
HAL Id: hal-00871304
https://hal.science/hal-00871304v1

Preprint submitted on 13 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anchor-Based Localization Using Distributed Interval
Contractors

Olivier Reynet, Olivier Voisin, Luc Jaulin

To cite this version:
Olivier Reynet, Olivier Voisin, Luc Jaulin. Anchor-Based Localization Using Distributed Interval
Contractors. 2011. �hal-00871304�

https://hal.science/hal-00871304v1
https://hal.archives-ouvertes.fr

1

Anchor-Based Localization Using Distributed
Interval Contractors

Olivier Reynet, Olivier Voisin and Luc Jaulin

Abstract—This paper presents a new method to solve anchor-
based distributed localization problems. This method is based on
a generic algorithm using interval contractors. In the theoretical
part, we detail a new formalism for distributed contractors. This
formalism is used to demonstrate that our distributed algorithm
converges to the same fixed point than the centralized algorithm.
Then, we use this distributed algorithm to solve an anchor-based
distributed localization problem in a Wireless Sensor Network
(WSN).

Index Terms—Distributed systems, Constraint Satisfaction
Problem, Contractor, Interval Analysis, Multi-agent systems,
Wireless Sensor Networks, Localization.

I. INTRODUCTION

W IRELESS Sensor Network (WSN) [1] or Mobile Ad-
hoc sensor Networks (MANETs) are widely used in

many applications, such as monitoring and control [2], [3].
They may be seen as a multi-agent system whose agents are
autonomous and where there is no leader. The management
and the efficiency [4]–[7] of these systems always depends on
the accuracy of the self-localization of the agents. In this paper,
we address the problem of the distributed localization in the
presence of anchors. Previous works have successfully used
interval analysis to localize nodes in mobile networks [8] or to
track acoustical sources [9], [10]. In the continuation of these
works, this paper states a new formalism for algorithms using
distributed interval contractors [11], [12]. Beyond localization
or tracking, it may be applied to any kind of collaborative
signal and information processing, because it does not depend
on the nature of the problem.

The originality of our approach is to distribute computation
to interval contractors located in the agents. Interval analysis
implies that each variable is supposed to be contained in a
interval [11]. Interval contractors are algorithms built from a
constraint which reduce the size of intervals. The unremoved
part of the intervals is compatible with the constraint. They
combine techniques as interval analysis [13]–[16], forward-
backward propagation [17], monotonicity [18], [19], pruning
[20] and domain bisections to build efficient solvers [12].

Interval contractors power lies in their ability to propagate
potentially solution sets and to collaborate with each other.
We strongly believe that propagating potentially solution sets
is smarter than propagating ponctual estimations, because no
solution is dismissed and guarantees may be given on the result
[21]–[23]. Ponctual estimations are inherently erroneous and
generate erroneous values to be propagated and accumulated

Olivier Reynet and Luc Jaulin are with the LabSTICC, ENSTA Bretagne,
2 rue F. Verny 29806 Brest, FRANCE.

through the distributed system [24], [25]. Instead, interval
contractors efficiently reduce the size of the solution sets
throughout the distributed process. Moreover, each agent can
exchange its solution set with the others agents and trigger
larger contractions performed by the other agents. That is how
agents can collaborate through the coherent use of contractors
and how contractors can help at decentralizing a problem.

The following section is a theoretical part. It first deals
with interval contractors definition and fundamental properties.
Then, we describe the multi-agent framework and a centralized
approach. We also give a new formalism using contractor
graphs. Finally, this section focuses on the Generic Contractor-
based Distributed Algorithm (GCDA). We demonstrate that
GCDA converges to the same enclosure of the solution than
with the centralized approach. The third section focuses on the
practical use of GCDA: a distributed localization problem in
a Wireless Sensor Network (WSN) is solved and results are
analysed.

II. THEORETICAL BASES

A. Intervals Arithmetics and Boxes

In this paper, we deal with closed intervals, which are
connected and closed subsets of R. The set of all intervals
of R will be denoted by IR. An interval is surrounded by
brackets and is defined by its lower bound x− and its upper
bound x+ :

[x] = [x−, x+] (1)

Interval arithmetic1 has been deeply studied since the eighties
[11], [16], [26]. Therefore, we only recall some fundamentals.

