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Abstract

We introduce a new consistency condition for neutral social welfare functions, called hyper-
stability. A social welfare function α selects a complete weak order from a profile PN of linear
orders over any finite set of alternatives, given N individuals. Each linear order P in PN gener-
ates a linear order over orders of alternatives,called hyper-preference, by means of a preference
extension. Hence each profile PN generates a hyper-profile ṖN . We assume that all preference ex-
tensions are separable: the hyper-preference of some order P ranks order Q above order Q′ if the
set of alternative pairs P and Q agree on contains the one P and Q′ agree on. A special sub-class of
separable extensions contains all Kemeny extensions, which build hyper-preferences by using the
Kemeny distance criterion. A social welfare function α is hyper-stable (resp. Kemeny-stable) if at
any profile PN , at least one linearization of α(PN) is ranked first by α(ṖN), where ṖN is any separa-
ble (resp. Kemeny) hyper-profile induced from PN . We show that no scoring rule is hyper-stable,
and that no unanimous scoring rule is Kemeny-stable, while there exists a hyper-stable Condorcet
social welfare function.
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1 Introduction

Many collective choice situations involve orderings of a finite set of m alternatives as resolute out-
comes. Natural examples are choosing a social preference or a priority order over decisions, ranking
candidates in sport or arts competitions (e.g. the Eurovision song contest) or assigning tasks to indi-
viduals. In the latter example, there are m positions to be filled by m individuals, each being assigned
a specific position. Given the natural ranking 1 > ... > m of the positions, a social outcome is an or-
der f (1) � ... � f (m) over individuals obtained by means of a bijection f from the set of positions to
the set of individuals.

The classical framework of social choice theory calls for individuals to report their preferences
over social outcomes. When social outcomes are linear orders, preferences over outcomes are or-
ders of orders, or hyper-preferences. However, reporting full preferences faces a problem of practical
implementation: in the no-indifference case, individuals have to rank m! outcomes. More gener-
ally, when outcomes are complex combinations of basic alternatives, likewise orderings or subsets,
choosing from full preference profiles is hardly achievable in practice. This suggests to design pro-
cedures based on partial information about individual preferences.1 An immediate option is asking
each of the individuals to report only one order. Formally, this procedure reduces to using a Social
Welfare Function (SWF) α, which maps every profile of linear orders to a weak order of alternatives,
completed with a tie-breaking rule.

It follows that some normative properties of SWFs cannot be investigated without retaining as-
sumptions on how individual orders over alternatives are extended to underlying hyper-preferences.
A typical example is given by strategy-proofness, which can be defined only conditional to the way
orders over alternatives are extended to hyper-preferences. Bossert and Storcken (1992) prove im-
possibility results for hyper-preferences generated by the criterion of Kemeny distance: given an order
P over alternatives, the hyper-preference from P ranks an order Q above another order Q′ if the Ke-
meny distance between P and Q is strictly lower than the one between P and Q′.2 Bossert and Spru-
mont (2012) investigate strategy-proofness for hyper-preferences based on the following betweenness
criterion: the hyper-preference from P ranks Q above Q′if the set of alternative pairs P and Q agree on
contains the set of pairs P and Q′ agree on.3 Another property requiring extending orders to hyper-
preferences is the Pareto property, which states that an SWF (with a tie-breaking rule) chooses at any
profile over alternatives a linear order that is not unanimously less preferred than another order.

In this paper we introduce a new property for neutral SWFs, called hyper-stability, which also im-
plies linking orders over alternatives to hyper-preferences. Hyper-stability is a consistency property
relating two levels of choice, the one from profiles of orders over alternatives, called basic profiles, and
the one from hyper-preference profiles, or hyper-profiles. Loosely speaking, an SWF is hyper-stable if
its outcomes at any basic profile is top-ranked at the corresponding hyper-profile. More precisely,
consider an SWF α defined for any finite number of alternatives. Hence, α provides a weak order
at any basic profile over m alternatives as well as from any basic profile over m! alternatives. Fur-
thermore, suppose that α is neutral, meaning that its outcomes are non-sensitive to the labeling of
alternatives. Thus, profiles over m! alternatives can be also interpreted as hyper-preference profiles

1This is what prevails in the Eurovision song contest, where ballots are based on a partial scoring method.
2The Kemeny distance between two linear orders is the number of pairs of alternatives which they disagree on.
3See Duddy et al. (2010) for an analysis of strategy-proof SWFs based on ordinally fuzzy preferences.
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over orders of m alternatives, or in short hyper-profiles. While a basic profile clearly entails a huge
loss of information about preferences over outcomes, there may nonetheless exist, in the spirit of
revealed-preference theory, a class of underlying hyper-profiles (over m! orders) compatible with the
basic profile at which α ranks at top at least one linearization of the weak order chosen from the basic
profile. If this happens at every possible reduced profile, we say that α is hyper-stable.

As for strategy-proofness, a key-issue for hyper-stability is what is meant by a class of hyper-
profiles compatible with a basic profile. We assume here that compatibility holds when hyper-
preferences are generated from orders over alternatives in accordance with the betweenness crite-
rion. Clearly, this criterion allows to compare only a small number of orders, therefore a basic pro-
file generates a large class of compatible hyper-profiles. Nonetheless, we prove the existence of a
unanimous and hyper-stable Condorcet SWF.4 However, many well-known Condorcet SWFs are not
hyper-stable.

We also pay attention to the sub-class of hyper-profiles built by means of the Kemeny distance
criterion. Hyper-stability relative to this sub-class is called Kemeny-stability. We show that no scor-
ing rule is Kemeny-stable, hence hyper-stable. Then, our main result is that ranking by scoring is
incompatible with hyper-stability, while the Condorcet criterion is not.

To the best of our knowledge, hyper-stability is a new property for SWFs, although related prop-
erties appear in several studies of collective choice. The yeast of the present study can be found in
Binmore (1975), who considers a stronger notion of hyper-stability, although in a different setting.
Suppose that preferences are now weak orders over three alternatives, which are aggregated to a
weak order by means of a neutral SWF α. Binmore does not comment on hyper-preferences beyond
writing “if a rational entity holds a certain preference preordering over a set of alternatives, then
that entity must also subscribe to a certain partial preordering of the set of all preorderings” (Bin-
more, 1975, page 379). Moreover, weak orders are compared according to their respective top-sets.
All relevant top-sets in Binmore’s analysis contain at most two elements and the criterion works as
follows: Given a weak order R, sets {x}, {y}, and {x, y} are ranked in the order {x}, {x, y}, {y} if
and only if xRy. Given the 13 possible weak orders over 3 alternatives, this criterion suffices to find
a family T of triples of weak orders on which basic preferences generate a hyper-profile.5 Since α

is neutral, it can be applied to each of these hyper-profiles, leading to a weak order RT over each
triple T in T . Furthermore, the weak order chosen from the basic profile also induces a weak or-
der R̃T over each triple T in T . Binmore shows that RT and R̃T coincide for all T in T if and only
if α is dictatorial, anti-dictatorial or constant. There are three main differences between Binmore’s
approach and the present one. First, basic preferences and hyper-preferences are weak orders in Bin-
more’s study, while we assume both are linear orders. Second, Binmore’s setting defines SWFs for
three alternatives only. Using neutrality together with a way to generate hyper-preferences, this al-
lows to choose from hyper-profiles over triples of orders. In contrast, our setting involves a variable

4An alternative is a Condorcet winner at some basic profile if it defeats all other alternatives according to the majority
rule. An SWF is Condorcet if it uniquely ranks first a Condorcet winner whenever it exists.

5To see why, label alternatives as x, y and z, and consider the following weak orders R1, R2 and R3 (with respective
a-symmetric parts P1, P2 and P3 ) defined by zP1yP1x, yP2zP2x and yR3zP3x. Denote by %1, %2 and %3the respective
hyper-preferences induced on {R1, R2, R3} by R1, R2 and R3. Then one gets R1 �1 R3 �1 R2, R2 �2 R3 �2 R1 and
R1 ∼3 R2 ∼3 R3. It is easily seen that for each of the 13 possible weak orders, R1, R2 and R3 are ranked as in %1, or %2 or
%3. Hence, any basic profile generates an hyper-profile over triple {R1, R2, R3}.
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number of alternatives, and defines hyper-preferences as linear orders over all orders. Again, using
neutrality together with a way to generate hyper-preferences, this allows to have a well-defined out-
come at profiles over m alternatives and at hyper-profiles over m! orders. Third, our definition of
hyper-stability is clearly less demanding than Binmore’s one, since it only requires that some social
order chosen from basic profiles is top-ranked from hyper-profiles, imposing nothing about how this
social order itself generates a social hyper-preference.

Another study related to hyper-stability can be found in Laffond and Lainé (2000), although the
property is not explicitly stated there. Using the same framework as the present one, Laffond and
Lainé characterize the class of (neutral and independent) hyper-preferences such that whenever the
majority tournament at a basic profile is transitive, it is a Condorcet winner of any corresponding
hyper-profile. This characterization result can be restated as follows in terms of hyper-stability. Call
strongly Condorcet a SWF which gives as outcome the majority tournament whenever it is transitive.
Then every strongly Condorcet SWF is hyper-stable relative to some class of hyper-preferences. .

