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In a previous paper, the authors introduced an approach to prove that the statistics of the extremes of a log-correlated Gaussian field converge to a Poisson-Dirichlet variable at the level of the Gibbs measure at low temperature and under suitable test functions. The method is based on showing that the model admits a one-step replica symmetry breaking in spin glass terminology. This implies Poisson-Dirichlet statistics by general spin glass arguments. In this note, this approach is used to prove Poisson-Dirichlet statistics for the two-dimensional discrete Gaussian free field, where boundary effects demand a more delicate analysis.

G A (v, v ) := E v τ A k=0 1 v (S k ) ,
where (S k , k ≥ 0) is a simple random walk with S 0 = v of law P v killed at the first exit time of A, τ A , i.e. the first time where the walk reaches the boundary ∂A. Throughout the paper, for any A ⊂ Z 2 , ∂A will denote the set of vertices in A c that share an edge with a vertex of A. We will write P for the law of the Gaussian field and E for the expectation. For B ⊂ A, we denote the σ-algebra generated by {φ v , v ∈ B} by F B .

We are interested in the case where A = V N := {1, . . . , N } 2 in the limit N → ∞. For 0 ≤ δ < 1/2, we denote by V δ N the set of the points of V N whose distance to the boundary ∂V N is greater than δN . In this set, the variance of the field diverges logarithmically with N , cf. Lemma 5.2 in the appendix,

(1.2) E[φ 2 v ] = G V N (v, v) = 1 π log N 2 + O N (1), ∀v ∈ V δ N
, where O N (1) will always be a term which is uniformly bounded in N and in v ∈ V N . (The term o N (1) will denote throughout a term which goes to 0 as N → ∞ uniformly in all other parameters.) Equation (1.2) follows from the fact that for v ∈ V δ N and

u ∈ ∂V N , δN ≤ v -u ≤ √ 2(1 -δ)N
, where • denotes the Euclidean norm on Z 2 . A similar estimate yields an estimate on the covariance

(1.3) E[φ v φ v ] = G V N (v, v ) = 1 π log N 2 v -v 2 + O N (1), ∀v, v ∈ V δ N .
In view of (1.2) and (1.3), the Gaussian field (φ v , v ∈ V N ) is said to be log-correlated.

On the other hand, there are many points that are outside V δ N (of the order of N 2 points) for which the estimates (1.2) and (1.3) are not correct. Essentially, the closer the points are to the boundary the lesser are the variance and covariance as the simple random walk in (1.1) has a higher probability of exiting V N early. This decoupling effect close to the boundary complicates the analysis of the extrema of the GFF by comparison with log-correlated Gaussian fields with stationary distribution. 1.2. Main results. It was shown by Bolthausen, Deuschel, and Giacomin [START_REF] Bolthausen | Entropic repulsion and the maximum of the two-dimensional harmonic crystal[END_REF] that the maximum of the GFF in V δ N satisfies

(1.4) lim

N →∞ max v∈V δ N φ v log N 2 = 2 π
, in probability.

A comparison argument using Slepian's lemma can be used to extend the result to the whole box V N . Their technique was later refined by Daviaud [START_REF] Daviaud | Extremes of the discrete two-dimensional Gaussian free field[END_REF] who computed the log-number of high points in V δ N : for 0 < λ < 1,

(1.5) lim

N →∞ 1 log N 2 log #{v ∈ V δ N : φ v ≥ λ 2 π log N 2 } = 1 -λ 2 , in probability.
It is a simple exercise to show using the above results that the free energy in V N of the model is given by (1.6)

f (β) := lim N →∞ 1 log N 2 log v∈V N e βφv = 1 + β 2 2π , if β ≤ √ 2π, 2 π β, if β ≥ √ 2π, a.s. and in L 1 .
Indeed, there is the clear lower bound log v∈V N e βφv ≥ log v∈V δ N e βφv , which can be evaluated using the log-number of high points (1.5) by Laplace's method. The upper bound is obtained using a comparison argument with i.i.d. centered Gaussians.

A striking fact is that the three above results correspond to the expressions for N 2 independent Gaussian variables of variance 1 π log N 2 . In other words, correlations have no effects on the above observables of the extremes. The purpose of the paper is to extend this correspondence to observables related to the Gibbs measure.

To this aim, consider the normalized Gibbs weights or Gibbs measure

G β,N ({v}) := e βφv Z N (β) , v ∈ V N ,
where Z N (β) := v∈V N e βφv . We consider the normalized covariance or overlap

(1.7) q(v, v ) := E[φ v φ v ] 1 π log N 2 , ∀v, v ∈ V N .
This is the covariance divided by the dominant term of the variance in the bulk.

In spin glasses, the relevant object to classify the extreme value statistics of strongly correlated variables is the two-overlap distribution function

(1.8) x β,N (q) := E G ×2 β,N {q(v, v ) ≤ q} , 0 ≤ q ≤ 1.
The main result shows that the 2D GFF falls within the class of models that exhibit a one-step replica symmetry breaking at low temperature.