If � ∈ {+,−, ∗} and if [x] and [y] are two intervals, we can
define:

[x] � [y] , [{x � y | x ∈ [x], y ∈ [y]}] . (2)

For instance,

[−1, 3] + [2, 5] = [1, 8] (3)
[−1, 3] ∗ [2, 5] = [−5, 15] (4)

[−1, 3] / [2, 5] =

[
−1

2
,
3

2

]
(5)

(6)

Interval elementary functions may also be defined. If f ∈
{cos, sin, sqr, sqrt, log, exp, . . . }, is a function from R to R,
we define its interval extension as

f ([x]) , [{f(x) | x ∈ [x]}] . (7)

1See http://www.ensta-bretagne.fr/jaulin/intervalcourse.pdf, an excellent in-
troduction to interval contractors.

2

For instance

sin ([0, π]) = [0, 1] (8)
sqr ([−1, 3]) = [−1, 3]2 = [0, 9] (9)
abs ([−7, 1]) = [0, 7] (10)

sqrt ([−10, 4]) =
√

[−10, 4] = [0, 2] (11)
log ([−2,−1]) = ∅. (12)

To deal with higher dimensional problems, we have to
introduce boxes.

Definition 1. A cartesian product of intervals is called a box.

Thus, a n-dimensional box [x] can be written as [x1]×[x2]×
· · · × [xn].

B. Interval Contractor Definitions and Properties

An intuitive and simple contrator definition could be the
following : suppose we have constraint satisfaction problem
(CSP) H, which can be formulated as:

H : (f(x) = 0, x ∈ [x]) (13)

with [x] ∈ IRn. The solution set of H is defined as:

S = {x ∈ [x] | f(x) = 0} (14)

Contracting H means replacing [x] by a smaller domain [x′]
such that the solution set remains unchanged: S ⊂ [x′] ⊂ [x].
Then, a contractor for H is an operator used to contract [x].
Now we can give a more precise definition:

Definition 2. A contractor is a monotonic mapping C from
IRn to IRn such that:

∀[x] ∈ IRn, C([x]) ⊆ [x] (contractance) (15)
∀[x] ⊂ [y]⇒ C([x]) ⊂ C([y]) (monotony) (16)

Monotonic contractors can be built from elementary alge-
braic operators and interval inclusion functions [11], [14], [27].

Example 1. Consider the function defined by:

f :R2 → R
(x1, x2)→ x2 − (x1 − 1)2 (17)

and define C : IR2 → IR2 as follows:

C([x]) := (Cx1
, Cx2

)([x])

:= ([x1] ∩ (
√

[x2] + 1), [x2] ∩ ([x1]
2 − 1)) (18)

C is a contractor associated to f(x) = 0.
Given a initial domain [x] = [−2, 2]×[−2, 2], C([x]) returns

[1−
√
2, 1]× [0, 2], as sketched in Fig. 1. At this step, C has

reached a fixed point, i.e. C([x]) = [x].

x1

x2

1 2-1-2 0

2

1

-1

-2

Cx1

Cx2

Initial domain Contracted domain

f (x)

Fig. 1. Illustration of the contractor mecanism on the parabolic constraint f
(see eq. (17)). Given a initial domain [x] = [−2, 2]× [−2, 2], applying C to
[x] results in [1−

√
2, 1]× [0, 2]

C. Multi-agent Framework Description

Let A be a set of n agents Ai. An agent is a autonomous
entity which is able to sense the other agents, to build and
compute contractors, and to communicate with the other agents
via message passing paradigm. Each agent Ai has got a vector
pi, which may be estimated by the other agents.

The distributed constraint satisfaction problem can be de-
scribed by :
• [p] = [p1] × [p2] × · · · × [pn], the set of the domains

of the vectors. In our interval context, these domains are
represented by boxes. The main goal of our algorithm is
to contract these boxes.

• L = {C1, C2, . . . , Cm}, the set of all the contractors
shared between agents.

D. Generic Contractor-Based Centralized Algorithm

This section proposes a Generic Contractor-based Central-
ized Algorithm (GCCA) to compute [p] in the multi-agent
framework described in section II-C. We suppose that there
is an omniscient supervisor, which has access to the set
of contractors L. This supervisor can build a new operator
C∞, picking and combining [27] contractors from the set L
following a fair strategy as in (19).

