Then, apropagation pattof T is an elementary path= (to, .., order to get a contradiction on the minimalityyof

t) of G(T). The sub-path of from#t; to t; will be denoted by

y(ti , ). ThelengthL(y) of y is the valuek + 1 (that means Let T be a pre-schedule and letbe a time-unit such that
the number of vertices gj, and theextended length*(y) of ~nr(u) > 0. The next lemma provides us with an important
yis the sunk - 1  fts — teal- property of the setAr(u) of the time-units that may be
This propagation patpis monotoneif the sequencey ..,t,)  "€ached fronu by the propagation paths G{T).

is either decreasing or increasing. Itis-crossif for anyr .

[{1..k}, we have eithet, > Sup, - 1,1t ort, > Inf; -, 4 t, . L€Mma7: The set Au) is a T-block

Clearly, the no-cross property may be viewed aseakw )

version of monotonicity. It isabeledwhen all its arcs are We are now able to describe and state the stalctur
assigned with labels, that means when, with anyraygwe ~ condition which must be met by a NON-ID§.hstancel =
decided to associate some jhhwhose valuel(i) is likely to (J,F, <<,m) so that it admits some feasible schedule.

be modified through shiftpropagation alopg

Thedpalthy is said fto befitted if it (ijs Iabelgdhand isatisfies feasible if and only if:
Car ty)) <m. Of course, we understand that yf£ (to, .., o

ty) is Oa_pfrg%agation path &(T), which is fitted anc‘iﬁprg)(\)/ided 1. Forany interval@2 of N, Card(J@)) =< m.Card().
with the labelingo = (Jo), -, Jixs), then we brcome able to 2. For any sequenced,..(%) of intervals of N, such
modify them-matchingT and get anothem-matchingT = that ©, Dom...Dom¢, ,we have:

TrangT, v, 0) by settingT’(Ji) = t,+1 for anyp = 0,..,k-1. Card(J-0J s=1.pJ(2) ) = Zs-1 pa €2 s1a).

Theorem 2: The instance | = (J, F, <<, m) of NON-IDLEs

Let T be a pre-schedule and it (t, .., t) be a propagation Sketch of the Proof. . _

path of the grapl&(T). If y has at least one labelimgsuch 1he ‘only if" part of the proof is a straightforvr
thatT’ = TrangT, y, 0) is a pre-schedule, theris said to be ~ consequence of propositions 2 and 4 and lemmags3L, 2
compatiblewith the precedence relation <<<-compatible
in short). Then two following lemmas show the wayanoss
propagation paths may turn a pre-schedule intch@natne:

Before dealing with the “if’part, let us recalldh for anyk =
1.m, a pre-schedul& is ak-schedule ifT has nal-hole for
any | = 0.k-1. So we adapt the definition of the quantity
Lemma5: Let T be a pre-schedule and let us assumejthat H(Q1,Q,), whereQ, andQ, are two time intervals such that
(to, .., 1) is a propagation path of G(T) from# uto g =v. 1 Dom Q, to kschedules by settingp({Q,,Q, k) =
Then there exists a no-cross propagation path frota v in ~ CardMid(Q1, Q2)).Inf(A(Qy), A(Q2, K). Then one checks:

G(T).



Lemma 8: Let ; and ©, be two time intervals such th&
Dom®@ In any k-schedule of | = (J, F, <<, m), at least
M0y,£, K) jobs are scheduled in the interval Mij( ).

In order to prove the “if” part, we extend the staent of
Theorem 2 tok-schedules and prove it by induction kn

Using k-schedules allow us to try to perform an inductive

reasoning in order to prove Theorem 2, and to pribnve
following inductive extension of Theorem 2keschedules :

Inductive Formulation of Theorem 2: The instance | = (J,
F, <<, m) of NON-IDLE admits at least one k-schedule if
and only if the following two conditions are s&a#sf
1. Forany interval@Q of N, Card(J(2)) < m.Card@).
2. For any sequencedd,..2;) of intervals ofN, such
that @, Dom... Dom@, ,we have: Card(JE -1

‘](QS) ) = ZS: 1..p-1,u£(-(251 Qs+1,k).

In order get it, we proceed by induction krMore precisely,
we show that if an instande= (J, F, <<, m) of the NON-
IDLE, problem has at least kschedule and nok+{l)-
schedule, then there exists a sequence of intetlratsdoes
not satisfy condition 2 of the above statemenbriter to get
such a sequence, we considérsthedul€Tl of I, such that:

T has a minimum number &fholes;

the vector ly(m),.., N+(1)), whereN(j) = Card(t such
thatn(t) =j}), is lexicographically minimum.