Theorem 1.1. For β > β c = √ 2π, lim N →∞ x β,N (r) := lim N →∞ E G ×2 β,N {q(v, v ) ≤ q} = βc β for 0 ≤ r < 1, 1 for r = 1.
Note that for β ≤ β c , it follows from (1.6) that the overlap is 0 almost surely. The result is the analogue for the 2D GFF of the results obtained by Derrida & Spohn [START_REF] Derrida | Polymers on disordered trees, spin glasses, and traveling waves[END_REF] and Bovier & Kurkova [START_REF] Bovier | Derrida's generalised random energy models. I. Models with finitely many hierarchies[END_REF][START_REF] Bovier | Derrida's generalised random energy models. II. Models with continuous hierarchies[END_REF] for the branching Brownian motion and for GREMtype models. In [START_REF] Arguin | Poisson-Dirichlet Statistics for the extremes of a logcorrelated Gaussian field[END_REF], such a result was proved for a non-hierarchical log-correlated Gaussian field constructed from the multifractal random measure of Bacry & Muzy [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF], see also [START_REF] Fyodorov | Freezing and extreme value statistics in a Random Energy Model with logarithmically correlated potential[END_REF] for a closely related model. This type of result was conjectured by Carpentier & Ledoussal [START_REF] Carpentier | Glass transition for a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and Sinh-Gordon models[END_REF]. We also remark that Theorem 1.1 shows that at low temperature two points sampled with the Gibbs measure have overlaps 0 or 1. This is consistent with the result of Ding & Zeitouni [START_REF] Ding | Extreme values for two-dimensional discrete Gaussian free field[END_REF] who showed that the extremal values of GFF are at distance from each other of order one or of order N .

A general method to prove Poisson-Dirichlet statistics for the distribution of the overlaps from the one-step replica symmetry breaking was laid down in [START_REF] Arguin | Poisson-Dirichlet Statistics for the extremes of a logcorrelated Gaussian field[END_REF]. This connection is done via the (now fundamental) Ghirlanda-Guerra identities. Another equivalent approach would be using stochastic stability as developed in [START_REF] Aizenman | On the stability of the quenched state in mean-field spin-glass models[END_REF][START_REF] Arguin | A dynamical characterization of Poisson-Dirichlet distributions[END_REF][START_REF] Arguin | Random Overlap Structures: Properties and Applications to Spin Glasses[END_REF]. The reader is referred to Section 2.3 of [START_REF] Arguin | Poisson-Dirichlet Statistics for the extremes of a logcorrelated Gaussian field[END_REF] where the connection is explained in details for general Gaussian fields. For the sake of conciseness, we simply state the consequence for the 2D GFF.

Consider the product measure

G ×s β,N on s replicas (v 1 , . . . , v s ) ∈ V ×s N . Let F : [0, 1] s(s-1) 2 
→ R be a continuous function. Write F (q ll ) for the function evaluated at q ll := q(v l , v l ), l = l , for (v 1 , . . . , v s ) ∈ V ×s N . We write EG ×s β,N F (q ll ) for the averaged expectation. Recall that a Poisson-Dirichlet variable ξ of parameter α is a random variable on the space of decreasing weights s = (s 1 , s 2 , . . . ) with 1 ≥ s 1 ≥ s 2 ≥ • • • ≥ 0 and i s i ≤ 1 which has the same law as η i / j η j , i ∈ N ↓ where ↓ stands for the decreasing rearrangement and η = (η i , i ∈ N) are the atoms of a Poisson random measure on (0, ∞) of intensity measure s -α-1 ds.

The theorem below is a direct consequence of the Theorem 1.1, the differentiability of the free energy (1.6) as well as Corollary 2.5 and Theorem 2.6 of [START_REF] Arguin | Poisson-Dirichlet Statistics for the extremes of a logcorrelated Gaussian field[END_REF]. → R of the overlaps of s replicas:

lim N →∞ E G ×s β,N (F (q ll )) = E k 1 ∈N,...,ks∈N ξ k 1 . . . ξ ks F (δ k l k l ) .
The above is one of the few rigorous results known on the Gibbs measure of logcorrelated fields at low temperature. Theorem 1.2 is a step closer to the conjecture of Duplantier, Rhodes, Sheffield & Vargas (see Conjecture 11 in [START_REF] Duplantier | Critical Gaussian Multiplicative Chaos: Convergence of the Derivative Martingale[END_REF] and Conjecture 6.3 in [START_REF] Rhodes | Gaussian multiplicative chaos and applications: a review[END_REF]) that the Gibbs measure, as a random probability measure on V N , should be atomic in the limit with the size of the atoms being Poisson-Dirichlet. Theorem 1.2 falls short of the full conjecture because only test-functions of the overlaps are considered. Finally, it is expected that the Poisson-Dirichlet statistics emerging here is related to the Poissonian statistics of the thinned extrema of the 2D GFF proved by Biskup & Louidor in [START_REF] Biskup | Extreme local extrema of two-dimensional discrete Gaussian free field[END_REF] based on the convergence of the maximum established by Bramson, Ding & Zeitouni [START_REF] Bramson | Convergence in law of the maximum of the two-dimensional discrete Gaussian free field[END_REF]. To recover the Gibbs measure from the extremal process, some properties of the cluster of points near the maxima must be known.

The rest of this paper is dedicated to the proof of Theorem 1.1. In Section 2, a generalized version of the GFF (whose variance is scale-dependent) is introduced. It is a kind of non-hierarchical GREM and is related to a model studied by Fyodorov & Bouchaud in [START_REF] Fyodorov | Statistical mechanics of a single particle in a multiscale random potential: Parisi landscapes in finite-dimensional Euclidean spaces[END_REF]. The proof of Theorem 1.1 is given in Section 3. It relates the overlap distribution of the 2D GFF to the free energy of the generalized GFF. The free energy of the generalized GFF needed in the proof is computed in Section 4.

The multiscale decomposition and a generalized GFF

In this section, we construct a Gaussian field from the GFF whose variance is scaledependent. The construction uses a multiscale decomposition along each vertex. The construction is analogous to a Generalized Random Energy Model of Derrida [START_REF] Derrida | A generalisation of the random energy model that includes correlations between the energies[END_REF], but where correlations are non-hierarchical. Here, only two different values of the variance will be needed though the construction can be directly generalized to any finite number of values. Consider 0 < t < 1. We assume to simplify the notation that N 1-t is an even integer and that N t divides N . The case of general t's can also be done by making trivial corrections along the construction.