Hyper-stability also appear, at least in watermark, in the literature of moral judgments.6 Sen
(1974) argues that morality requires to formulate judgments among preferences while rationality
does not, and suggests using moral views, defined as hyper-preferences, as a way out of the Pare-
tian liberal paradox à la Sen (1970).7 If one accepts basic profiles as expressions of rationality (in-
dividuals reporting their first-best outcome) and hyper-profiles as expressions of moral judgments,
hyper-stability can be interpreted as a property of moral consistency: choices made from rational
preferences does not conflict with the one made from moral judgments.

Furthermore, hyper-stability can be related to a property of self-selectivity for SWFs. Self-selectivity
is defined for a social choice function (SCF) by Koray (2000).8 Roughly speaking, an SCF is self-
selective if it chooses itself against any finite number of other social choice functions. Self-selectivity
thus involves two levels of choice: choices from profiles over alternatives, and choices from pro-
files over choice functions. These two levels are connected by means of a consequentialist principle,
which states that individuals preferring alternative x to alternative y will rank any function choosing
x above any function choosing y. Koray (2000) shows that a neutral and unanimous SCF is self-
selective if and only if it is dictatorial. While consequentialism allows for a canonical extension of
preferences over alternatives to preferences over SCFs, this is no longer the case for SWFs. Nonethe-
less, self-selectivity for SWFs can be defined conditional to the definition of hyper-preferences. An
individual with preference P in some basic profile PN will prefer SWF α1 to SWF α2 if α1(PN) is
”closer” to P than α2(PN), where closer can be in terms of the Kemeny or any other distance. More
generally, once defined how P generates a hyper-preference Ṗ, two SWFs being compared accord-
ing to the way Ṗ ranks their respective outcomes. Hence the consequentialist principle applies, but
conditional to the way basic preferences are extended to hyper-preferences. We say that a SWF is
SW self-selective for some preference extension if, at any basic profile it ranks itself first when com-
pared to any finite set of SWFs. We show below that hyper-stability is a necessary condition for SW
self-selectivity.

6One can think of hyper-preferences also as preferences of individuals over others in the society.
7See Igersheim (2007). The reader may refer to Jeffrey (1974), McPherson (1982), and Sen (1977) for further discussion

on the more general concept of a meta-preference.
8A social choice function picks one alternative at every profile of preferences over alternatives. For further studies of

self-selectivity, see Koray and Unel (2003) and Koray and Slinko (2008).
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The rest of the paper is organized as follows. Part 2 formally defines hyper-stability, and inves-
tigates its relation to self-selectivity. Hyper-stability of scoring rules is studied in Part 3. In partic-
ular, we provide examples showing that neither the Borda rule, nor the plurality and anti-plurality
rules are Kemeny-stable, hence hyper-stable. Moreover, we show that no unanimous scoring rule is
Kemeny-stable, and that no scoring rule is hyper-stable. Condorcet SWFs are considered in Part 4.
We show that the Slater SWF, the Kemeny rule, and the Copeland SWF are not hyper-stable, whereas
the transitive closure of the majority relation over alternatives is hyper-stable. The paper ends up
with comments about alternative concepts of hyper-stability, together with open questions. Finally,
all proofs are postponed to an appendix.

2 Hyper-stability

2.1 Notations and definitions

Let N be the set of non-zero natural numbers. We consider societies with variable numbers of in-
dividuals and of alternatives. Hence, N stands for the sets of potential alternatives and individ-
uals, and each actual society involves finitely many individuals confronting finitely many alterna-
tives. Given m ∈ N, we define Am = {1, ..., m} as a set of m social alternatives. The set of linear
(resp. weak) orders over Am is denoted by L(Am) (resp. R(Am)). An order P ∈ L(Am) is a lin-
ear extension of R ∈ R(Am) if for any a, b ∈ Am, aPb ⇒ aRb. The set of all linear extensions of
R ∈ R(Am) is denoted by ∆(R). Given a set N of n individuals, a weak profile is an element RN of
R(Am)

n, and a profile is an element PN of L(Am)n. The set of all linearizations of the weak profile RN is
∆(RN) = ×i∈N(∆(Ri)).

A function α from ∪m,n∈NL(Am)n to ∪m∈NR(Am) is a social welfare function (SWF) if, for all n, m ∈
N and all PN ∈ L(Am)n, α(PN) ∈ R(Am). Moreover, a SWF α is neutral if for all n, m ∈ N and
all PN = (P1, ..., Pn) ∈ L(Am)n, for all a, b ∈ Am, a α(PN) b if and only if γ(a) α(Pγ

N) γ(b). Note
that since α are defined for any number of alternatives, neutrality ensures that the precise labeling
of alternatives does not matter. In particular, α is defined for profiles over m! alternatives, which
can be either basic alternatives or linear orders over m basic alternatives. Furthermore, a SWF α is
unanimous if, for any m, n ∈ N, for any profile PN ∈ L(Am)n, for any two alternatives a, b ∈ Am,
[a Pi b for all i = 1, ..., n] implies that [a α(PN) b and ¬(b α(PN) a)]. Given a SWF α, the α-induced
correspondence fα : ∪n,m∈NL(Am)

n → 2Am \∅ is defined by: ∀n, m ∈ N, ∀PN ∈ L(Am)
n, ∀a ∈ Am,

a ∈ fα(PN) ⇐⇒ a α(PN) b for all b ∈ Am. Hence, the α-induced correspondence selects at each
profile PN the top-set for α(PN).

2.2 Preference extensions

We turn now to the notion of hyper-preference. A preference extension is a function e : ∪m∈NL(Am)→
∪m∈NL(L(Am)) such that for all m ∈ N and all P ∈ L(Am), e(P) ∈ L(L(Am)). Hence, a preference
extension maps each linear order over m alternatives to a linear order over all linear orders over
alternatives. An element of L(L(Am)) is called hyper-preference. An extension domain is a proper
subset E of the set of all preference extensions. Given a profile PN = (P1, ..., Pn) ∈ L(Am)n together
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with a n-tuple E = (e1, ..., en) ∈ En, an hyper-profile of PN is the element PE
N = (e1(P1), ..., en(Pn)).

Given P, Q ∈ L(Am), we define the set A(P, Q) = {(a, b) ∈ Am × Am : aPb and aQb}, which
contains all alternative pairs P and Q agree on. We focus on the specific class of separable preference
extensions.

Definition 1 A preference extension e is separable if for all m ∈ N and all P, Q, Q′ ∈ L(Am), A(P, Q) ⊃
A(P, Q′) implies Q e(P) Q′.

We denote by S the domain of separable preference extensions.
Given P, Q ∈ L(Am), the Kemeny distance between P and Q is defined by dK(P, Q) =

|{(a, b) ∈ Am × Am : aPb and bQa}|, that is the number of pairs of alternatives P and Q disagree on.

Definition 2 A preference extension e is Kemeny if for all m ∈ N and all P, Q, Q′ ∈ L(Am), dK(P, Q) <

dK(P, Q′) only if Q e(P) Q′.

We denote by K the domain of Kemeny preference extensions. Pick up any P ∈ L(Am). Using
Kemeny distance allows to induce from P the element%P∈ R(L(Am)) defined by: ∀Q, Q′ ∈ L(Am),
Q %P Q′ iff dK(P, Q) ≤ dK(P, Q′), and Q �P Q′ iff dK(P, Q) < dK(P, Q′). In words, the weak
order %P induced by P ranks orders according to their respective distances to P. Given profile PN =

(P1, ..., Pn) ∈ L(Am)n, the Kemeny weak profile for PN is defined by PK
N = ( %P1 , ..., %Pn). Thus, a

preference extension e is Kemeny if for all m ∈ N and all P ∈ L(Am), e is a linear extension of %P.
We call Kemeny hyper-profile any linearization of PK

N. Clearly, every Kemeny extension is separable,
and thus K ⊂ S .

The Kemeny distance criterion can be criticized by arguing that when comparing two orders,
inversions in the lower tail of the ranking are less important that inversions in the upper tail. If three
candidates a, b, c are to be ranked as gold, silver and bronze medal, and if your own ranking is aPbPc,
then you should prefer order aQcQb to order bQ′aQ′c, since reversing order for gold and silver seems
appears as a more significant deviation than reversing order for silver and bronze. This calls for
breaking symmetry by using weighted Kemeny distance (equivalently, this calls for some specific
way to break ties in the Kemeny weak profiles). Note however that such a critic no longer holds if
agendas are interpreted as task assignments. Indeed, suppose that aQcQb stands for assigning task
1 to individual a task 2 to c and task 3 to b, a similar meaning being given to Q′. Provided that all
task are given the same importance, Q and Q′ involve only one mismatch from the viewpoint P, and
nothing suggests why Q should be preferred to Q′.

The following example illustrates the construction of Kemeny hyper-profiles. Consider the fol-
lowing profile PN = (P1, P2, P3) over 3 alternatives a, b, c:

PN =


P1 P2 P3

a c c
b b a
c a b


The Kemeny weak profile PK

N of PN is defined by
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PK
N =


%P1 %P2 %P3

abc cba cab
acb, bac bca, cab cba, acb
bca, cab acb, bac abc, bca

cba abc bac


where xyz stands for the linear order xPyPz, and where two orders belonging to the same row and
column are indifferent. A Kemeny hyper-profile for PN is any element ṖN of ∆(PK

N). For instance,

ṖN =



Ṗ1 Ṗ2 Ṗ3

abc cba cab
bac cab cba
acb bca acb
bca bac abc
cab acb bca
cba abc bac


Contrarily to the Kemeny distance criterion, separability does not automatically induces a weak

order over orders. For instance, e(P1) ∈ S only if the following conditions holds: (1) e(P1) uniquely
ranks P1 first and its inverse cba last, (2) acb is ranked above cab, and (3) bac is ranked above bca. The
reader will easily check that hyper-profile P̃N below is built from a vector of separable preference
extensions which are not Kemeny.