The graph of the piecewise constant function tr{t) may
be decomposed into 3 parts:

a left part, which is an increasing piecewise consta
function: we denote bﬁ'”fp, 1<p < k+l, the smallest
time-unit at which the stair height is at leastadop;

a right part, which is a decreasing piecewise constal
function: we denote b)CS“pp, 1< p < k+l, the largest
time-unit at which the stair height is at leastada p;
amediumpart, made of the time-units u such thdu) >

k + 1, and such that at least one time-unitkshale.
Cq‘m Czlnf CQSUP C1Sup

l o /\/\/\l

Upy

&

Figure 3: t -> n(t) segmentation

A

From the minimality ofT, we easily get that the propagation

graphG(T) is such that there is no propagation path:

- fromt which satisfiesw(t) >k + 2 to ak-hole; (E1)
- from C3*%, or C", to ak-hole; (E2)
- from time-unitsC>*%,to C* + 1, 1<j <p;,  (E3)
- from time-unitsC™, toC"; +1, 1<j <p;  (E4)

From what precedes, we deduce 3 families of interva
theright family L,..L;,, which we get from th&@-blocks
A(C™™), 1 < p < k+1, by merging those intervals
which are connected. By using lemmas 7 and 8, we m

check that, for any i = 1.- 1: 2 { g miawi, Li+1) Nr(t) =
A(Ly)-CardMid(L;, Li+a)) < W*( L, Lisa, k+1) ;
the left family L*;..L*,, which we get from thd-blocks
AT(C'”fp),l < p < k+1, by merging those intervals which
are connected. By using lemmas 7 and 8, we maykchec
that, for any i 1h - 1: X ¢ o miges, iy M) =
A(L*).CardMid(L*;, L*ihq) < p*( L*j, L¥juq, k+1) ;
the mediumfamily J;..Jq, which we get from th&-blocks
Ar(u), u such thatni(u) > k + 2, by merging those
intervals which are connected. By using lemmasd &n
we check that, for any i = L= 1: Z g miggi, ity () =
A(J).CardMid(J;, Ji+) < W*( 3, Jivr, k+1) ;
S VIR
Ak

AAA

bd

AA

Figure4: t->n(t) Interval Decomposition

Because of (El1, .., E4), those intervals definstirtit
connected blocks, with non empty space between.them
Still, since we may have*; n J; # Nilor L, n Jy # Nil,
we merge once again the connected intervalsasfethhree
families. Then we get a sequence of non connectetvals

IJ]\(Il..M,, of disjoint T-blocks such thatl; Dom.. Dom M, and

number of jobs which is il ;- 1, J(M;) is not large enough
to avoid the existence ofkahole. Then we conclude.

nt
IV. POLYNOMIAL ALGORITHMS

4.1. A Exact Polynomial Algorithm for the NON-IDLE
Problem

The proof of Theorem 2 is not an algorithmic prasifice it
involves an hypothesis abadbubly minimalitywhich has no
algorithmic interpretation. In this section, wesfishow that
a forbidden pattern of intervals may also be fotnoth any
k-schedule which satisfies a weaker set of condititran
that of the doubly minimak-scheduleT considered in the
proof of Theorem 2. It allows us to get conditiomkich
might be used as halting test inside the “whileddoof a
recognition algorithm, and to derive a exact polyna
algorithm which solves NON-IDLE and whose correctness
mainly relies on this new set of sufficient conuafits.

So, letT be ak-schedule and ldfl andV be two disjoint sets
of time-units: PP(U, V) is the set of propagation paths of
G(T) which start inU and end intdv, Hole(k) is the set of
time-unitst which arek-holes, andropk) is the set of time-

gnitst which satisfiesni(u) >k + 2. Then we may state:



Theorem 3. Let | = (J, F, <<, m) be an instance of NON- Makespan minimization is contained into feasibiligsting,
IDLE,, and k in {1, .., m-1}. Let us assume that T ik-a and comes in a simple way through the followingcess:

schedule of | such that the following conditions aatisfied:

1. Tis nota (k+1)-schedule;

2. PP(Top(k) O {C™,..CMwi} O {C5*%,...C*"R..D),
Hole(k)) is empty;

3. PP(Top(k), {¢"; -1,..,C" 1 -1} T{C5*, +1,.., C®,
+1}) is empty;

4. Forj=2.k+1, PP{C"}, { C®®, + 1}) is empty;

5. Forj=2.k+1, PP{C™}, { C""; - 1}) is empty;

Then the instance | has no (k+1)-schedule

This result gives rise to the following algorithnE SRCH-
SCHEDULEQ, F, <<, m) which provides, for any = (J, F,
<<, m), either a feasible schedule bfor a k-scheduleT