For v ∈ V N , we write [v] t for the unique box with N 1-t points on each side and centered at v. If [v] t is not entirely contained in V N , we take the convention that [v] t is the intersection of the square box with V N . For t = 1, take

[v] 1 = v. The σ-algebra F [v] c t is the σ-algebra generated by the field outside [v] t . We define φ [v]t := E φ v F [v] c t = E φ v F ∂[v]t ,
where the second equality holds by the Markov property of the Gaussian free field, see Lemma 5.1. Clearly, for any v ∈ V N , the random variable φ [v]t is Gaussian. Moreover, by Lemma 5.1,

(2.1) φ [v]t = u∈∂[v]t p t,v (u)φ u , where p t,v (u) = P v (S τ [v] t = u)
is the probability that a simple random walk starting at v hits u at the first exit time of [v] t .

The following multiscale decomposition holds trivially

(2.2) φ v = φ [v]t + φ v -φ [v]t .
The decomposition suggests the following scale-dependent perturbation of the field. For 0 < α < 1 and σ

= (σ 1 , σ 2 ) ∈ R 2 + , consider for v ∈ V N , (2.3) ψ v := σ 1 φ [v]α + σ 2 φ v -φ [v]α .
The Gaussian field (ψ v , v ∈ V N ) will be called the (α, σ)-GFF on V N .

To control the boundary effects, it is necessary to consider the field in a box slightly smaller than V N . For ρ ∈ (0, 1), let

(2.4) A N,ρ := {v ∈ V N : d 1 (v, ∂V N ) ≥ N 1-ρ } ,
where

d 1 (v, B) := inf{ v -u ; u ∈ B} for any set B ⊂ Z 2 . We always take ρ < α so that [v] α is contained in V N for any v ∈ A N,ρ . We write G (α,σ) β,N,ρ (•) for the Gibbs measure of (α, σ)-GFF restricted to A N,ρ G (α,σ) β,N,ρ ({v}) := e βψv Z (α,σ) N,ρ (β) , v ∈ A N,ρ ,
where

Z (α,σ) N,ρ (β) := v∈A N,ρ e βψv .
The associated free energy is given by

f (α,σ) N,ρ (β) := 1 log N 2 log Z (α,σ) N,ρ (β), ∀β > 0. (Note that log #A N,ρ = (1 + o N (1)) log N 2 .) Its L 1
-limit is a central quantity needed to apply Bovier-Kurkova technique. This limit is better expressed in terms of the free energy of the REM model consisting of

N 2 i.i.d. Gaussian variables of variance σ 2 π log N 2 : (2.5) f (β; σ 2 ) := 1 + β 2 σ 2 2π , if β ≤ β c (σ 2 ) := √ 2π σ , 2 π σβ, if β ≥ β c (σ 2 ). Theorem 2.1. Fix α ∈ (0, 1) and σ = (σ 1 , σ 2 ) ∈ R 2 + and let V 12 := σ 2 1 α + σ 2 2 (1 -α).
Then, for any ρ < α, and for all β > 0 (2.6)

lim N →∞ f (α,σ) N,ρ (β) = f (α,σ) (β) := f (β; V 12 ), if σ 1 ≤ σ 2 , αf (β; σ 2 1 ) + (1 -α)f (β; σ 2 2 ), if σ 1 ≥ σ 2 ,
where the convergence holds almost surely and in L 1 .

Note that the limit does not depend on ρ.

3. Proof of Theorem 1.1

3.1. The Gibbs measure close to the boundary. The first step in the proof of Theorem 1.1 is to show that points close to the boundary do not carry any weight in the Gibbs measure of the GFF in V N . The result would not necessarily hold if we considered instead the outside of V δ N which is much larger than the outside of A N,ρ . Lemma 3.1. For any ρ > 0, (3.1) lim

N →∞ G β,N (A c N,ρ ) = 0, in P-probability.
Before turning to the proof, we claim that the lemma implies that, for any r ∈ [0, 1] and ρ ∈ (0, 1),

(3.2) lim N →∞ x β,N (r) -x β,N,ρ (r) = 0 , where (3.3) x β,N,ρ (r) := EG ×2 β,N,ρ {q(v, v ) ≤ r}, r ∈ [0, 1] .
is the two-overlap distribution of the Gibbs measure of the GFF (φ

v , v ∈ V N ) restricted to A N,ρ G β,N,ρ ({v}) := e βφv Z N,ρ (β) , v ∈ A N,ρ ,
for Z N,ρ (β) := v∈A N,ρ e βφv . Indeed, introducing an auxiliary term

x β,N (r) -x β,N,ρ (r) ≤ EG ×2 β,N q(v, v ) ≤ r -EG ×2 β,N q(v, v ) ≤ r; v, v ∈ A N,ρ + EG ×2 β,N q(v, v ) ≤ r; v, v ∈ A N,ρ -EG ×2 β,N,ρ q(v, v ) ≤ r . The first term is smaller than 2 EG β,N (A c N,ρ
). The second term equals

EG ×2 β,N,ρ q(v, v ) ≤ r -EG ×2 β,N q(v, v ) ≤ r; v, v ∈ A N,ρ = E G ×2 β,N q(v, v ) ≤ r; v, v ∈ A N,ρ G ×2 β,N v, v ∈ A N,ρ 1 -G ×2 β,N v, v ∈ A N,ρ ,
which is also smaller than 2 EG β,N (A c N,ρ ). Lemma 3.1 then implies (3.2) as claimed.