P̃N =



P̃1 P̃2 P̃3

abc cba cab
bac cab cba
bca bac acb
acb bca abc
cab acb bca
cba abc bac


2.3 Hyper-stability: definition

We are now ready to formally define hyper-stability:

Definition 3 Given n ∈ N, a neutral social welfare function α is hyper-stable for the domain E of preference
extensions if for all m, n ∈ N, for all PN ∈ L(Am)n, for all E = (e1, ..., en) ∈ En, we have ∆(α(PN)) ∩
fα(PE

N) 6= ∅. Moreover, α is Kemeny-stable if it is hyper-stable for K.

A neutral SWF α is hyper-stable for domain E if at every finite profile PN of linear orders over m
alternatives, at least one linear extension of the weak order α(PN) is ranked first by α when applied
to any hyper-profile PE

N induced from PN by a vector of preference extensions in E .
Figure 1 below illustrates hyper-stability.
A society with size n has to rank m alternatives, and has agreed on some SWF α as voting rule.

Hence, individual ballots are linear orders of alternatives (profile PN), and ballots are aggregated by
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αPN = ... ..
, , ...,

E = (e1, e2, ..., en)

PE
N = ...

...
... ...

α
..

∆(α(PN )) =

...

...

...

fα(P
E
N ) ∩∆(α(PN ))

Figure 1: Hyper-stability.

means of α to a weak order α(PN) of alternatives. Since α(PN) may involve ties, and since resolute
outcomes are linear orders, the final choice results from the use of some tie-breaking rule. The set
∆(α(PN)) contains all possible outcomes obtained by a tie-breaking rule. Ballots provide little infor-
mation about preferences over outcomes. We assume that “preferences behind ballots” are induced
from ballots by some n-tuple E = (e1, ..., en) of preference extensions. Therefore, the set of ballots PN
together with E generates a profile PE

N over orders, or hyper-profile. Since α is neutral and defined
for any number of alternatives, it can be applied to PE

N, leading to a weak order α(PE
N) over outcomes.

Hyper-stability prevails for (e1, ..., en) if at least one possible final outcome from ballots is ranked first
by α (or, equivalently, chosen by fα) at any full preference profile.

2.4 Hyper-stability and SW self-selectivity

While the main motivation for studying hyper-stability is that ballots can hardly indicate full pref-
erences over outcomes, another one stems from its close relationship with self-selectivity. Self-
selectivity is defined by Koray (2000) for SCFs.9 Suppose that the society has to choose one al-
ternative among finitely many, as well as the SCF itself. Moreover, suppose that given individual
preferences over alternatives, individuals compare SCFs by considering only their respective out-
comes. According to this consequentialist principle, initial preferences over alternatives naturally
extend to preferences over SCFs: consider any finite subset G of neutral SCFs together with a profile
PN = (P1, ..., Pn) ∈ L(Am)n ; define for all i = 1, ..., n the weak order R(Pi) over G by: ∀F, G ∈ G, F
R+(Pi) G ⇔ F(PN) Pi G(PN), and F R∼(Pi) G ⇔ F(PN) = G(PN), where R+(Pi) (resp. R∼(Pi)) is the
a-symmetric (resp. symmetric) part of R(Pi). It follows that PN induces a dual profile of weak orders
PGN = (R(P1), ..., R(Pn)) over G. Self-selectivity holds for a SCF F if, at any profile over alternatives,
F selects itself some linearization of the dual profile over any finite set of SCFs. Formally, F is self-
selective if for all m, n ∈ N, for all PN ∈ L(Am)n, for all finite subsets G of neutral SCFs with F ∈ G,
there exists a linearization P̃GN of PGN with F(P̃GN) = F. Koray (2000) proves that, given any fixed size

9Formally, a function F : ∪m,n∈NL(Am)n → ∪m∈N Am is a social choice function (SCF) if for all n, m ∈ N and all PN
∈ L(Am)n, F(PN) ∈ Am. Furthermore A SCF F is neutral if for all n, m ∈ N and all PN = (P1, ..., Pn) ∈ L(Am)n, for any
permutation γ of Am, F(Pγ

N) = γ(F(PN)), where Pγ
N = (Pγ

1 , ..., Pγ
n ) ∈ L(Am)n is defined by: ∀i ∈ {1, ..., n}, ∀a, b ∈ Am,

aPib if and only if γ(a)Pγ
i γ(b).
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n of the society, a neutral and unanimous SCF is self-selective if and only if it is dictatorial.10

Self-selectivity for neutral SWFs is defined along the same lines: at any profile over alternatives, a
self-selective SWF ranks itself first among finitely many other SWFs. However, since a SWF provides
a weak order, there is no longer a natural duality between preferences over alternatives and prefer-
ences over SWFs. In order to make the consequentialist principle meaningful, we need to connect
both preference levels by means of a preference extension. It follows that self-selectivity is defined
conditional to some domain of preference extensions. This last point is the major difference between
the SCF and the SWF settings: choosing preference extensions brings an extra degree of freedom in
the analysis, which may allow to escape from Koray’s impossibility result.

We formalize self-selectivity for SWFs as follows. A SWF α is called strict if for all n, m ∈ N and
all PN ∈ L(Am)n, one has α(PN) ∈ L(Am). A linearization of SWF α is a strict SWF α∗ such that for
all n, m ∈ N, for all a, b ∈ Am and for all PN ∈ L(Am), one has , a α∗(PN) b only if a α(PN) b. The
set of all linearizations of α is denoted by L(α). Pick up a profile PN = (P1, ..., Pn) ∈ L(Am)n together
with a domain E , and consider any finite subset A = {α1, ..., αK} of neutral SWFs. A strict selection
of A is a subset A∗ = {α∗1 , ..., α∗K} of linearizations of α1, ..., αK. For all 1 ≤ i ≤ n, define the weak
order %A

∗
Pi

over A∗ by: ∀1 ≤ k, k′ ≤ K, α∗k �A
∗

Pi
α∗k′ ⇔ α∗k(PN)ei(Pi)α

∗
k′(PN), and α∗k ∼A∗Pi

α∗k′ ⇔ α∗k(PN)

= α∗k′(PN) for some (e1, ..., en) ∈ En. Thus, as for SCFs, PN together with E = (e1, ..., en) ∈ En induces
a dual profile of weak orders PEA∗

N = (%A
∗

P1
, ...,%A

∗
Pn
) over A∗.

Definition 4 A neutral SWF α is SW self-selective for the domain of preference extensions E if and only
if for all m, n ∈ N, for all PN ∈ L(Am)n, for all finite subsets A of neutral SWFs that contain α, for all
strict selection A∗ of A, for any E = (e1, ..., en) ∈ En, there exists a linearization P̃EA∗

N of PEA∗
N for which

L(α) ∩A∗∩ fα(P̃EA∗
N ) 6= ∅.

A neutral SWF α is SW self-selective for domain E if the following holds: pick up any strict
selection A∗ of any finite set A of neutral SWFs including α, together with any profile PN over al-
ternatives. Picking up n preference extensions in E generates from PN a dual profile of weak orders
over A∗. Then, there exists a linearization of this dual profile at which α ranks first at least some of
its linearizations in A∗.

Note that, although it offers a natural adaptation of the original concept to SWFs, the formaliza-
tion of SW self-selectivity sounds complex for two main reasons. First, two different SWFs may have
the same outcome at some profile PN. Therefore, choosing a domain E is not enough to provide a
dual profile of linear orders over SWFs. Second, two SWFs may produce different weak orders at PN
that admit the same linearization. Moreover, note the crucial role played by neutrality, which allows
for α to be well-defined for profiles over alternatives and for dual profiles over SWFs.

Proposition 1 below states that hyper-stability is a weaker property than SW self-selectivity.

Proposition 1 A neutral SWF is SW self-selective for domain E only if it is hyper-stable for E .

10A SCF F is dictatorial if ∃1 ≤ i ≤ n such that, for all PN ∈ L(Am)n, F(PN) = a⇔ aPib for all b ∈ Am/{a}. Moreover,
F is unanimous if for any m, for any PN ∈ L(Am)n, for all a, b ∈ Am, [aPib for all 1 ≤ i ≤ n]⇒ b /∈ F(PN).

9



3 Scoring rules

We first study hyper-stability of scoring rules. Given a number m of alternatives, a score vector is
an element Sm = (s1,m, s2,m, ..., sm,m) of Rm

+, where (1) sm,m = 0, (2) s1,m ≥ s2,m ≥ ... ≥ sm,m, and (3)
s1,m > sm,m. Given a profile PN ∈ L(Am)n together with a score vector Sm, the score of the alternative
x ∈ Am in PN is Sm(x, PN) = ∑i∈N sri(x,PN),m, where ri(x, PN) is the rank of x in Pi. A SWF α is a scoring
rule if there exists a sequence {Sm

α }m≥3 = {S1
α, S2

α, S3
α...} of score vectors such that, for any m, n ∈ N,

for any PN ∈ L(Am)N, for any two alternatives x, y ∈ Am, x α(PN) y ⇐⇒ Sm
α (x, PN) ≥ Sm

α (y, PN).
We begin with the analysis of well-known scoring rules, namely the Borda rule, the plurality rule
and the anti-plurality rule.