C∞ = C1 ◦ C2 ◦ · · · ◦ Cm ◦ C1 ◦ C2 ◦ . . . (19)

Lemma 1. The operator C∞ is a contractor.

Proof: Let first demonstrate the contractance property.
Let C1 and C2 be two contractors and [x] and [y] two sets
such that: C1([x]) = [y]. As C1 is a contractor, [y] ⊂ [x].
As C2 is a contractor, C2([y]) = C2(C1([x])) ⊂ [y]. Hence,
(C2 ◦ C1)([x])) ⊂ [x], which implies that C∞ verifies the
contractance property.

3

C∞ ([y]) = [y]

[x]

C∞ ([x]) = [z]

Fig. 2. Elements for the proof by contracdiction of Theorem 2: [z] ⊂ [y] ⊂ [x]
are such that C∞([x]) = [z], [y] ⊂ [x], C∞([y]) = [y], and [z] ⊂ [y].

To prove monotonicity, we proceed as follow: let C1 and
C2 be two contractors and [x] and [y] two sets such as [x] ⊂
[y]. Then, C2([x]) ⊂ C2([y]), because C2 is monotonic. Then,
C1(C2([x])) ⊂ C1(C2([y])), because C1 is monotonic. It can
be rewritten (C1 ◦ C2)([x]) ⊂ (C1 ◦ C2)([y]), which means that
C1◦C2 is monotonic. As all the contractors in L are monotonic,
C∞ is a monotonic.

Theorem 2. ∀[x] ∈ IRn, C∞([x]) converges to the largest box
[z] ⊂ [x] such that [z] is a fixed point, i.e. C∞([z]) = [z].

Proof: This theorem has already been proved in [11] p.
92. Nevertheless, we give here another demonstration.

First, we demonstrate that C∞ converges using proof by
contradiction. Suppose C∞ does not converge. Then, we can
find boxes [t] and [u] and k ∈ {1, 2, . . . ,m} such that
Ck([t]) = [u] and [t] ⊂ [u]. It means that Ck does not
respect the contractance property Ck([t]) ⊂ [t], i.e. Ck is not a
contractor. Therefore, C∞ converges to a fixed point [z].

Second, we demonstrate that [z] is the largest fixed point.
Using proof by contradiction, we suppose we have three boxes
[x],[y] and [z] such that C∞([x]) = [z], [y] ⊂ [x], C∞([y]) = [y],
and [z] ⊂ [y], as sketched in Fig. 2. [y] ⊂ [x] ⇒ C∞([y]) ⊂
C∞([x]), because C∞ is monotonic from lemma 1. This implies
that [y] ⊂ [z], which is not true. Therefore, [z] is the largest
fixed point.

Our GCCA centralized approach based on C∞ contractor
can be stated as detailed in Algorithm 1. From Theorem 2,
GCCA reduces [p] and reaches a fixed point. This approach
has already been used to solve localization problem [8].
The content of this section generalizes this previous work,
providing a clear formalism for interval contractors and a more
generic algorithm.

Algorithm 1 GCCA as computed by the supervisor.
1: Build C := C1 ◦ C2 ◦ . . . Cm from L
2: repeat
3: [p] := C([p])
4: until a fixed point is reached

E. Generic Contractor-based Distributed Algorithm

In this section, we are looking for a distributed algorithm to
compute [p], because, in many multi-agent frameworks, it may

A1 A2

A7 A6

A5

A3

A4

C32

C43

C12
C21

C25
C52

C72 C26

C76
C67

Fig. 3. A contractor graph G = (A, E): each edge stands for a contractor Cji .
The start of the arrow indicates the owner of the contractor. The connectivity
is 4 for A2 and 1 for A3.

be unpractical or even impossible to gather the whole problem
into a single place. In our framework, the agents have the
ability to communicate with each other using message passing
paradigm. This message passing system is asynchronous: no
global time is available, messages can arrive at any times and
processing speeds are arbitrary. We also suppose that messages
:
• (i) are reliably transferred,
• (ii) can be multicasted.