Proof of Lemma 3.1. Let > 0 and λ > 0. The probability can be split as follows

P G β,N (A c N,ρ ) > ≤ P G β,N (A c N,ρ ) > , 1 log N 2 log Z N (β) -f (β) ≤ λ + P 1 log N 2 log Z N (β) -f (β) > λ ,
where f (β) is defined in (1.6). The second term converges to zero by (1.6). The first term is smaller than

(3.4) P   1 log N 2 log v∈A c N,ρ exp βφ v > f (β) -λ + log log N 2   .
Since the free energy is a Lipschitz function of the variables φ v , see e.g. Theorem 2.2.4 in [START_REF] Talagrand | Spin glasses: a challenge for mathematicians[END_REF], the free energy self-averages, that is for any t > 0 lim

N →∞ P   1 log N 2 log v∈A c N,ρ exp βφ v - 1 log N 2 E   log v∈A c N,ρ exp βφ v   ≥ t   = 0 .
To conclude the proof, it remains to show that for some C < 1 (independent of N but dependent on ρ)

(3.5) lim sup N →∞ 1 log N 2 E   log v∈A c N,ρ exp βφ v   < Cf (β).
Note that by Lemma 5.1, the maximal variance of

φ v in V N is 1 π log N 2 + O N (1). Pick (g v , v ∈ A c
N,ρ ) independent centered Gaussians (and independent of (φ v ) v∈A c N,ρ ) with variance given by E[g

2 v ] = 1 π log N 2 + O N (1) -E[φ 2 v ]. Jensen's inequality applied to the Gibbs measure implies that E[log v∈A c N,ρ exp β(φ v + g v )] ≥ E[log v∈A c N,ρ exp βφ v ].
Moreover, by a standard comparison argument (see Lemma 5.3 in the Appendix),

E[log v∈A c N,ρ exp β(φ v + g v )]
is smaller than the expectation for i.i.d. variables with identical variances. The two last observations imply that

1 log N 2 E   log v∈A c N,ρ exp βφ v   ≤ 1 log N 2 E   log v∈A c N,ρ exp β φ v   , where ( φ v , v ∈ A c N,ρ ) are i.i.d. centered Gaussians of variance 1 π log N 2 + O N (1). Since #A c N,ρ = N 2 -|A N,ρ | = 4N 2-ρ (1 + o N (1)
), the free energy of these i.i.d. Gaussians in the limit N → ∞ is given by (2.5)

lim N →∞ 1 log 4N 2-ρ E   log v∈A c N,ρ exp β φ v   =    1 + β 2 2π 1 -ρ 2 -1 , β < √ 2π 1 -ρ 2 1/2 , 2 π 1 -ρ 2 -1/2 β, β ≥ √ 2π 1 -ρ 2 1/2 .
The last two equations then imply lim sup

N →∞ 1 log N 2 E   log v∈A c N,ρ exp βφ v   ≤    1 -ρ 2 + β 2 2π , β < √ 2π 1 -ρ 2 1/2 , 2 π 1 -ρ 2 1/2 β, β ≥ √ 2π 1 -ρ 2 1/2 .
It is then straightforward to check that, for every β, the right side is strictly smaller than f (β) as claimed. Proof. Without loss of generality, we suppose that lim ρ→0 lim N →∞ x β,N,ρ = x β in the sense of weak convergence. Uniqueness of the limit x β will then ensure the convergence for the whole sequence by compactness. Note also that by right-continuity and monotonicity of x β , it suffices to show (3.6)

1 α x β (r)dr = β c β (1 -α), for a dense set of α's in [0, 1].
We can choose a dense set of α such that none of them are atoms of x β , that is

x β (α) -x β (α -) = 0.
Now recall Theorem 2.1. Pick σ = (1, 1 + u) for some parameter |u| ≤ 1. Since β > √ 2π, u can be taken small enough so that β is larger than the critical β's of the limit. The goal is to establish the following equality:

(3.7) 1 α x β (r)dr = lim ρ→0 lim N →∞ π β 2 ∂ ∂u f (α,σ) N,ρ (β) u=0 .
The conclusion follows from this equality. Indeed, by construction, the function u → f (α,σ)

N,ρ (β) is convex. In particular, the limit of the derivatives is the derivative of the limit at any point of differentiability. Therefore, a straightforward calculation from (2.6) with σ 1 = 1 and σ 2 = 1 + u gives:

(3.8) lim

N →∞ π β 2 ∂ ∂u f (α,σ) N,ρ (β) =    √ 2π β (1-α)(1+u) √ α+(1-α)(1+u) 2 , if u > 0, √ 2π β (1 -α), if u < 0.
This gives (3.6) at u = 0.

We introduce the notation for the overlap at scale α:

(3.9) q α (v, v ) := 1 1 π log N 2 E φ v -φ [v]α φ v -φ [v ]α , Equality (3.7
) is proved via two identities:

1 α x β,N,ρ (r)dr = (1 -α) -EG ×2 β,N,ρ q(v, v ) -α; q(v, v ) ≥ α , (3.10) π β 2 ∂ ∂u f (α,σ) N,ρ (β) u=0 = EG β,N,ρ q α (v, v) -EG ×2 β,N,ρ q α (v, v ); v ∈ [v] α . (3.11)
The first identity holds since by Fubini's theorem

1 α x β,N,ρ (r)dr = EG ×2 β,N,ρ 1 α 1 {r≥q(v,v )} dr = EG ×2 β,N,ρ 1 -α; q(v, v ) < α + EG ×2 β,N,ρ 1 -q(v, v ); q(v, v ) ≥ α . For the second identity, direct differentiation gives π β 2 ∂ ∂u f (α,σ) N,ρ (β) u=0 = 1 1 π log N 2 EG β,N,ρ φ v -φ [v]α .
The identity is then obtained by Gaussian integration by parts.

To prove (3.7), we need to relate the overlap at scale α with the overlap as well as the event {q(v, v ) ≥ α} with the event {v ∈ [v] α }. This is slightly complicated by the boundary effect present in GFF. The equality in the limit N → ∞ between the first terms of (3.10) and (3.11) 

is easy. Because (φ u -E[φ u |F [v] c α ], u ∈ [v] α ) has the law of a GFF in [v] α , it follows from Lemma 5.2 that E (φ v -φ [v]α ) 2 = (1 -α) π log N 2 + O N (1)
.