The Borda rule B is defined by: for any m ∈ N, for any k ∈ {1, ..., m − 1}, sk,m
B = sk+1,m

B + 1. It
is easily checked that B is not Kemeny-stable, hence not hyper-stable for E . Indeed, consider the
following profile PN involving 3 alternatives a, b, c and 6 individuals, where the first row indicates
the number of individuals sharing the same preference order

PN =


3 1 2
a c c
b b a
c a b


Next, consider the following linearization ṖN of PKN :

ṖN =



3 1 2
abc cba cab
bac cab cba
acb bca acb
bca bac abc
cab acb bca
cba abc bac


Finally, B(PN) = {acb} = ∆(B(PN)), whereas S6

B(acb, ṖN) = 16 < S6
B(abc, ṖN) = 19 implies that

acb /∈ fB(ṖN). Since ∆(B(PN)) ∩ fB(ṖN) = ∅, then B is not Kemeny-stable.
The plurality rule is the scoring rule π, where, for any m ∈ N, sk,m

π = 0 for any k = 2, ..., m, and
s1,m

π = 1. Consider an alteration P′N of the profile PN above where the individual with preference cba
changes to bca. Then π(P′N) = {acb}, while, for any linearization Ṗ′N of P′KN, fπ(Ṗ′N) = {abc}. Hence,
π is not Kemeny-stable.

The anti-plurality rule is the scoring rule λ, where, for any m ∈N, Sk,m
λ = 1 for any 1 ≤ k ≤ m− 1.

Consider the following profile PN ∈ L(A3)
15, where λ(PN) = {abc}, together with its associated

Kemeny weak profile PK
N:

PN =


3 2 3 3 4
a a b c c
b c a a b
c b c b a

 PK
N =


3 2 3 3 4

abc acb bac cab cba
acb, bac abc, cab abc, bca cba, acb cab, bca
bca, cab cba, bac acb, cba abc, bca bac, acb

cba bca cab bac abc


10



We conclude that, for all P ∈ L(A6)/{abc}, Pλ(ṖN)abc for all ṖN ∈ ∆(PK
N). Thus, abc /∈ fλ(ṖN),

which implies that λ is not Kemeny-stable.
We state below four negative results about Kemeny-stable scoring rules. The key-ingredient of the

proofs is the following Theorem, which characterizes Kemeny-stable scoring rules for 3 alternatives.

Theorem 1 A scoring rule α is Kemeny-stable only if s1,3
α = 2.s2,3

α > 0, and s1,6
α = 4

3 s2,6
α = 4

3 s3,6
α = 4s4,6

α =

4s5,6
α > s6,6

α = 0. Furthermore, this is also sufficient for a scoring rule to be Kemeny-stable for three alternative
case.

A scoring rule α is non-truncated if there exists no m ∈ N and no k ∈ {2, ..., m − 1} such that
sk,m

α = 0: the score vector defined for some number m of alternatives gives a strictly positive score to
any rank above the last one.

Theorem 2 There is no Kemeny-stable and non-truncated scoring rule.

A scoring rule α is strict-at-top if, for any m ∈ N, s1,m
α > s2,m

α : all score vectors give a score to the
top-ranked alternative strictly higher than any other score. Typical examples of strict-at-top scoring
rules are the plurality and the Borda rules. Note that any convex scoring rule is also strict-at-top11.

Theorem 3 There is no Kemeny-stable and strict-at-top scoring rule.

Since a unanimous scoring rule must be strict-at-top and non-truncated, we can state the follow-
ing corollary of Theorems 2 and 3.

Theorem 4 There is no Kemeny-stable and unanimous scoring rule.

When enlarging the Kemeny domain K to the domain S of separable preference extensions, we
get an even stronger negative result:

Theorem 5 No scoring rule is hyper-stable for S .

4 Condorcet social welfare functions

We turn now to the analysis of Condorcet SWFs. We begin with some additional notations and
definitions. Given a profile PN ∈ L(Am)

n, where n is odd, the majority tournament for PN is the
complete and asymmetric binary relation µ(PN) defined over Am × Am by: ∀(x, y) ∈ Am × Am, x
µ(PN) y ⇔ |{i ∈ N : xPiy}| > |{i ∈ N : yPix}|. Given any PN, the Condorcet winner of PN is the
element CW(PN) ∈ Am such that CW(PN) µ(PN) a for all a ∈ Am/CW(PN). A SWF α is Condorcet if,
for any profile, α ranks the Condorcet winner at top whenever it exists.

We prove below the existence of a Condorcet SWF hyper-stable for S . Beforehand, we show
that three well-known Condorcet SWFs violate Kemeny stability. The Copeland solution is the SWF
ϕ defined by: ∀m ∈ N, ∀n ∈ 2N + 1, ∀ PN ∈ L(Am)

n, ∀x, y ∈ Am, x ϕ(PN) y ⇔ c(x, PN) ≥
c(y, PN), where c(x, PN) = |{z ∈ Am : x µ(PN) z}|. Consider the following profile PN, together with
the linearization ṖN of PK

N:

11A scoring rule α is convex if, for any m ∈ N, the score vector Sm
α = (s1,m

α , ..., sm,m
α ) is such that (s1,m

α − s2,m
α ) ≥

(s2,m
α − s3,m

α ) ≥ ... ≥ (sm−1,m
α − sm,m

α ).

11



PN =


1 1 1 1 1
a a b b c
b c c a a
c b a c b

 ṖN =



1 1 1 1 1
abc acb bca bac cab
acb cab bac bca acb
bac abc cba abc cba
cab cba cab acb bca
bca bac abc cba abc
cba bca acb cab bac


Then, we have ϕ(PN) = abc, while c(abc, ṖN) = 3 < c(acb, ṖN) = 4 implies that ∆(ϕ(PN)) ∩

fϕ(ṖN) = ∅. Thus, ϕ is not Kemeny-stable.
The Slater solution is the social welfare correspondence12 β defined by: ∀m ∈ N, ∀n ∈ 2N + 1,

∀ PN ∈ L(Am)
n, ∀P ∈ L(Am), β(PN) = ArgMinP∈L(Am)dK(P, µ(PN)). A SWF α is Slater-consistent

if, at any profile PN, it always selects one linear order in β(PN). Consider the following profile
PN ∈ L(A8)

5:

PN =



1 1 1 1 1
b a d c d
c b a a b
d c b d c
a d c b a
a′ b′ d′ d′ c′

b′ c′ a′ b′ a′

c′ d′ b′ c′ d′

d′ a′ c′ a′ b′


Define X = {a, b, c, d} and Y = {a′, b′, c′, d′} and consider the restrictions PN|X and PN|Y of

PN to X and Y respectively. We have that µ(PN|X) and µ(PN|Y) are isomorphic. Moreover, we
observe that (1) aµ(PN)bµ(PN)cµ(PN)dµ(PN)a, (2) cµ(PN)a, (3) dµ(PN)b, and (4) all alternatives in X
defeat all alternatives in Y . This ensures that β(PN|X) = {cdab} and β(PN|Y) = {c′d′a′b′}. Thus,
β(PN) = {cdabc′d′a′b′}. Now, consider Q = dbcad′b′c′a′. The next table gives the Kemeny distances
between each of the 5 linear orders in P = (P1, ..., P5) and respectively, β(PN) and Q:

Pi β(PN) Q
P1 3 + 4 2 + 5
P2 4 + 3 5 + 2
P3 3 + 3 2 + 2
P4 1 + 3 4 + 0
P5 3 + 1 0 + 4

.

It follows that in the Kemeny weak profile PK
N, Q is strictly preferred to β(PN) by individual 3,

while all other individuals are indifferent. Hence, there exists a linearization ṖN of PK
N where Q is

12A social welfare correspondence is a mapping δ from ∪
n,m∈N

L(Am)n to ∪
m∈N

2R(Am) such that, for any n, m ∈ N, for any

PN ∈ L(Am)n, δ(PN) ∈ 2R(Am), where 2R(Am) is the set of all non-empty subsets of weak orders over Am.

12



unanimously preferred to β(PN). Since the Slater solution is contained in the Pareto set, and since
β(PN) is a singleton, we conclude that no Slater-consistent SWF is Kemeny-stable.

The Kemeny rule is the Condorcet social welfare correspondence ω defined by: ∀ PN = (P1, ..., Pn) ∈
L(Am)

n, ∀P ∈ L(Am), ω(PN) = ArgMinP∈L(Am) ∑i∈N dK(P, Pi). A SWF α is Kemeny-consistent if, for
any profile PN, it always selects a linear order in ω(PN). Consider the following profile PN ∈ L(A3)

9

together with the linearization ṖN of PK
N:

PN =


2 3 4
b c a
c a b
a b c

 ṖN =



2 3 4
bca cab abc
cba cba acb
bac acb bac
cab bca cab
abc abc bca
acb bac cba


The reader will check that ω(PN) = {abc}, whereas ω(ṖN) = {(cab)(abc)(acb)(bca)(cba)(bac)}

which leads to fω(ṖN) = {cab}. Hence, there is no Kemeny-stable and Kemeny-consistent SWF.
We now establish the existence of a Condorcet and unanimous SWF which is hyper-stable for S .

The transitive closure θ(PN) of µ(PN) is defined by: ∀x, y ∈ Am, xθ(PN)y if and only if there exist
x1, x2, ..., xH ∈ Am such that xµ(PN)x1, x1µ(PN)x2, ... , xHµ(PN)y. Consider the SWF θ, which maps
every profile PN ∈ ∪m,nL(Am)n (where n is odd) to the transitive closure θ(PN) of µ(PN). It is easily
checked that θ is unanimous.