The messaging primitives are :
• sendMsg(Destination,MessageContent),
• and getMsg() which returns a tuple

(EmitterAgent,MessageContent).
In the following, and for pedagogical reasons, we will only

consider binary contractors which can be noted Cji for i 6= j
and i, j ∈ {1, 2, . . . , n}. Cji is a contractor of Ai associated
to a constraint between pi and pj . Nevertheless, our approach
is not limited to binary contractors and could be extended to
any type of contractors.

Our system may be represented by a contractor graph G =
(A, E) as sketched in Fig. 3. A is the set of the n vertices of
the graph. E stands for the set of the edges of the graph. An
edge between the agents Ai and Aj represents a contractor
between the pi and pj variables.
Ak is a neighbour of Ai if Ak has got a contractor Cik, i.e.

it exists an arrow starting from Ak and ending at Ai. We will
noteNi the set of the neighbours of Ai. For example, in Fig. 3,
N2 = {A1,A5,A6}. It is important to note that our approach
does not require G to be undirected: Ak ∈ Ni ; Ai ∈ Nk.
This kind of situation often appends in a robotics context2.

Definition 3. The connectivity ci of Ai is:

ci = card(Ni) (20)

It is the number of edges which end at the vertex Ai.

2For example, in a robots swarm, A can see B, but B can not see A, because
of obstacles.

4

We propose the Generic Contractor-based Distributed Algo-
rithm (GCDA) as detailed in Algorithm 2.

Algorithm 2 GCDA as computed by agent Ai

1: procedure GCDA([pi],Ni)
2: for all Ak ∈ Ni do
3: [pk] :=]−∞,+∞[
4: end for
5: SendMsg(Ni,[pi])
6: while (Ak, [pr])← getMsg() do
7: if r == i then
8: [pi] := [pi] ∩ [pr] . Update [pi] from Ak

9: else if r == k then
10: [pk] := [pk] ∩ [pr] . Update [pk] from Ak

11: end if
12: ([pi], [pk]) := Cki ([pi], [pk])
13: if [pk] has been contracted then
14: sendMsg(Ak,[pk]) . Ak must update [pk]
15: end if
16: end while
17: if [pi] has been contracted then
18: sendMsg(Ni,[pi]) . Ni must update [pi]
19: end if
20: end procedure

At the beginning of the algorithm, Ai sets the unknown
initial domains of the [pk] to] − ∞,+∞[. The distributed
process starts when each agent sends to its neighbours its own
estimation of [pi] (line 4). Then, while Ai receives messages
from the other agents, Ai updates its knowlegde of [pi] and Ni

by intersecting its own estimation with the [pr] received from
the network. Ai only sends updates of [pi] or [pk]. Therefore,
r stands either for i (the agent himself) or for k (the emitter of
the message). These intersection steps are valid, as long as no
outlier occur. Indeed, Ai can reduce [pk], if the sender Ak of
the message has a better knowledge of [pk]. Then, Ai applies
its own contractor Cki ([pi], [pk]). If a contraction occurs, Ai

sends its new estimation of [pi] to its neighbours and waits for
messages. Ai only sends its new estimation of [pk] to [Ak],
because Ai does not know the neighbours of [Ak]. Only [Ak]
is able to correctly propagate [pk] to its neighbours Nk

Theorem 3. GCDA converges to the same fixed point than
GCCA.

Proof: In GCDA, there is no supervisor and contrac-
tors are applied through the network by each agent. The
network intersection (lines 8 and 10 of GCDA) combines
the contractors’ results, replacing contractor composition ◦ in
GCCA. Therefore, the only difference between GCCA and
GCDA is the way the contractors are combined. It has been
demonstrated [27] that the chaotic order in which contractors
are applied has no impact on the convergence property nor
on the fixed point, as long as the order is fair. A combining
strategy is said to be fair if, for any k ≥ 1 and any contractor
C of L, there exists j ≥ k such that C is computed at rank
j. Therefore, the only proof we have to give is that GCDA’s
strategy is fair.

Suppose that GCDA’s strategy is not fair. It means that it
exists a contractor C of L and a step k after which C is never
computed. However, the instruction sendMsg of line 14 and
18 guarantees that all contractors are called if needed, i.e. if
their domains have changed and have been contracted. Then,
if such a contractor C exists, it means that a message has not
been received. But, at the beginning of this section, we have
supposed that messages are reliabily transferred. Therefore,
GCDA’s strategy is fair and GCDA converges to the same
fixed point than GCCA.