Therefore, we have for

v ∈ A N,ρ lim N →∞ EG β,N,ρ [q α (v, v)] = 1 -α .
It remains to establish the equality between the second terms of (3.10) and (3.11).

Here, a control of the boundary effect is necessary. The following observation is useful to relate the overlaps and the distances: if v, v ∈ A N,ρ , Lemma 5.2 gives

(3.12) 1 -ρ - log v -v 2 log N 2 + o N (1) ≤ q(v, v ) ≤ 1 - log v -v 2 log N 2 + o N (1) .
On one hand, the right inequality proves the following implication

(3.13) q(v, v ) ≥ α + ε for some ε > 0 =⇒ v -v 2 ≤ cN 2(1-α-ε) ,
for some constant c independent of N and ρ. On the other hand, the left inequality gives:

(3.14) v ∈ [v] α =⇒ q(v, v ) ≥ α -2ρ.
Using this, we show

(3.15) ∆ 1 (N, ρ) := EG ×2 β,N,ρ [q(v, v ) -α; q(v, v ) ≥ α] -EG ×2 β,N,ρ [q α (v, v ); q(v, v ) ≥ α] → 0 , ∆ 2 (N, ρ) := EG ×2 β,N,ρ [q α (v, v ); q(v, v ) ≥ α] -EG ×2 β,N,ρ [q α (v, v ); v ∈ [v] α ] → 0 , in the limit N → ∞ and ρ → 0. Let ε > 0. Remark that (3.16) 0 ≤ EG ×2 β,N,ρ [q(v, v ) -α; q(v, v ) ≥ α] -EG ×2 β,N,ρ [q(v, v ) -α; q(v, v ) ≥ α + ε] ≤ ε .
To establish the equality of the overlaps on the event {q(v, v ) ≥ α + ε}, consider the decomposition, (3.17)

E φ v -φ [v]α φ v -φ [v ]α = E φ v -E[φ v |F [v ] c α ] φ v -φ [v ]α + E E[φ v |F [v ] c α ] -φ [v]α φ v -φ [v ]α . On the event {q(v, v ) ≥ α + ε}, (3.13) implies v -v 2 ≤ cN 2(1-α-ε)
. Therefore, the first term of the right side of (3.17) is by Lemma 5.2

(3.18) E φ v -E[φ v |F [v ] c α φ v -φ [v ]α = 2 π log N (1-α) v -v + O N (1) .
The second term is negligible. Indeed, by Cauchy-Schwarz inequality, it suffices to prove that

(3.19) E E[φ v |F [v ] c α ] -φ [v]α 2 = O N (1) .
For this, write B for the box [v] α ∩ [v ] α . We have

φ v -φ [v]α = (φ v -E[φ v |F B c ]) + (E[φ v |F B c ] -φ [v]α ) . Since φ v -E[φ v |F B c ] is independent of F B c and E[φ v |F B c ] -φ [v]α is F B c -measurable (observe that F B c ⊃ F [v] c α ), we get E[(φ v -φ [v]α ) 2 ] = E[(φ v -E[φ v |F B c ]) 2 ] + E[(E[φ v |F B c ] -φ [v]α ) 2 ] . Moreover, E[(φ v -E[φ v |F B c ]) 2 ] and E[(φ v -φ [v]α ) 2 ]
are both equal to 1-α π log N 2 +O N (1) by Lemma 5.2 and the fact that distances of v to vertices in ∂ B and 

∂[v] α are both proportional to N 1-α . Therefore E[(E[φ v |F B c ]-φ [v]α ) 2 ] = O N (1). The same argument with φ [v]α replaced by E[φ v |F [v ] c α ] shows that E[(E[φ v |F B c ] -E[φ v |F [v ] c α ]) 2 ] = O N (1
q α (v, v ) = 1 -α - log v -v 2 log N 2 + o N (1), on {q(v, v ) ≥ α + ε}.
Equations (3.12), (3.16) and (3.20) yield ∆ 1 (N, ρ) → 0 in the limit N → ∞, ρ → 0 and ε → 0.

For ∆ 2 (N, ρ), let ε > 2ρ. For v ∈ [v] α , (3.14) implies q(v, v ) ≥ α -2ρ. On the other hand, by (3.13)

, q(v, v ) ≥ α + ε implies v ∈ [v] α . These two observations give the estimate ∆ 2 (N, ρ) ≤ EG ×2 β,N,ρ q α (v, v ); q(v, v ) ∈ [α -ε , α + ε ] . The right side is clearly smaller than x β,N,ρ (α + ε ) -x β,N,ρ (α -ε ) .
Under the successive limits N → ∞, ρ → 0, then ε → 0, the right side becomes x β (α) -x β (α-). This is zero since α was chosen not to be an atom of x β .

4. The free energy of the (α, σ)-GFF: proof of Theorem 2.1

The computation of the free energy of the (α, σ)-GFF is divided in two steps. First, an upper bound is found by comparing the field ψ in A N,ρ with a "non-homogeneous" GREM having the same free energy as a standard 2-level GREM. Second, we get a matching lower bound using the trivial inequality f

(α,σ) N,ρ (β) ≥ 1 log N 2 log v∈V δ N e βψv .
The limit of the right term is computed following the method of Daviaud [START_REF] Daviaud | Extremes of the discrete two-dimensional Gaussian free field[END_REF]. 4.1. Proof of the upper bound. For conciseness, we only prove the case σ 1 ≥ σ 2 , by a comparison argument with a 2-level GREM. The case σ 1 ≤ σ 2 is done similarly by comparing with a REM. The comparison argument will have to be done in two steps to account for boundary effects.