Theorem 6 θ is hyper-stable for S .

5 Discussion

Our main result is that no unanimous scoring rule is Kemeny-stable, hence hyper-stable for the larger
domain S of separable preference extensions. However, the transitive closure of the majority relation
is a unanimous Condorcet SWF that is hyper-stable for S .

Hyper-stability does not draw a clear border between scoring rules and Condorcet SWFs. Indeed,
several Condorcet SWFs based on well-known tournament solutions, as well as the Kemeny SWF, are
not Kemeny-stable. Characterizing the class of Condorcet SWFs hyper-stable for S is an open ques-
tion worth being addressed. Another open problem is studying hyper-stability for non-unanimous
scoring rules.

Further open questions relate to alternative concepts of hyper-stability.

5.1 Alternative hyper-stability concepts

Any strongly Condorcet13 SWF α violates the following property of hyper Condorcet-stability: A
SWF α is hyper Condorcet-stable if ∀n, m ∈ N, ∀PN ∈ L(Am)

n, ∀E ∈ Sn, α(PN) ∈ L(Am) ⇒
13A strongly Condorcet α is such that for any m ∈ N, for any n ∈ 2N + 1 and for any PN ∈ L(Am)n we have

µ(PN) ∈ L(Am) only if α(PN) = µ(PN).
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[α(PN) = CW(PE
N)]. To see why, consider the following profile PN ∈ L(Am)5, together with the

Kemeny hyper-profile ṖN ∈ ∆(PK
N):

PN =


1 1 1
a a b
b c c
c b a

 ṖN =



1 1 1
abc acb bca
bac cab cba
acb abc bac
bca cba cab
cab bac abc
cba bca acb


Since µ(PN) = abc, then α(PN) = abc for any strongly Condorcet α. However, α(PN) is defeated

in µ(ṖN) by cab. An interesting question is whether any strongly Condorcet α satisfies the following
weaker version of hyper Condorcet-stability: ∀n, m ∈ N, ∀PN ∈ L(Am)

n such that α(PN) ∈ L(Am),
there exists E ∈ Sn for which α(PN) = CW(PE

N).
Note that there are strongly Condorcet SWFs that are hyper-stable for S . Define the SWF ψ by:

∀m, n ∈ N, ∀PN ∈ L(Am)n, ψ(PN) = µ(PN) if µ(PN) ∈ L(Am), and otherwise, a ψ(PN) b and
b ψ(PN) a for all a, b ∈ Am. Then ψ is hyper stable for S . This is an immediate corollary of the
following proposition:

Proposition 2 Let PN ∈ L(Am)n be such that µ(PN) ∈ L(Am). For any E ∈ Sn, either CW(PE
N) does not

exist, or CW(PE
N) = µ(PN).

Remark that, in the Kemeny hyper-profile ṖN above, all three individual preferences are extended
through the same linearization of the Kemeny weak order. This common linearization can be de-
fined as a linear order over the permutations of the set {1, 2, 3} of ranks. Indeed, given two orders
P and Q = (a1a2...am) in L(Am), define rP(Q) = (rP(a1), ..., rP(am)) by ∀h = 1, ..., m, rP(ah) =

|{b ∈ Am : bPah}|+ 1, that is, the rank given to ah in P. Moreover, given PN = (P1, ..., Pn) ∈ L(Am)
n

, we say that the hyper-profile PE
N = (e1(P1), ..., en(Pn)) is uniform if there exists a linear order �

over the permutations of {1, ..., m} such that, for any i = 1, ..., n, for any Q, Q′ ∈ L(Am), [Q ei(Pi)

Q′ ⇔ rPi(Q) � rPi(Q
′)]. In the example above, � is defined by: (123) � (213) � (132) � (231)

� (312) � (321). We say that a SWF α is uniformly hyper-stable for S if ∀n, m ∈ N, ∀PN ∈ L(Am)
n,

∆(α(PN)) ∩ fα(PE
N) 6= ∅ for all uniform hyper-profiles PE

N with E ∈ Sn.
As a first step towards a complete study of uniform hyper-stability, we remark that the Borda

rule B is not uniformly hyper-stable. To see why, consider the following profile PN, together with the
Kemeny hyper-profile ṖN ∈ ∆(PK

N):

PN =


1 1 2
a b c
b a b
c c a

 ṖN =



1 1 2
abc bac cba
acb bca cab
bac abc bca
cab cba acb
bca acb bac
cba cab abc
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We get B(PN) = bca. Moreover, ṖN is uniform (to see why, consider (123) � (132) � (213) �
(312) � (231) � (321)). Finally, S6

B(bca, ṖN) = 11 < S6
B(cba, ṖN) = 12.
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Appendices

A Proofs

A.1 Proof of Proposition 1

Let α be a neutral SFW that is SW self-selective for some domain E . Pick up any profile PN ∈ L(Am)n

where ∆(α(PN)) = {Q1, ..., QH}, together with any E = (e1, ..., en) ∈ En. Consider the set of SWFs
A = {α1, α2, ..., αH, ρ1, ..., ρm!−H} such that:

- α1(PN) = Q1, ..., αH(PN) = QH
- ∀k 6= k′ ∈ {1, ..., m!− H}, αk(PN) 6= αk′(PN)

- ∪1≤k≤m!−Hρk(PN) = L(Am)− ∆(α(PN))
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Since all elements of A are strict SWFs, then A is a strict selection. Moreover, all elements of
A having different outcomes from PN, then PEA

N is a profile of linear orders over A. Furthermore,
[∪1≤h≤Hαh(PN)]∪ [∪1≤k≤m!−1ρk(PN)] = L(Am) implies that PEA

N is a profile over all m! linear orders,
so that L(α) ∩ A = L(α). It follows from definition that PEA

N is isomorphic to PE
N. Since α is SW

self-selective for E, then L(α)∩ fα(P̃EA
N ) 6= ∅. Since PEA∗

N is isomorphic to PE
N, the neutrality of α

ensures that ∆(α(PN)) ∩ fα(PE
N) 6= ∅ and the conclusion follows.

A.2 Proof of Theorem 1

We first prove the following three propositions, each providing a necessary condition for Kemeny-
stability.

Proposition 3 A scoring rule α is Kemeny-stable only if s2,3
α > 0 and s1,6

α > s2,6
α = s3,6

α > s4,6
α = s5,6

α >

s6,6
α = 0.

Proposition 4 A scoring rule α is Kemeny-stable only if s1,6
α = s2,6

α + s4,6
α .

Proposition 5 A scoring rule α is Kemeny-stable only if s1,3
α = 2s2,3

α .

A.2.1 Proof of Proposition 3

The proof is organized in six 6 intermediate lemmas:

Lemma 1 If α is a Kemeny-stable scoring rule, then s2,3
α > 0.

Proof: Suppose that s2,3
α = 0, and consider the following profile PN ∈ L(A3)

n1+n2+n3+n4 , where
n1 > n2 > n3 + n4, together with the following linearization ṖN of PK

N:

PN =


n1 n2 n3 n4

a b c c
c c a b
b a b a

 ṖN =



n1 n2 n3 n4

acb bca cab cba
cab bac acb cab
abc cba cba bca
bac cab bca acb
cba abc abc bac
bca acb bac abc


It follows that ∆(α(PN)) = {abc}. Kemeny-stability requires that S6

α(abc, ṖN) = n1s3,6
α + (n2 +

n3)s
5,6
α ≥ S6

α(cab, ṖN) = (n1 + n4)s
2,6
α + n2s4,6

α + n3s1,6
α , hence that n1(s

3,6
α − s2,6

α ) + n2(s
5,6
α − s4,6

α ) +

n3(s
5,6
α − s1,6

α ) ≥ n4s2,6
α , which is clearly impossible �

Lemma 2 If α is a Kemeny-stable scoring rule, then s2,6
α = s3,6

α and s4,6
α = s5,6

α .

Proof: Suppose first that s1,3
α > 2s2,3

α , and consider PN ∈ L(A3)
4, and ṖN ∈ ∆(PK

N):
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PN =


1 1 1 1
a a b c
b c c b
c b a a

 ṖN =



1 1 1 1
abc acb bca cba
bac cab cba bca
acb abc bac cab
bca cba cab bac
cab bac abc acb
cba bca acb abc


Since S3

α(a, PN) = 2s1,3
α , and S3

α(b, PN) = S3
α(c, PN) = s1,3

α + 2s2,3
α , then ∆(α(PN)) = {abc, acb}.

Moreover, we have (1) S6
α(abc, ṖN) = S3

α(acb, ṖN) = s1,6
α + s3,6

α + s5,6
α , and (2) S6

α(bca, ṖN) = s1,6
α +

s2,6
α + s4,6

α . Kemeny stability implies from (1) and (2) that s3,6
α + s5,6

α ≥ s2,6
α + s4,6

α (3), which in turn
leads to s2,6

α = s3,6
α and s4,6

α = s5,6
α .