Classical algorithms often propagate a single inaccurate
ponctual solution [25], which magnifies the uncertainty of the
result. GCDA power lies in the contractors’ ability to work
together and to propagate only solution sets: only non solution
sets are removed. As it will be shown in the next part, most
of the time, only few contractions are needed to reach a fixed
point. Besides, our interval context naturally generates results
which take into account uncertainty: results are boxes which
contain solutions. Finally, the contractor graph does not need
to be connected (see section III-E) to apply GCDA: lonely
agents can still apply GCDA, even if the result might be less
accurate.

III. GCDA IN USE

A. Simulation Framework

We consider a static Wireless Sensor Network of n agents
as sketched in Fig. 4. Each agent is interested in computing
its pose vector p = (x, y), where (x, y) are the 2D-coordinate.
Each agent can observe the other agents which are located in
some sensing range denoted by r. Sensors’ data is the distance
dab between an agent and a neighbour of this agent. This
measurement is noisy: in our context, dab will be represented
by an interval [dab]. The bounded noise may be noted: [−ν, ν].
Therefore we have: [dab] = [dab − ν, dab + ν]. No other
hypothesis is made on the nature of the noise.

Our simulations are such that agents are randomly spread
in a two-dimensional space. Some of these agents are anchors,
which means that they precisely know their position3. If we
have m anchor among n agents, we will note the anchor ratio:

a =
m

n
. (21)

The connectivity of an agent is the number of neighbours
which can be sensed by an agent. In our simulation, we set
the mean conectivity c of the agents at a certain level. The
main parameters are then n, c, and a. Then, if r is fixed, we
first compute the density of agents D of the scene using:

D =
c+ 1

πr2
. (22)

We can deduce the total surface of our scene:

S = n.D. (23)

and the corresponding edge size, supposing the scene is a
square:

e =
√
S. (24)

3thanks to GPS for example.

5

Fig. 4. Simulation with n = 100, a = 10%, c = 10, r = 100, D =
0.00035, S = 285599m2 and e = 534m. Crosses stand for the anchors.
Circles are simple agents. We have sketched the parameters and the result for
two agents located at top left and near the center of the scene: the sensing
range is represented by a dotted circle and the sensed neighbours are linked
with a dashed line. The result of the localization for these agent is represented
by a box.

Random agents are generated all over a square scene whose
side is set to e using an uniform distribution. Among these
agents, a % are randomly chosen to be anchors.

In Fig. 4, a scene is sketched: anchors are represented by
crosses and simple agents by circles. We have also drawn the
sensing range, the real connectivity and the GCDA result for
two agents. The top left agent has a connectivity of 3 and
the center agent a connectivity of 6. The result of GCDA is
represented by a box around the agents.

B. Contractors Programming

We implement a simple localization contractor based on
ranging measurements, a range-only contractor. It is derived
from the distance equation:

dab =
√
(xb − xa)2 + (yb − ya)2 (25)

where dab is the measured distance between agent a and agent
b.

To build contractors, we use the C++ open source IBEX
library4, which is based on Profil/Bias5 interval library. IBEX
is dedicated to the design of interval contractor-based solvers.
Given some contraints, IBEX provides tools to automatically
build and combine [12] powerful interval contractors.

GCDA is directly implemented in the agents. When a
message is received by an agent, the contractor is called and

4see http://www.emn.fr/z-info/ibex/
5see http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ea

n
 c

o
m

p
u
ti

n
g
 t

im
e

(m
s)

Number of agents

Fig. 5. Mean computing time of an agent versus the number of agents. The
connectivity is 10, the anchor ratio 10% and five forward/backward passes
are executed. Error bars are extracted from the 100 random simulations which
have been computed for each point.

updates are triggered. Then, the propagation process arise
following the forward/backward [8], [17] algorithm. The graph
G is browsed forward and backward several times in order to
reach the fixed point. GCDA quickly reaches a fixed point:
after 5 passes, no improvement is observed. Therefore, in the
following simulations, we stop the algortihm when each agent
has processed five forward/backward.