Divide the set A N,ρ into square boxes of side-length N 1-α /100. (The factor 1/100 is a choice. We simply need these boxes to be smaller than the neighborhoods [v] α , yet of the same order of length in N .) Pick the boxes in such a way that each v ∈ A N,ρ belongs to one and only one of these boxes. The collection of boxes is denoted by B α and ∂B α denotes B∈Bα ∂B. For v ∈ A N,ρ , we write B(v) for the box of B α to which v belongs. For B ∈ B α , denote by B ⊃ B the square box given by the intersections of all [u] α , u ∈ B, see figure 1. Remark that the side-length of B is cN 1-α , for some constant c. For short, write φ

B := E[φ v B |F B c ] where v B is the center of the box B.
The idea in constructing the GREM is to associate to each point v ∈ B the same contribution at scale α, namely φ B . One problem is that φ B will not have the same variance for every B since it depends on the distance to the boundary. This is the reason why the comparison will need to be done in two steps. First, consider the hierarchical Gaussian field ( ψ v , v ∈ A N,ρ ):

v v 0 [v]↵ [v 0 ]↵ e B B 1
(4.1)

ψ v = g (1) 
B(v) + g (2) v , where (g

(2)
v , v ∈ A N,ρ ) are independent centered Gaussians (also independent from (g

(1) B , B ∈ B α )) with variance E[(g (2) v ) 2 ] = E[ψ 2 v ] -E[(g (1) B(v) ) 2 ] . This ensures that E[ψ 2 v ] = E[ ψ 2 v ] for all v ∈ A N,ρ . The variables (g (1) 
B , B ∈ B α ) are also independent centered Gaussians with variance chosen to be σ

2 1 E[φ 2 B ] + C for some constant C ∈ R independent of B in B α and independent of N . The next lemma ensures that (4.2) E[ψ v ψ v ] ≥ E[ ψ v ψ v ] . Lemma 4.1. Consider the field (ψ v , v ∈ A N,ρ ) as in (2.3). Then E[ψ v ψ v ] ≥ 0. Moreover, if v and v both belong to B ∈ B α , then E[ψ v ψ v ] ≥ σ 2 1 E[φ 2 B ] + C , for some constant C ∈ R independent of N .
Proof. For the assertion, write

ψ v = (σ 1 -σ 2 )φ [v]α + σ 2 φ v . The representation φ [v]α = u∈∂[v]α p α,v ( 
u) φ u of Lemma 5.1 and the fact that σ 1 > σ 2 imply that E[ψ v ψ v ] ≥ 0 since the field φ is positively correlated by (1.1).

Suppose now that v, v ∈ B where B ∈ B α . The covariance can be written as

(4.3) E[ψ v ψ v ] = σ 2 1 E φ [v]α φ [v ]α + σ 2 2 E (φ v -φ [v]α )(φ v -φ [v ]α ) + σ 1 σ 2 E φ [v]α (φ v -φ [v ]α ) + σ 1 σ 2 E φ [v ]α (φ v -φ [v]α ) .
We first prove that the last two terms of (4.3) are positive. By Lemma 5.1, we can write φ

[v]α = u∈∂[v]α p α,v (u) φ u . Note that the vertices u that are in [v ] c α will not contribute to the covariance E φ [v]α (φ v -φ [v ]α ) by conditioning. Thus E φ [v]α (φ v -φ [v ]α ) = u∈∂[v]α∩[v ]α p α,v (u) E φ u (φ v -φ [v ]α ) = u∈∂[v]α∩[v ]α p α,v (u) E (φ u -E[φ u |F [v ] c α ])(φ v -E[φ v |F [v ] c α ]) .
Lemma 5.2 ensures that the correlation in the sum are positive.

For the first term of (4.3), the idea is to show that φ[v] α and φ B are close in the L 2 -sense. The same argument used to prove (3.19) shows that

(4.4) E φ [v]α -E[φ v |F B c ] 2 = O N (1) .
Moreover, since v and v B are also at a distance smaller than N 1-α /100 from each other, Lemma 12 in [START_REF] Bolthausen | Entropic repulsion and the maximum of the two-dimensional harmonic crystal[END_REF] implies that

(4.5) E φ B -E[φ v |F B c ] 2 = O N (1) .
Equations (4.4) and (4.5

) give E[(φ B -φ [v]α ) 2 ] = O N (1)
and similarly for v . All the above sum up to

(4.6) σ 2 1 E φ [v]α φ [v ]α = σ 2 1 E[φ 2 B ] + O N (1)
. It remains to show that the second term of (4.3) is greater than O N (1). Since φ [v]α and φ [v ]α are F B c -measurable by definition of the box B, we have the decomposition

E (φ v -φ [v]α )(φ v -φ [v ]α ) = E[(φ v -E[φ v |F B c ])(φ v -E[φ v |F B c ])] + E[(E[φ v |F B c ] -φ [v]α )(E[φ v |F B c ] -φ [v ]α )] .
The first term is positive by Lemma 5.1. As for the second, Equation (4.4) shows that

E E[φ v |F B c ] -φ [v]α E[φ v |F B c ] -φ [v ]α = O N (1) .
This concludes the proof of the lemma.

Equation (4.2) implies that the free energy of ψ is smaller than the one of ψ by a standard comparison lemma, see Lemma 5.3 in the Appendix. It remains to prove an upper bound for the free energy of ψ.

Note that the field ψ is not a GREM per se because the variances of g

B , B ∈ B α , are not the same for every B, as it depends on the distance of B to the boundary. However, the variances of φ B , B ∈ B α , are uniformly bounded by α π log

N 2 + O N (1); indeed E φ 2 B = E φ 2 v B -E (φ v B -φ B ) 2 = E φ 2 v B - 1 -α π log N 2 + O N (1) ≤ 1 π log N 2 - 1 -α π log N 2 + O N (1) = α π log N 2 + O N (1),
where we used Lemmas 5.1 and 5.2 in the second line and Lemma 5.2 in the third.

