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a b s t r a c t

In this paper we investigate the role of micropatterning and molecular coating for cell culture and differ-

entiation of neuronal cells (Neuro2a cell line) on a polydimethylsiloxane substrate. We investigate arrays

of micrometric grooves (line and space) capable to guide neurite along their axis. We demonstrate that

pattern dimensions play a major role due to the deformation of the cell occasioned by grooves narrower

than typical cell dimension. A technological compromise for optimizing cell density, differentiation rate

and neurite alignment has been obtained for 20 lm wide grooves which is a dimension comparable with

the average cell dimension. This topographical engineered pattern combined with double-wall carbon

nanotubes coating enabled us to obtain adherent cell densities in the order of 104 cells/cm2 and a differ-

entiation rate close to 100%.

1. Introduction

Mechanical cell–substrate interactions can affect many cellular

functions such as spreading, migration, differentiation and apopto-

sis [1–4]. Surface engineering at micro and nanoscale can be em-

ployed to fabricate specific surface features for 2D cell culture in

the perspective of investigating the inner mechanisms taking place

at the cell–substrate interface but can also be envisioned as a

process to tune and control cell development. As an example of

interest for this work, understanding neurites growth along topo-

graphical patterns is important for tissue engineering applications

in neurology. Indeed, exploiting neurite guidance by elongated

microfabricated ridges can be applied to the fabrication of syn-

thetic surfaces designed to spatially control and direct neurite

growth along a pre-defined direction. This achievement can shed

some light on neural networks organization but also can contribute

to the development of medical devices such as brain engineered

implants (tissue engineering scaffolds). Not only physical cues

(topographical features) or chemical cues (molecular patterns)

are interesting for this kind of application but also their combina-

tion seems to be crucial for tuning cell adhesion and differentiation

properly. The challenge is to discover the most suited combination

of micro/nanostructuration and molecular surface coating for con-

trolling on demand, several extracellular signals acting at different

length scales. In this work, topographical micrometric grooves are

investigated for promoting alignment of neurites, while surface

functionalization with conventional polylysine molecules or Dou-

ble Wall Carbon Nanotubes (DWCNT) are investigated for promot-

ing cell adherence and differentiation. We want to learn if micro/

nanotopographical cues and molecular coating can be associated

synergistically for tissue engineering purpose and evaluate the

influence of CNTs. In this work, the originality relies on the use

of high structural quality CNTs obtained by catalytic Chemical Va-

pour Deposition (CCVD) exhibiting a very high proportion (80%) of

metallic carbon nanotubes which are deposited in a very dense and

homogeneous thin layer with a in-plane nanotube axis orientation.

2. Experimental methods

2.1. Engineered substrate fabrication for 2D cell culture

The substrates for the cell culture consisted in a microgrooved

polymer, the polydimethylsiloxane (PDMS), which is inert and

biocompatible. The PDMS was conventionally microstructured
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using a simple molding process against a silicon master generated

by proximity UV lithography and deep Reactive Ion Etching (RIE).

An anti-adhesive treatment of the master is carried out using

silanisation in liquid phase with octadecyltrichlorosilane (OTS) in

order to enable easy demolding of the polymer replica after ther-

mal curing. The PDMS pre-polymer solution containing a mixture

of PDMS oligomers and a reticular agent from Sylgard 184 (10:1

mass ratio, Dow Corning) was poured on the silicon master and

cured at 80 °C during 3 h. Once demolded, the PDMS substrate is

sterilized by UV illumination during 1 h. The patterned polymer

sample can be used for 2D cell culture (see Fig. 1) either without

any further treatment or after O2 plasma treatment and coating

with polylysine (PLL) by incubation or DWCNT by spray coating.

In our experiments we focus on line and space patterns covering

mm2 areas. The line width is varied from 5 to 100 lm and the

microgrooves are 25 lm deep (see Fig. 2).

The poly-L-lysine (PLL, Sigma–Aldrich) was dissolved at 1 mg/

mL in sterile phosphate-buffered saline solution. To obtain a

homogenous polylysine layer on the PDMS surface, we preliminary

treat the PDMS in a radio-frequency plasma cleaner (Reactive ion

Etchning, Tepla 300 microwave plasma processor, power = 200W,

T = 40 °C, O2 flow = 1000 mL/min, P = 1.65 mbar) for 30 s and ster-

ilize with UV light before incubating the protein solution for

10 min. The PDMS substrates are finally blow-dried with filtered

nitrogen and placed at the bottom of the cell culture wells, as

shown in Fig. 1b.

DWCNT used in this work are prepared in-house by CCVD, by

decomposition of CH4 at 1000 °C (H2:CH4 atm.) [5]. After catalyst

removal (HCl), the sample contains approximately 80% of DWCNT,

the rest being mainly SWCNT (�15%) and triple-walled nanotubes.

The large proportion of metallic CNT [6] may present some advan-

tages for neuronal tissue engineering allowing future electrical

stimulations of the cells. Purified DWCNTs and carboxymethylcel-

lulose were mixed with ultra-pure water with a mass ratio of 1:10

in mass (DWCNTs: 0.1%, CMC: 1%). The mixture was sonicated for

30 min (Sonics Vibra Cell) at a power of 150 W, under cooling in an

ice bath. The mixture then appears as a stable black suspension

which is re-suspended in ultra-pure water (centrifugation 16,000

rpm during 30 min).