C. Computing Time

As shown in Fig. 5, the mean computing time per agent is
near constant versus the total number of agents. This is due to
the fact that the computation on each agent does not depend
on all the agents, but only on the neighbours (Ni). Hence, for
a given connectivity, the computing time per agent is constant.

In this paper, we do not focus on simulating the exchanges
through the network. We do not take them into account in
the computing time. But, message exchanges are important
regarding complexity [28], [29], because, in practice, sending a
message takes time. GCDA limits the propagation of messages
to the neighbours (Ni). So, the number of messages does not
explode with the number of agents.

D. Localization Error Versus Anchor Ratio

We first study the localization error versus the anchor
ratio r. The constant parameters of these simulations are
n = 1000, c = 10, r = 100m. The ranging noise ±2% of
the sensing range r. Anchor ratio has been moved from 1%
to 26%. For each anchor ratio, 100 random simulations have
been computed: agents are randomly spread over the surface
generating a different configuration. For one agent, 4 ms are
necessary to compute the localization on an CPU cadenced at
2.00GHz.

In Fig. 6, the localization error is plotted versus the anchor
ratio. This error is computed using the position of the center
of the box and the true location. The error is normalized by
e, the size of the side of the scene6 and compare to the true

6In this case, as the connectivity is fixed to 10, the size of the side of the
scene is equal to 1689m.

6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18 20 22 24

M
ea

n
 r

el
at

iv
e

p
o

si
ti

o
n
 e

rr
o
r

(%
)

Anchor Ratio (%)

Fig. 6. Relative position error versus anchor ratio for 1000 agents and a
connectivity of 10. Error bars are extracted from the 100 random simulations
which have been computed for each point. Mean computing time for one
agent is 4.2 ms.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 2 4 6 8 10 12 14 16 18 20

M
ea

n
 r

el
at

iv
e

p
o

si
ti

o
n

 e
rr

o
r

(%
)

Mean Connectivity

Fig. 7. Relative position error versus mean connectivity for 1000 agents
and an anchor ratio of 10%. Error bars are extracted from the 100 random
simulations which have been computed for each point.

location. This relative error is lower than 15%, even for a
anchor ratio a lower than 5%. A relative error lower than 1%
is even reached, when the key threshold of 6% of anchor is
exceeded.

E. Localization Error Versus Mean Connectivity

The relative error can also be plotted versus the mean
connectivity, as shown in Fig. 7. The mean connectivity has
to exceed 5 to decrease the error lower than 10%. In Fig. 8,
we plot the connectivity graph of a random simulation with
c = 3. It clearly shows that the agents may be disconnected
or poorly connected. This is the main reason why the error is
large when c ≤ 5. Even if GCDA can be used in these cases,
the result on a disconnected agent is obviously bad.

When connectivity is low, results might be improved by
using a more efficient contractor [30] on each agent: it will
further reduce the size of the box and then we could reuse
GCDA to improve the distributed localization. If we were
considering mobile networks instead of a static WSN, we
could also add some mobility constraint [8] and further reduce
the error.

Fig. 8. Connectivity of each agent of a random simulation with n = 100,
a = 10%, c = 3, r = 100, D = 0.00019, S = 523599m2 and e = 723m.
Some agents are disconnected, because of the bounded sensing range.

 0

 1

 2

 3

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
 r

el
at

iv
e

p
o

si
ti

o
n

 e
rr

o
r

(%
)

Relative Ranging Noise (%)

Fig. 9. Relative position error versus relative sensing noise for 1000 agents,
an anchor ratio of 10% and a mean connectivity of 10. Error bars are extracted
from the 100 random simulations which have been computed for each point.

F. Localization Error Versus Sensing Noise

In Fig. 9, the localization error is plotted versus ν, the
intensity of the noise. ν has been moved from 1 to 50% of
the sensing range r. In this case, the sensing range is equals
to 100 m and the side of the scene is 1689 m. Even in the
case of strong noise, GCDA can be applied and a result is
obtained. This is due to the bounded error context. Unlike
others approaches, the result always contains the solutions,
although it is wide. Even in the worst case, i.e. when the agent
only knows that another agent is detected in any range between
0 and r, GCDA gives sense to this information as follow: the
detected agent is contained in a box whose width is 2.r and
whose center is the agent itsself. Combined to the other sensors
information, this is enough to generate new contractions.