Suppose now that s1,3
α < 2s2,3

α , and consider the same profile PN above and the hyper-profile
Ṗ′N ∈ ∆(PK

N) obtained from ṖN by switching in each order alternatives respectively ranked (1) second
and third, and (2) fourth and fifth. We get ∆(α(PN)) = {bca, cba}, and we reach the same conclusion
as above by a symmetric argument. Finally, suppose that s1,3

α = 2s2,3
α , and consider the profile PN ∈

L(A3)
4Z−1 below, where Z > 1, together with the Kemeny weak profile PK

N:

PN =


Z Z Z− 1 Z
a b c c
b a b a
c c a b

 PK
N =


Z Z Z− 1 Z

abc bac cba cab
acb, bac abc, bca bca, cab cba, acb
bca, cab cba, acb acb, bac abc, bca

cba cab abc bac


Then α(PN) = abc. Moreover, there exists ṖN ∈ ∆(PK

N) such that S6
α(abc, ṖN) = Z(s1,6

α + s3,6
α + s5,6

α )

and S6
α(cab, ṖN) = Zs1,6

α +(Z− 1)s2,6
α +Zs4,6

α . Kemeny stability requires that s3,6
α + s5,6

α ≥ Z−1
Z s2,6

α + s4,6
α

for all Z > 1. Thus, s2,6
α + s4,6

α ≤ s3,6
α + s5,6

α , and hence s2,6
α = s3,6

α and s4,6
α = s5,6

α �
We assume in the sequel that α is such that s2,6

α = s3,6
α and s4,6

α = s5,6
α (property (∗)). Clearly,

(∗) implies that given any profile PN over 3 alternatives, given any Kemeny-stable SWF α, one has
α(ṖN) = α(P̃N) for any two ∀ṖN, P̃N ∈ ∆(PK

N).

Lemma 3 If α is a Kemeny-stable scoring rule, then [s1,6
α = s2,6

α ]⇒ [s4,6
α = s5,6

α > 0].

Proof: Consider the following PN ∈ L(A3)
3Z+W below, where Z, W ≥ 1 are chosen such that

W < s2,3
α

s1,3
α

Z:

PN =


Z Z Z W
a b c a
b a b c
c c a b


Then α(PN) = bac. Furthermore, using (∗) together with Kemeny stability and s1,6

α = s2,6
α , one

must have S6
α(bac, ṖN) = 2Zs1,6

α + (Z + W)s5,6
α ≥ S6

α(abc, ṖN) = (2Z + W)s1,6
α . Thus, s1,6

α ≤ Z+W
W s5,6

α .
Finally, since s1,6

α > 0, then s5,6
α > 0 �
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Lemma 4 If α is a Kemeny-stable scoring rule, then [s1,6
α = s2,6

α ]⇒ [2s1,3
α = 3s2,3

α ].

Proof: Define the two profiles PN ∈ L(A3)
5 and P′N ∈ L(A3)

3Z+1, where Z > 1, as follows:

PN =


2 1 1 1
a a c b
b c b c
c b a a

 P′N =


2Z 1 Z
a c c
b a b
c b a


Suppose first that 2s1,3

α > 3s2,3
α . It follows from 2s1,3

α > 3s2,3
α that α(PN) = abc. Using (∗), we have

s1,6
α = s2,6

α = s3,6
α ≥ s4,6

α = s5,6
α . Hence, ∀ṖN ∈ ∆(PK

N), S6
α(abc, ṖN) = 3s1,6

α + s5,6
α , and S6

α(bac, ṖN) =

3s1,6
α + 2s5,6

α . Since Kemeny-stability requires S6
α(abc, ṖN) ≥ S6

α(bac, ṖN), then we get s5,6
α = 0, in

contradiction with Lemma 3.
Similarly, suppose that 2s1,3

α < 3s2,3
α . From 0 < 2s1,3

α < 3s2,3
α , we get that α(P′N) = bac for Z large

enough. Moreover, ∀ṖN ∈ ∆(P′KN ), S6
α(bac, ṖN) = Z(2s1,6

α + s5,6
α ) < S6

α(acb, ṖN) = Z(2s1,6
α + s5,6

α )+ s1,6
α ,

in contradiction with Kemeny stability �

Lemma 5 If α is a Kemeny-stable scoring rule, then s1,6
α > s2,6

α .

Proof: Suppose that s1,6
α = s2,6

α . From Lemma 3 and 4 together with (∗), we have s1,6
α = s2,6

α = s3,6
α ,

2s1,3
α = 3s2,3

α , and s4,6
α = s5,6

α > 0. Then, consider the following profile PN ∈ L(A3)
4:

PN =


2 1 1 1
a b c c
b a b a
c c a b


Since S3

α(a, PN) = 2s1,3
α + 2s2,3

α , S3
α(b, PN) = s1,3

α + 3s2,3
α , and S3

α(c, PN) = 2s1,3
α , then, using Lemma 1

and Lemma 4, α(PN) = abc. From Kemeny-stability, we have that for any ṖN ∈ ∆(PK
N), S6

α(abc, ṖN) =

3s1,6
α + s5,6

α ≥ S6
α(acb, ṖN) = 3s1,6

α + 2s5,6
α . But this implies that s5,6

α = 0, in contradiction with Lemma
3 �

Lemma 6 If α is a Kemeny-stable scoring rule, then s3,6
α > s4,6

α .

Proof: Suppose that s3,6
α = s4,6

α . It follows from Lemma 2 together with Lemma 5 that s1,6
α > s2,6

α =

s3,6
α = s4,6

α = s5,6
α ≥ s6,6

α = 0. Using Lemma 1, we get the following possible cases:
Case 1: s1,3

α = s2,3
α > 0

Consider the 4 following profiles:

PN =


3 2 3 3 4
a a b c c
b c a a b
c b c b a

 P′N =


1 3 1
a b c
b a a
c c b

 P′′N =


1 1 1 1
a a b c
b c a b
c b c a

 P′′′N =


2 2 1
a b c
c a a
b c b
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If s2,6
α > 0, then α(PN) = abc. Since S6

α(abc, ṖN)

= 3s1,6
α + 8s2,6

α < S6
α(cba, ṖN) = 4s1,6

α + 8s2,6
α for all ṖN ∈ ∆(PK

N), then α is not Kemeny-stable. If
s2,6

α = 0, then α(P′N) = abc. Since f α(ṖN) = {bac} for all ṖN ∈ ∆(P′KN ), then α is not Kemeny-stable.
Case 2: s1,3

α > s2,3
α > 0

If s2,6
α > 0, then α(P′′N) = abc. Since S6

α(abc, ṖN)

= s1,6
α + 2s2,6

α < S6
α(bac, ṖN) = s1,6

α + 3s2,6
α for all ṖN ∈ ∆(P

′′K
N ), then α is not Kemeny-stable. Finally, if

s2,6
α = 0, then α(P′′′N ) = abc. Since S6

α(abc, ṖN) = 0 < S6
α(acb, ṖN) = 2s1,6

α for all ṖN ∈ ∆(P
′′′K
N ), then α

is not Kemeny-stable.
Thus, Kemeny-stability requires that s3,6

α > s4,6
α �

By combining the six lemmas above, we get that any Kemeny-stable scoring rule α must satisfy
(1) s1,6

α > s2,6
α = s3,6

α > s4,6
α = s5,6

α ≥ 0 = s6,6
α , and (2) s1,3

α ≥ s2,3
α > 0 = s3,3

α , hence Proposition 3.

A.2.2 Proof of Proposition 4

Suppose that s1,3
α > 2s2,3

α , and consider profiles PN, P′N ∈ L(A3)
4 below:

PN =


1 1 1 1
a a b c
b c c b
c b a a

 P′N =


1 2 1
a a b
b c c
c b a


Since S3

α(a, PN) = 2s1,3
α and S3

α(b, PN) = S3
α(c, PN) = s1,3

α + 2s2,3
α , then s1,3

α > 2s2,3
α ⇒ ∆(α(PN) =

{abc, acb}. Using Proposition 3, we get that for any ṖN ∈ ∆(PK
N), S6

α(abc, ṖN) = s1,6
α + s2,6

α + s5,6
α ,

while S6
α(bac, ṖN) = 2s2,6

α + 2s5,6
α . Therefore, Kemeny-stability requires s1,6

α ≥ s2,6
α + s5,6

α . Similarly,
since S3

α(a, P′N) = 3s1,3
α , S3

α(b, P′N) = s1,3
α + s2,3

α and S3
α(c, P′N) = 3s2,3

α , then s1,3
α > 2s2,3

α ⇒ α(P′N) = abc.
For any Ṗ′N ∈ ∆(P′KN ), S6

α(abc, Ṗ′N) = s1,6
α + 2s2,6

α + s5,6
α , while S6

α(acb, Ṗ′N) = 2s1,6
α + s2,6

α . Thus, Kemeny-
stability requires s1,6

α ≤ s2,6
α + s5,6

α . Therefore, if s1,3
α > 2s2,3

α , then s1,6
α = s2,6

α + s5,6
α .

Suppose that s1,3
α < 2s2,3

α , and consider profiles P̃N ∈ L(A3)
5Z+1, where Z > 1, and PN ∈ L(A3)

4

below:

P̃N =


2Z Z + 1 Z Z
a c c b
b b a c
c a b a

 PN =


1 1 1 1
a a b c
b c c b
c b a a


Since S3

α(a, P̃N) = 2Zs1,3
α + Zs2,3

α , S3
α(b, P̃N) = Zs1,3

α + (3Z + 1)s2,3
α and S3

α(c, P̃N) = (2Z + 1)s1,3
α +

Zs2,3
α , then if Z is chosen large enough, s1,3

α > 2s2,3
α ⇒ α(PN) = bca. Moreover, using again Proposi-

tion 3, Kemeny-stability implies that for any Z > 1 and any ṖN ∈ ∆(P̃K
N), S6

α(bca, ṖN) ≥ S6
α(abc, ṖN).