M akespan-Min-No-Idle-Schedule Algorithm.
Input the instancé = (J, F, <<, m)
Output a no idle feasible schedule oFailure signal;
Initialize T through SEARCH-SCHEDULE;
If Failure(Initialize) thenFailure Else
Not Stop
While NotStopdo
A <- Makespalfir);
Let t; andt, respectively the smallest and largest
active time-units according ffy
For any johJ 00 J, setF4(i)) =F(i N {t, + 1,t;};
T-Aux<- SEARCH-SCHEDULE(, F,, <<, m);
If T-Aux# Failure thenT <- T-AuxElse
For any johJ, 0J, setF4(i) = F(i) N{ ty,..,t>-1};

which satisfies 1.5 abovetlole(k), Topk), C**%, , C",
denote here variables related with the currestheduleT.

T-Aux<- SEARCH-SCHEDULE(, F,, <<, m);
If T-Aux# Failure thenT <- T-AuxElseStop
Makespan-Min-No-ldle-Schedue T ;
Algorithm SEARCH-SCHEDULE(J, F, <<, m):
T <- MatchingJ, F, m); (*Computation of an initial m-
matching, through a standard matching procedlre
If T does not exist €ondition of Propositions 2 and*)3
thenSEARCH-SCHEDULE- Fail Else Sketch of the Proof: the basic point here is thatTifis some
T <- Pre-Schedul@, F, m, <<, T); (*Turn T into a feasible schedule with active time-unit #&T(T) = [a, b] ,
pre-schedule through propositiof)3 and if there exists a feasible scheddle with smaller
k <- Sup; = o.m | SUCh thaf is al-schedule; NoStop makespan thaif, thenT may be computed inside the time-
While k < m and NotStopdo Search, according to thisW'ndOW [a. b].
order, for a propagation pagtin:
o PP(Topk) O {C",..C"™.} O {C%,..C3"".},

Theorem 5. The above Makespan-Min-No-ldle-Schedule
algorithm solves, in an exact way, the Makespan
Minimization NON-IDLE Problem in Polynomial Time

V. CONCLUSION

Hole(l); Sup up inf We just studied a variant of the m-machine nomglli
OPPQOF’(")- {C™ +1,.., C*%y +1} O {C"; -1,.., problem: a structural feasibility criterion as wels
C™1 -1}); polynomial algorithms have been provided. Howesexeral

00 =24 PPUC™®, C™ },{C" 1 -1, C°®, +1});  questions about the complexity of more general bleros
If Failure(Search) (Y does exist*) theiStop yvith thg same HNI constraint.s are still open: ituleb be
Else Leto be a label of; T <- TransT, y, 0): interesting to get the complexity status of theiamr of the

' Ay problem which corresponds to the case when theidiomg

If k = m then SEARCH-SCHEDULE<- T else cgnstraint has only to be satisfied on each machine
SEARCH-SCHEDULE- Fail;
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the NON-IDLE problem in polynomial time ) ) ) o

Baptiste.P. (2005): “Scheduling unit tasks to miizie the
Sketch of the proof: as for correctness, it derives from thg'umber of idle perlods’Re“sgarch RepariCNRS LIX Lab..
proof of Theorem 2. As for complexity, one chediattonce ~ Chretienne.P (290_8): Single-machine schedulingouit
an initial m-matching has been computed, time-windows mafptermediate delaysDisc. App. Mathd3-156, p 2543-2550.
be restricted in such a way that the size of toeion be _  JougletA (2012): “Single-machine scheduling ‘_’V'ﬂ,],' n
polynomial bounded by the numberof jobs, and that the 'dle time and release dates to minimize a reguigeron”,
number of time the path search instruction fonegik, may Journal of Schedulings (2), p 217'2“38-
be polynomialy bounded in n and k. This providesvith the Valente .J.M. A'VG,S-R (2005): “An exact approach to
key argument for the time-polynomiality of our aligom. early/tardy scheduling Computers/OR82, p 2905-2917.

Landis.K (1983): “Group technology and cellular
4.2, An Exact Polynomial Algorithm for the NON-IDLE Manufacturing in Westvaco'Project Report in IOMS81,
Problem School of Business, University of Southern Califarn

Irani.S, Pruhs.K (2005): “Algorithmic problems imywer

management’ACM Pressvol 36, p 63-76, New York, USA.