7

IV. CONCLUSION

GCDA is a powerful algorithm which has been successfully
applied to anchor-based distributed localization. It is important
to note that our method is fully decentralized. GCDA does
not approximate or linearize the mathematical relations. No
optimization and no initialization processes are necessary. No
assumption about noise gaussianity has been made, thanks to
interval analysis context. Applied to localization, our algorithm
does not need any anchor placement or gridding. Anchors
may be randomly spread. The computation may start from
any agent. However, for the moment, GCDA does not take
into account outliers. Regarding the future, we aim at robus-
tifying GCDA by taking into account outliers using relaxated
contractors [31], [32]. We also want to use GCDA on mobile
networks, taking into account the mobility model of the agents.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
helpful and constructive comment.

REFERENCES

[1] C. Raghavendra, Wireless sensor networks. Springer Verlag, 2006.
[2] S. Kumar, F. Zhao, and D. Shepherd, “Collaborative signal and informa-

tion processing in microsensor networks,” Signal Processing Magazine,
IEEE, vol. 19, no. 2, pp. 13–14, 2002.

[3] H. Gharavi, S. Kumar, I. of Electrical, and E. Engineers, Special issue
on sensor networks and applications. IEEE, 2003.

[4] D. Li, K. Wong, Y. Hu, and A. Sayeed, “Detection, classification
and tracking of targets in distributed sensor networks,” IEEE signal
processing magazine, vol. 19, no. 2, pp. 17–29, 2002.

[5] L. Eschenauer and V. Gligor, “A key-management scheme for distributed
sensor networks,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security. ACM, 2002, pp. 41–47.

[6] Y. Ko and N. Vaidya, “Location-aided routing (LAR) in mobile ad hoc
networks,” Wireless Networks, vol. 6, no. 4, pp. 307–321, 2000.

[7] E. Nerurkar, S. Roumeliotis, and A. Martinelli, “Distributed maximum
a posteriori estimation for multi-robot cooperative localization,” in
Robotics and Automation, 2009. ICRA’09. IEEE International Confer-
ence on. IEEE, 2009, pp. 1402–1409.

[8] F. Mourad, H. Snoussi, F. Abdallah, and C. Richard, “Anchor-based
localization via interval analysis for mobile ad-hoc sensor networks,”
IEEE Transactions on Signal Processing, vol. 57, no. 8, pp. 3226–3239,
2009.

[9] M. Kieffer, “Distributed Bounded-Error Parameter and State Estimation
in Networks of Sensors,” in Numerical Validation in Current Hardware
Architectures: International Dagstuhl Seminar, Dagstuhl Castle, Ger-
many, January 6-11, 2008, Revised Papers. Springer-Verlag New York
Inc, 2009, p. 189.

[10] M. Kieffer and E. Walter, “Centralized and distributed source localiza-
tion by a network of sensors using guaranteed set estimation,” in Acous-
tics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings.
2006 IEEE International Conference on, vol. 4. IEEE, pp. IV–IV.

[11] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis,
with Examples in Parameter and State Estimation, Robust Control and
Robotics. London: Springer-Verlag, 2001.

[12] G. Chabert and L. Jaulin, “Contractor programming,” Artificial Intelli-
gence, vol. 173, no. 11, pp. 1079–1100, 2009.

[13] R. Moore, “Interval analysis,” Englewood Cliffs, New Jersey, 1966.
[14] R. Moore and F. Bierbaum, Methods and applications of interval

analysis. Society for Industrial Mathematics, 1979.
[15] L. Jaulin and E. Walter, “Set inversion via interval analysis for nonlinear

bounded-error estimation,” Automatica, vol. 29, no. 4, pp. 1053–1064,
1993.

[16] F. Benhamou and W. Older, “Applying interval arithmetic to real, integer,
and boolean constraints,” The Journal of Logic Programming, vol. 32,
no. 1, pp. 1–24, 1997.

[17] F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget, “Revising
hull and box consistency,” in Int. Conf. On Logic Programming. MIT
press, 1999, pp. 230–244.

[18] I. Araya, G. Trombettoni, and B. Neveu, “Making Adaptive an Interval
Constraint Propagation Algorithm Exploiting Monotonicity,” Principles
and Practice of Constraint Programming–CP 2010, pp. 61–68.