Thus, Zs1,6
α +(Z+ 1)s2,6

α + 3Zs5,6
α ≥ 2Z(s1,6

α + s5,6
α ), and therefore s1,6

α ≤ (1+ 1
Z )s

2,6
α + s5,6

α for all Z > 1,

leading to s1,6
α ≤ s2,6

α + s5,6
α . Similarly, we get ∆(α(PN)) = {bca, cba}, while for any ṖN ∈ ∆(PK

N),
S6

α(bca, ṖN) = S6
α(cba, ṖN) = s1,6

α + s2,6
α + s5,6

α , while S6
α(bac, ṖN) = 2s2,6

α + 2s5,6
α . Thus, Kemeny-

stability implies s1,6
α ≥ s2,6

α + s5,6
α . Therefore, if s1,3

α < 2s2,3
α , then s1,6

α = s2,6
α + s5,6

α .
Finally, suppose that s1,3

α = 2s2,3
α and consider QN ∈ L(A3)

4Z+3 and Q′N ∈ L(A3)
10Z+1, where

Z > 1:
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QN =


Z Z + 1 Z + 1 Z + 2
a b b c
c c a a
b a c b

 Q′N =


3Z 3Z + 1 2Z 2Z
a b b c
c c a a
b a c b


Since s1,3

α = 2s2,3
α , then α(QN) = cba. From Proposition 3, one has for any ṖN ∈ ∆(QK

N) that
S6

α(cba, ṖN) = (2Z+ 3)s2,6
α +(2Z+ 1)s5,6

α and S6
α(acb, ṖN) = Zs1,6

α +(Z+ 2)s2,6
α +(Z+ 1)s5,6

α . Kemeny-
stability implies s1,6

α ≤ (1 + 1
z )s

2,6
α + s5,6

α , and thus s1,6
α ≤ s2,6

α + s5,6
α . Furthermore, we have α(Q′N) =

bca, while Kemeny stability implies that for any ṖN ∈ ∆(Q′KN ) that S6
α(bca, ṖN) ≥ S6

α(bac, ṖN). Hence,
(3Z + 1)s1,6

α + 2Zs2,6
α + 2Zs5,6

α ≥ 2Zs1,6
α + (3Z + 1)s2,6

α + 3Zs5,6
α , leading to s1,6

α ≥ s2,6
α + Z

Z+1 s5,6
α for all

Z > 1, Therefore, if s1,3
α = 2s2,3

α , then s1,6
α = s2,6

α + s5,6
α , and the proof is complete.

A.2.3 Proof of Proposition 5

Consider the following profiles PN ∈ L(A3)
2Z+2 and P′N ∈ L(A3)

56Z+1, where Z > 1:

PN =


Z + 1 1 Z

a a c
b c b
c b a

 P′N =


11Z 28Z 17Z 1

a a b c
b c c b
c b a a


Suppose that s1,3

α < 2s2,3
α . Then α(PN) = bac for Z large enough. Moreover, from Proposition 3,

S6
α(bac, ṖN) = (Z + 1)(s2,6

α + s5,6
α ) < S6

α(acb, ṖN) = s1,6
α + (Z + 1)s2,6

α + Zs5,6
α for all ṖN ∈ ∆(PK

N), in
contradiction with Kemeny-stability.

Suppose that s1,3
α > 2s2,3

α . Then α(P′N) = abc for Z large enough. Using again Proposition 3,
S6

α(abc, ṖN) = 11Zs1,6
α + 28Zs2,6

α + 17Zs5,6
α while S6

α(acb, ṖN) = 28Zs1,6
α + 11Zs2,6

α + s5,6
α for all ṖN ∈

∆(P′KN ). Since s5,6
α > 0 from Proposition 3, we get by using Proposition 4, S6

α(abc, ṖN) = 39Zs2,6
α +

28Zs5,6
α < S6

α(abc, ṖN) = 39Zs2,6
α + 28Zs5,6

α + s5,6
α , in contradiction with Kemeny-stability.

A.2.4 End of proof of Theorem 1

(Necessary Part) Using Propositions 3,4 and 5, it suffices to prove that if α is Kemeny-stable, then
s2,6

α = 3s5,6
α . Consider the following profiles PN ∈ L(A3)

3Z+1 and P′N ∈ L(A3)
3Z−4, where Z > 2:

PN =


2Z + 1 Z

a b
b c
c a

 P′N =


Z− 1 Z− 1 Z− 2

a b c
c a b
b c a


Suppose that s2,6

α > 3s5,6
α . Since s1,3

α = 2s2,3
α from Proposition 5, then α(PN) = abc. For any

ṖN ∈ ∆(PK
N), we get from Proposition 3 together with Proposition 4 that S6

α(abc, ṖN) = (2Z + 1)s1,6
α +

Zs5,6
α = (2Z + 1)s2,6

α + (3Z + 1)s5,6
α , while S6

α(bac, ṖN) = (3Z + 1)s2,6
α . But since s2,6

α > 3s5,6
α , we get

S6
α(bac, ṖN) > S6

α(abc, ṖN) for all Z > 2, in contradiction with Kemeny-stability.
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Suppose that s2,6
α < 3s5,6

α . Using again s1,3
α = 2s2,3

α from Proposition 5, we get α(P′N) = abc.
For any ṖN ∈ ∆(P′KN ), we get from Proposition 3 together with Proposition 4 that S6

α(abc, ṖN) =

(2Z − 2)s2,6
α , while S6

α(cba, ṖN) = (Z − 2)s1,6
α + (2Z − 2)s5,6

α = (Z − 2)s2,6
α + (3Z − 4)s5,6

α . Thus,
S6

α(bac, ṖN) > S6
α(abc, ṖN) for Z large enough, in contradiction with Kemeny-stability. Hence one

must have s2,6
α = 3s5,6

α , which proves the Necessary Part.
(Sufficiency Part). Consider any n ∈N together with any profile PN ∈ L(A3)

n having the form

PN =


n1 n2 n3 n4 n5 n6

a a b b c c
b c a c a b
c b c a b a


with ∑6

h=1 nh = n. Pick up any scoring rule α fulfilling the conditions (∗) s1,3
α = 2s2,3

α > 0, and (∗∗)
s1,6

α = 4
3 s2,6

α = 4
3 s3,6

α = 4s4,6
α = 4s5,6

α > s6,6
α = 0. We get that:

- S3
α(a, PN) = (2n1 + 2n2 + n3 + n5)s

2,3
α

- S3
α(b, PN) = (2n3 + 2n4 + n1 + n6)s

2,3
α

- S3
α(c, PN) = (2n5 + 2n6 + n2 + n4)s

2,3
α

Moreover, suppose without loss of generality that s5,6
α = 1 and abc ∈ ∆(α(PN)). It follows that:

- n1 + 2n2 + n5 ≥ n3 + 2n4 + n6 (1)
- 2n1 + n2 + n3 ≥ n4 + n5 + 2n6 (2)
- n1 + 2n3 + n4 ≥ n2 + 2n5 + n6 (3)
Now, pick up any ṖN ∈ ∆(PK

N). Then we get from (∗∗) that:
- S6

α(abc, ṖN) = 4n1 + 3(n2 + n3) + (n4 + n5)

- S6
α(acb, ṖN) = 4n2 + 3(n1 + n5) + (n3 + n6)

- S6
α(bac, ṖN) = 4n3 + 3(n1 + n4) + (n2 + n6)

- S6
α(bca, ṖN) = 4n4 + 3(n3 + n6) + (n1 + n5)

- S6
α(cab, ṖN) = 4n5 + 3(n2 + n6) + (n1 + n4)

- S6
α(cba, ṖN) = 4n6 + 3(n4 + n5) + (n2 + n3)

Then one easily checks that (3) ⇒ S6
α(abc, ṖN) ≥ S6

α(acb, ṖN), (1) ⇒ S6
α(abc, ṖN) ≥ S6

α(bac, ṖN),
(1)+(2)⇒ S6

α(abc, ṖN) ≥ S6
α(bca, ṖN), (2)+(3)⇒ S6

α(abc, ṖN) ≥ S6
α(cab, ṖN), and (1)+(2)+(3)⇒ S6

α(abc, ṖN) ≥
S6

α(cba, ṖN). Hence abc ∈ ∆(α(PN)) ∩ fα(ṖN), and the proof is complete.

A.3 Proof of Theorem 2

Let α be a non-truncated and Kemeny-stable scoring rule. Consider profile PN ∈ L(A6)
A+B+C+1,

where A > B > C > 1 :

PN =



A B C 1
a b c f
c c a e
b a b d
d d d c
e e f b
f f e a
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Using Theorem 1, and normalizing S6
α by setting s1,6

α = 1, we get S6
α(a, PN) = A + 3

4(B + C),
S6

α(b, PN) = 3
4(A + C) + B + 1

4 , S6
α(c, PN) = 3

4(A + B) + C + 1
4 , S6

α(d, PN) = 1
4(A + B + C) + 3

4 ,
S6

α(e, PN) = 1
4(A + B) + 3

4 , and S6
α( f , PN) = 1

4C + 1. Obviously, A,B and C can be chosen to en-
sure that α(PN) = abcde f . Consider the following Kemeny hyper-profile ṖN ∈ ∆(PK

N)

ṖN =



A B C 1
acbde f bcade f cabd f e f edcba
cabde f cbade f cabde f ...
abcde f bacde f cbad f e ...