Moreover, note that for v ∈ B,

E[(g (2) v ) 2 ] = E[ψ 2 v ] -E[(g (1) 
B ) 2 ] = σ 2 1 E[φ 2 [v]α ] -E[φ 2 B ] + σ 2 2 1 -α π log N 2 -Cσ 2 1 .
The first term is of order O N (1) by Equations (4.4) and (4.5). Thus one has E[(g (2) v

) 2 ] = σ 2 2 1 -α π log N 2 + O N (1)
.

The important point is that the variance of g

v of ψ is uniform in v, up to lower order terms. Now consider the 2-level GREM ( ψv

, v ∈ A N,ρ ) (4.7) ψv = ḡ(1) B + g (2)
v where (g

v , v ∈ A N,ρ ) are as before and (ḡ

B , B ∈ B α ) are i.i.d. Gaussians of variance α π log N 2 + O N (1) (1) 
. This field differs from ψ only from the fact that the variance of ḡ(1)

B

is the same for all B and is the maximal variance of (g

B , B ∈ B α ). The calculation of the free energy of ( ψv , v ∈ A N,ρ ) is a standard computation and gives the correct upper bound in the statement of Theorem 2.1. (We refer to [START_REF] Bolthausen | Ten Lectures on Random Media[END_REF] for the detailed computation of the free energy of the GREM.) The fact that the free energy of ψ is larger than the one of ψ follows from the next lemma showing that the free energy of a hierarchical field is an increasing function of the variance of each point at the first level.

Lemma 4.2. Consider N 1 , N 2 ∈ N. Let (X (1) v 1 , v 1 ≤ N 1 ) and (X (2) v 1 ,v 2 ; v 1 ≤ N 1 , v 2 ≤ N 2 ).
Consider the Gaussian field of the form

X v = σ 1 (v 1 )X (1) v 1 + σ 2 X (1) v 1 ,v 2 , v = (v 1 , v 2 )
where σ 2 > 0 and σ 1 (v 1 ) > 0, v 1 ≤ N 1 , might depend on v 1 . Then E log v e βXv is an increasing function in each variable σ 1 (v 1 ).

Proof. Direct differentiation gives

∂ ∂σ 1 (v 1 ) E log v e βXv = βE v 2 X v 1 e βXv 1 ,v 2 Z N (β) ,
where Z N (β) = v e βXv . Gaussian integration by part then yields

βE v 2 e Xv 1 βXv 1 ,v 2 v e βXv = β 2 σ 1 (v 1 )E   v 2 e βXv 1 ,v 2 Z N (β) - v 2 ,v 2 e βXv 1 ,v 2 e βX v 1 ,v 2 Z N (β) 2   .
The right side is clearly positive, hence proving the lemma.

4.2. Proof of the lower bound. Recall the definition of V δ N given in the introduction. The two following propositions are used to compute the log-number of high points of the field ψ in V δ N . The treatment follows the treatment of Daviaud [START_REF] Daviaud | Extremes of the discrete two-dimensional Gaussian free field[END_REF] for the standard GFF. The lower bound for the free energy is then computed using Laplace's method. Define for simplicity

V 12 := σ 2 1 α + σ 2 2 (1 -α). Proposition 4.3. lim N →∞ P max v∈V δ N ψ v ≥ 2 π γ max log N 2 = 0,
where

γ max = γ max (α, σ) := √ V 12 , if σ 1 ≤ σ 2 , σ 1 α + σ 2 (1 -α), if σ 1 ≥ σ 2 .
Proof. The case σ 1 ≤ σ 2 is direct by a union bound. In the case σ 1 ≥ σ 2 , note that the field ψ defined in (4.1) but restricted to V δ N is a 2-level GREM with cN 2α (for some c > 0) Gaussian variables of variance 

P max v∈V δ N ψ v ≥ 2 π γ max log N 2 ≤ P max v∈V δ N ψ v ≥ 2 π γ max log N 2 .
The result then follows from the maximal displacement of the 2-level GREM. We refer the reader to Theorem 1.1 in [START_REF] Bovier | Derrida's generalised random energy models. I. Models with finitely many hierarchies[END_REF] for the details.

Proposition 4.4. Let H ψ,δ N (γ) := v ∈ V δ N : ψ v ≥ 2 π γ log N 2 be the set of γ-high points within V δ N and define if σ ≤ σ 2 E (α,σ) (γ) := 1 - γ 2 V 12 ; if σ ≥ σ 2 E (α,σ) (γ) := 1 -γ 2 V 12 , if γ < V 12 σ 1 , (1 -α) -(γ-σ 1 α) 2 σ 2 2 (1-α) , if γ ≥ V 12 σ 1 .
Then, for all 0 < γ < γ max , and for any E < E (α,σ) (γ), there exists c such that

(4.8) P |H ψ,δ N (γ)| ≤ N 2E ≤ exp{-c(log N ) 2 }.
Proposition 4.4 is obtained by a two-step recursion. Two lemmas are needed. The first is a straightforward generalization of the lower bound in Daviaud's theorem (see Theorem 1.2 in [START_REF] Daviaud | Extremes of the discrete two-dimensional Gaussian free field[END_REF] and its proof). For all 0 < α < 1, denote by Π α the centers of the square boxes in B α (as defined in Section 4.1) which also belong to V δ N . Lemma 4.5. Let α , α ∈ (0, 1] such that 0 < α < α ≤ α or α ≤ α < α ≤ 1. Denote by σ the parameter σ 1 if 0 < α < α ≤ α and by σ the parameter σ 2 if α ≤ α < α ≤ 1. Assume that the event

Ξ := #{v ∈ Π α : ψ v (α ) ≥ γ 2 π log N 2 } ≥ N E , is such that P(Ξ c ) ≤ exp{-c (log N ) 2 }, for some γ ≥ 0, E > 0 and c > 0. Let E(γ) := E + (α -α ) - (γ -γ ) 2 σ 2 (α -α ) > 0.
Then, for any γ such that E(γ ) > 0 and any E < E(γ ), there exists c such that