[19] G. Chabert and L. Jaulin, “Hull Consistency Under Monotonicity,”
in 15th International Conference on Principles and Practice of
Constraint Programming CP’09 (15th International Conference on
Principles and Practice of Constraint Programming), ser. LNCS
(Lecture Notes in Computer Science), Ian P. Gent, Ed., vol. 5732.
Lisbon Portugal: Springer Verlag, 2009, pp. p. 188–195. [Online].
Available: http://hal.archives-ouvertes.fr/hal-00428970/en/

[20] J. Normand, A. Goldsztejn, M. Christie, and F. Benhamou, “A branch
and bound algorithm for numerical Max-CSP,” Constraints, vol. 15,
no. 2, pp. 213–237, 2010.

[21] L. Jaulin, M. Kieffer, I. Braems, and E. Walter, “Guaranteed non-linear
estimation using constraint propagation on sets,” International Journal
of Control, vol. 74, no. 18, pp. 1772–1782, 2001.

[22] A. Gning and P. Bonnifait, “Constraints propagation techniques on in-
tervals for a guaranteed localization using redundant data,” Automatica,
vol. 42, no. 7, pp. 1167–1175, 2006.

[23] F. Mourad, H. Snoussi, F. Abdallah, and C. Richard, “Guaranteed boxed
localization in manets by interval analysis and constraints propagation
techniques,” in Global Telecommunications Conference, 2008. IEEE
GLOBECOM 2008. IEEE. IEEE, 2008, pp. 1–5.

[24] K. Langendoen and N. Reijers, “Distributed localization in wireless sen-
sor networks: a quantitative comparison,” Computer Networks, vol. 43,
no. 4, pp. 499–518, 2003.

[25] J. Liu, Y. Zhang, and F. Zhao, “Robust distributed node localization
with error management,” in Proceedings of the 7th ACM international
symposium on Mobile ad hoc networking and computing. ACM, 2006,
pp. 250–261.

[26] T. Hickey, Q. Ju, and M. Van Emden, “Interval arithmetic: From
principles to implementation,” Journal of the ACM (JACM), vol. 48,
no. 5, pp. 1038–1068, 2001.

[27] K. Apt, “The essence of constraint propagation,” Theoretical computer
science, vol. 221, no. 1-2, pp. 179–210, 1999.

[28] B. Faltings, Distributed Constraint Programming, ser. Foundations of
Artificial Intelligence. Elsevier, 2006, pp. 699–729.

[29] A. Petcu and B. Faltings, “A scalable method for multiagent constraint
optimization,” in International Joint Conference on Artificial Intelli-
gence, vol. 19. Citeseer, 2005, p. 266.

[30] O. Lhomme, “Consistency techniques for numeric CSPs,” in Interna-
tional Joint Conference on Artificial Intelligence, vol. 13. Citeseer,
1993, pp. 232–232.

[31] L. Jaulin, “Robust set-membership state estimation; application to un-
derwater robotics,” Automatica, vol. 45, no. 1, pp. 202–206, 2009.

[32] V. Drevelle and P. Bonnifait, “Robust positioning using relaxed
constraint-propagation,” in Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on. IEEE, 2010, pp. 4843–4848.

Olivier Reynet Olivier Reynet was born in Limoges,
France in 1976. He received the Ph.D. degree in
Electromagnetics from the University of Western
Brittany, France in 2003. In 2004, he was awarded
the best Ph.D.Prize for his work on active meta-
materials by the DGA, the french defense research
agency. He is currently Assistant Professor of Em-
bedded Systems at the ENSTA-Bretagne engineering
school in Brest, France, since 2007. He does his
research on ocean robotics using interval methods
and contractor programming.

8

Olivier Voisin Olivier Voisin was born in 1991.
He is an engineer specialized in software embedded
systems and automatics.

Luc Jaulin Luc Jaulin was born in Nevers, France
in 1967. He received the Ph.D. degree in automatic
control from the University of Orsay, France in 1993.
He is currently Professor of Robotics at the ENSTA-
Bretagne engineering school in Brest, France, since
2004. He does his research on ocean robotics (more
precisely with underwater and sailboat autonomous
robots) using interval methods and contractor pro-
gramming.