... bcdae f cadb f e ...

... bcaed f cab f de ...

... bcad f e acbd f e ...

... cabde f ... ...

... abcde f ... ...

... ... ... ...


We get that S6!

α (cabde f , ṖN) = (A+C)s2,6!
α + Bs7,6!

α + sz,6!
α , where z < 6!, whereas S6!

α (abcde f , ṖN) =

As3,6!
α + Bs8,6!

α + Csw,6!
α , where w > 6. Finally, Kemeny-stability implies that s1,6!

α = ... = s8,6!
α , and

sz,6!
α = 0, which contradicts that α is non-truncated.

A.4 Proof of Theorem 3

The proof is similar to the one above. Consider profile PN ∈ L(A6)
9 below:

PN =



4 3 1 1
a b c c
c c a b
b a b a
d d d d
e e e e
f f f f


We get S6

α(a, PN) = 4s1,6
α + s2,6

α + 4s3,6
α , S6

α(b, PN) = 3s1,6
α + s2,6

α + 5s3,6
α , S6

α(c, PN) = 2s1,6
α + 7s2,6

α ,
S6

α(d, PN) = 9s4,6
α , S6

α(e, PN) = 9s5,6
α , and S6

α( f , PN) = 0. If α is Kemeny-stable, it follows from Theorem
1 that s2,6

α = s3,6
α , which implies that ∆(α(PN)) ⊆ {P ∈ L(A6) : P = (abc → Q), where Q ∈

L({d, e, f })}. Consider the following Kemeny hyper-profile ṖN ∈ ∆(PK
N)
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ṖN =



4 3 1 1
acbde f bcade f cabde f cbade f
cabde f cbade f acbde f cabde f
abcde f bacde f cbade f bcade f

... bcdae f cadbe f cbdae f

... bcaed f cabed f cbaed f

... bcad f e cabd f e cbad f e

... cabde f abcde f abcde f

... abcde f ... ...

... ... ... ...


We get that S6!

α (cabde f , ṖN) = 4s2,6!
α + 3s7,6!

α + s1,6!
α + s2,6!

α , whereas S6!
α (abcde f , ṖN) = 4s3,6!

α +

3s8,6!
α + s7,6!

α + s7,6!
α . Using s2,6!

α ≥ s3,6!
α and s7,6!

α ≥ s8,6!
α together with the strict-at-top property, we have

that S6!
α (cabde f , ṖN) > S6!

α (abcde f , ṖN). The conclusion follows from the fact that abcde f maximizes
S6!

α (P, ṖN) in ∆(α(PN)).

A.5 Proof of Theorem 5

Consider profile PN ∈ L(A3)
5 below:

PN =


2 1 1 1
a b c c
b a b a
c c a a


Pick up a scoring rule α hyper-stable for S . Since K ⊂ S , then α is Kemeny-stable. It follows from

Theorem 1 that score vectors must be such that (∗) s1,3
α = 2s2,3

α > 0, and (∗∗) s1,6
α = 4

3 s2,6
α = 4

3 s3,6
α =

4s4,6
α = 4s5,6

α > s6,6
α = 0. It follows that α(PN) = abc. It is straightforward to check that the following

hyper-profile PE
N is built from a 5-tuple E = (e1, e1, e3, e4, e5) of separable preference extensions:

PE
N =



2 1 1 1
abc bac cba cab
bac bca bca acb
acb abc bac cba
bca acb cab bca
cab cba acb abc
cba cab abc bac


Note that all extensions in E but e4 are Kemeny. We get S6

α(abc, PE
N) = 12s5,6

α < S6
α(bac, PE

N) =

13s5,6
α , which contradicts hyper-stability for S .
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A.6 Proof of Theorem 6

Given any Q ∈ L(Am), we write Q = (Q1 → Q2 → ... → QH), where, for any 1 ≤ h ≤ H,
Qh ∈ L(Bh) is a segment of Q, and where {B1, B2, ..., BH} is a partition of Am into non-empty sets.
Lemma 7 is a useful intermediate step towards the proof.

Lemma 7 Let Q, Q′ ∈ L(Am) be respectively defined by Q = (Q1 → x → Q2 → y → Q3) and Q′ =
(Q1 → y → Q2 → x → Q3), where Qh ∈ L(Bh), for 1 ≤ h ≤ 3. Then, for any PN ∈ L(Am)n with n is
odd, and any E = (e1, ..., en) ∈ Sn, [x µ(PN) y]⇒ [Q µ(PE

N) Q′],

Proof: Define B = {x, y} ∪ B2, where Q2 ∈ L(B2). Pick up any Pi ∈ L(Am) where xPiy, and
consider the restriction Pi|B of Pi to B. We can write Pi|B = (V1 → x → V2 → y → V3), where V1,
V2, and V3 are segments of Pi|B, with Vh ∈ L(B2h), 1 ≤ h ≤ 3, and {B21, B22, B23} being a partition
of B2. Then A(Pi|B, Q|B) = {x, y} ∪ [{x} × (B22 ∪ B23)] ∪ [(B21 ∪ B22) × {y}] ∪ A(Pi|B2 , Q2), while
A(Pi|B, Q′|B) = A(Pi|B, Q|B)/{x, y}. Hence, A(Pi|B, Q′|B) ⊂ A(Pi|B, Q|B). Since Q and Q′ have
the same segment Q1 at top and the same segment Q3 at bottom, then A(Pi, Q′) ⊂ A(Pi, Q). From
separability of ei, we get Q ei(Pi) Q′. Finally, x µ(PN) y implies that |{i : xPiy}| > n

2 , hence that
|{i : Q ei(Pi) Q′}| > n

2 and the conclusion follows. �

Given PN ∈ L(Am)n, the top-cycle for PN is the subset T(B, PN) of Am containing all maximal ele-
ments for θ(PN). The transitive closure partition of Am is the ordered set S(θ, PN) = (S1, S2, ..., SJ) of
indifference classes for θ(PN), where ∀j ≤ j′ ∈ {1, ..., J}, ∀(x, x′) ∈ Sj× Sj′ , xθ(PN)x′ and ¬(x′θ(PN)x
if j < j′. By definition of θ, one has ∆(θ(PN)) = {Q ∈ L(Am) : Q = (Q1 → Q2 → ... → QJ)

where, for each j = 1, ..., J, Qj ∈ L(Sj)}. The proof of Theorem 6 is complete if we show that for any
E = (e1, ..., en) ∈ Sn, ∆(θ(PN)) ∩ T(L(Am), PE

N) 6= ∅.
Pick up any P ∈ L(Am)/∆(θ(PN)) and any E = (e1, ..., en) ∈ Sn. Define B(P) = {x ∈ Am : x ∈ Sj

for some j and ∀y ∈ Sj′/{x}, xPy ⇒ j′ > j}, and B = Am/B(P). Consider order Q(P) ∈ ∆(θ(PN))

such that:
- Q(P) |B(P)= P |B(P)
- xPy⇒ xQ(P)y for all x, y ∈ B ∩ Sj for some j ∈ {1, ..., J}.
Write P |B= b1b2...bT, where T = |B|. There exists a permutation σ of {1, ..., T} such that Q(P) |B=

bσ(1)bσ(2)...bσ(T). Then, there is a finite sequence {ωh}1≤h≤H of transpositions of Am, where H ≤ T,
such that ω1 swaps b1 and bσ(1) in P |B, leading to P1 |B= bω1(1)bω1(2)...bω1(T), ω2 swaps bω1(2) and
bσ(2) in P1 |B, leading to P2 |B= bω2◦ω1(1)bω2◦ω1(2)...bω2◦ω1(T), ..., ωH swaps bσ(T) and bωT−1◦...◦ω1(T)
in PT−1 |B, leading to PT |B= Q(P) |B. Since bσ(1)µ(PN)bσ(2)µ(PN)...µ(PN)bσ(T), then Lemma 7
ensures that for all 1 ≤ h ≤ H, either Ph+1 |B= Ph |B or (Ph+1 |B)µ(PE

N |B)(Ph |B). Hence (Q(P) |B
)θ(PE

N |B)(P |B), and thus Q(P)θ(PE
N)P. This proves that for any order P not in ∆(θ(PN)), there exists

Q ∈ ∆(θ(PN)) such that Qθ(PE
N)P.

Finally, since T(L(Am), PE
N |∆(θ(PN))) 6= ∅, there exists Q ∈ ∆(θ(PN)) such that Qθ(PE

N)Q
′ for all

Q′ ∈ ∆(θ(PN))/{Q}. Thus, there exists Q ∈ ∆(θ(PN)) such that Qθ(PE
N)Q

′ for all Q′ ∈ L(Am)/{Q}.
Thus ∆(θ(PN))∩ T(L(Am), PE

N)) 6= ∅ and the proof is complete.
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A.7 Proof of Proposition 2

Let PN = (P1..., Pi, ..., Pn) ∈ L(Am)n. Choose any E = (e1, ..., en) ∈ Sn. Suppose without loss of
generality that µ(PN) = a1a2...am. Moreover, suppose that CW(PE

N) = Q = b1b2...bm, with b1 6= a1 =

bh for some 2 ≤ h ≤ m. Now define Q′ = a1b2...bh−1bhbh+1...bm ∈ L(Am). It follows from Lemma
7 above that [1 µ(PN) b1] ⇒ [Q′ µ(PE

N) Q′], which contradicts CW(PE
N) = Q. Thus, b1 = a1. We

conclude by iterating the same argument for b2, ..., bm.
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