P #{v ∈ Π α : ψ v (α ) ≥ γ 2 π log N 2 } ≤ N 2E ≤ exp{-c(log N ) 2 }.
We stress that γ may be such that E(γ ) < E . The second lemma, which follows, serves as the starting point of the recursion and is proved in [START_REF] Bolthausen | Entropic repulsion and the maximum of the two-dimensional harmonic crystal[END_REF] (see Lemma 8 in [START_REF] Bolthausen | Entropic repulsion and the maximum of the two-dimensional harmonic crystal[END_REF]). Lemma 4.6. For any α 0 such that 0 < α 0 < α, there exists E 0 = E 0 (α 0 ) > 0 and c = c(α 0 ) such that

P #{v ∈ Π α 0 : ψ v (α 0 ) ≥ 0} ≤ N E 0 ≤ exp{-c(log N ) 2 }.
Proof of Proposition 4.4. Let γ such that 0 < γ < γ max and choose E such that E < E (α,σ) (γ). By Lemma 4.6, for α 0 < α arbitrarily close to 0, there exists E 0 = E 0 (α 0 ) > 0 and c 0 = c 0 (α 0 ) > 0, such that (4.9)

P #{v ∈ Π α 0 : ψ v (α 0 ) ≥ 0} ≤ N 2E 0 ≤ exp{-c 0 (log N ) 2 }. Moreover, let (4.10) E 1 (γ 1 ) := E 0 + (α -α 0 ) - γ 2 1 σ 2 1 (α -α 0 )
. Lemma 4.5 is applied from α 0 to α. For any γ 1 with E 1 (γ 1 ) > 0 and any E 1 < E 1 (γ 1 ), there exists c 1 > 0 such that

P #{v ∈ Π α : ψ v (α) ≥ γ 1 2 π log N 2 } ≤ N 2E 1 ≤ exp{-c 1 (log N ) 2 }.
Therefore, Lemma 4.5 can be applied again from α to 1 for any γ 1 with E 1 (γ 1 ) > 0.

Define similarly

E 2 (γ 1 , γ 2 ) := E 1 (γ 1 ) + (1 -α) -(γ 2 -γ 1 ) 2 /σ 2 2 (1 -α).
Then, for any γ 2 with E 2 (γ 1 , γ 2 ) > 0, and E 2 < E 2 (γ 1 , γ 2 ), there exists c 2 > 0 such that (4.11)

P #{v ∈ V δ N : ψ v ≥ γ 2 2 π log N 2 } ≤ N 2E 2 ≤ exp{-c 2 (log N ) 2 }.
Observing that 0 ≤ E 0 ≤ α 0 , Equation (4.8) follows from (4.11) if it is proved that lim α 0 →0 E 2 (γ 1 , γ) = E (α,σ) (γ) for an appropriate choice of γ 1 (in particular such that E 1 (γ 1 ) > 0). It is easily verified that, for a given γ, the quantity E 2 (γ 1 , γ) is maximized at γ * 1 = γσ 2 1 (αα 0 )/(V 12 -σ 2 1 α 0 ). Plugging these back in (4.10) shows that E 1 (γ * 1 ) > 0 provided that γ < V 12 /σ 1 =: γ crit , with α 0 small enough (depending on γ). Furthermore, since E

2 (γ * 1 , γ) = E 0 + (1 -α 0 ) -γ 2 /(V 12 -σ 2 1 α 0 ), we obtain lim α 0 →0 E 2 (γ * 1 , γ) = E (α,σ) (γ)
, which concludes the proof in the case 0 < γ < γ crit . If γ crit ≤ γ < γ max , the condition E 1 (γ * 1 ) > 0 is violated as α 0 goes to zero. However, the previous arguments can easily be adapted and we refer to subsection 3.1.2 in [START_REF] Arguin | Poisson-Dirichlet Statistics for the extremes of a logcorrelated Gaussian field[END_REF] for more details.

Proof of the lower bound of Theorem 2.1. We will prove that for any ν > 0 Using the expression of E (α,σ) in Proposition 4.4 on the different intervals, it is easily checked by differentiation that max γ∈[0,γmax] P β (γ) = f (α,σ) (β). Furthermore, the continuity of γ → P β (γ) on [0, γ max ] yields max 1≤i≤M -1

P β (γ i ) -→ max γ∈[0,γmax] P β (γ) = f (α,σ) (β), M → ∞.
Therefore, choosing M large enough and applying Laplace's method in (4.12) yield the result.

appendix

The conditional expectation of the GFF has nice features such as the Markov property, see e.g. Theorems 1.2.1 and 1.2.2 in [START_REF] Dynkin | Markov Processes and Random Fields[END_REF] for a general statement on Markov fields constructed from symmetric Markov processes. The following estimate on the Green function can be found as Lemma 2.2 in [START_REF] Ding | Exponential and double exponential tails for maximum of two-dimensional discrete Gaussian free field[END_REF] and is a combination of Proposition 4.6.2 and Theorem 4.4.4 in [START_REF] Lawler | Random Walk: a modern introduction[END_REF].

Lemma 5.2. There exists a function a :

Z 2 × Z 2 → [0, ∞) of the form a(v, v ) = 2 π log v -v + 2γ 0 log 8 π + O( v -v -2 )
(where γ 0 denotes the Euler's constant) such that a(v, v) = 0 and

G A (v, v ) = E v [a(v , S τ A )] -a(v, v ) .
Slepian's comparison lemma can be found in [START_REF] Ledoux | Probability in Banach Spaces[END_REF] and in [START_REF] Kahane | Sur le chaos multiplicatif[END_REF] for the result on logpartition function. 
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