The DWCNT suspension was then sprayed on the PDMS surface,

which has been exposed to O2 plasma. The hydrophilicity of the

treated PDMS surface allows a good spreading of the ejected drop-

lets resulting in a homogeneous dense layer of DWCNTs on the

polymer surface as shown in Fig. 2. It is worth noticing that a con-

trol experiment (not shown here) consisting in culturing the cells

on a PDMS substrate sprayed with a pure CMC solution without

any DWCNTs, showed no noticeable effects on the cell adherence

and morphology.

2.2. Cell culture

Neuroblastoma N2a mouse cells were grown in DMEM medium

supplemented with 10% fetal bovine serum (PAA Laboratories) and

1% penicillin–streptomycin (GIBCO) in petri dishes (FALCON). Cells

were subcultured twice a week, and maintained at 37 °C and 5%

CO2. All reported experiments were performed using cells with less

than 20 passages. Neuro2a cells were seeded on PDMS substrates

at a density of 1.2 � 104 cells/cm2. Cells were incubated 24 h then

differentiated by switching the medium DMEM to a prewarmed

DMEM containing 0.1% BSA (bovine serum albumine, Euromedex).

Cells were then maintained at 37 °C during 48 h before being fixed

with 3.5% paraformaldehyde (Sigma) for characterization.

Fig. 1. Schematic representation of PDMS substrate fabrication for 2D cell culture. (a) The PDMS substrate is directly used for cell culture. (b) The PDMS substrate receives a

poly-L-lysine coating. (c) The PDMS substrate receives a DWCNT coating before being used for cell culture.

Fig. 2. Typical PDMS surfaces prepared for 2D cell culture. (a) SEM image of a microgrooved surface of PDMS, (b) fluorescence image of a microgrooved PDMS surface coated

with a homogeneous layer of fluorescent polylysine. We have checked that both top and bottom of the PDMS surface are coated with polylysine (c). SEM image of a

microgrooved PDMS surface covered by a layer of DWCNTs. The 50–150 nm thick DWNT-layer is dense.



2.3. Fluorescence microscopy and image analysis

To observe the cells and quantify their behavior, we stained the

actin cytoskeleton and the cells nucleus. Cells were fixed with 3.5%

paraformaldehyde in PBS and sucrose (1:1) for 30 min at room

temperature, rinsed three times with PBS and permeabilized

(2 min in a 50 mM solution of NH4Cl in PBS and 10 min in a PBS–

Triton solution (0.3% in volume). Actin cytoskeleton was stained

with tetramethylrhodamine(TRITC)-conjugated phalloidin (molec-

ular probes) at a dilution of 1:200. Cell nucleus are stained with the

40-6-diamidine-2-phenyl indole (DAPI) used at 1:100, targeting

DNA. Fluorescence images were taken with a fluorescent micro-

scope Leica with a 40� objective. Images of at least 300 cells on

five randomly chosen observation fields were captured and ana-

lyzed for each experimental condition. Each experiment was re-

peated three times. Cytoplasmic extensions longer than or equal

to 10 lm were counted as neurite. A cell was considered as differ-

entiated when equipped with at least one neurite.

3. Results and discussion

3.1. Cell localization

One spectacular effect of topographical patterns is the cell local-

ization inside the polymer grooves. This effect was quantitatively

analyzed and a summary of the results is presented in Fig. 3a as

a function of groove width and surface coating (no coating, PLL

coating, DWCNT coating). The graph plots the proportion of cells

growing in the grooves. It is clear that by adapting the groove

width around 10–20 lm, it is possible to obtain near hundred per-

cent of the cells located in the grooves. However, we observed that

the surface treatment can influence this score. Indeed, by providing

favorable conditions of adherence inside the grooves and on the

terraces, surface coating attenuates the preference of cells for the

cavities. This attenuation is highest for DWCNT coating which

seems to indicate that this material enhance cell adherence what-

ever the surface topography, as previously reported [7]. This graph

thus reveals a clear competition between topographical induced

effects (tending to localize the cells in the grooves) and coating ef-

fects (tending to a delocalization). Cell localization preferentially

occurs when the width of the grooves are comparable with the

average dimension of the cell body. This result is in good agree-

ment with previous reports showing that for dimension frustrating

cell plasticity the number of adherent cells dramatically decreases

(see also Fig. 3b). These observations suggest that when the cells

are cultured on an adequate microgroove having a width compara-

ble with cell size, the cells reach the best growing conditions in

maximizing their contact surface with the PDMS (bottom groove,

and lateral walls) and also grow in the grooves. However, when

the grooves are smaller than the cell size, the cells need to deform

their cytoskeleton and their nucleus. These conditions appear to be

unfavorable for cell adherence and differentiation (see also Fig. 3b).

Finally, for the widest microgrooves (50 and 100 lm), the cells do

not develop preferentially in the grooves because they experiment

a topographical landscape looking like a flat surface.

3.2. Cell adhesion and differentiation

In order to determine what are the most suitable conditions to

obtain a large number of adherent and differentiated cells, we

compared the number of adherent cells on microgrooved PDMS

surfaces as a function of groove width and surface coating (no coat-

ing, PLL coating, DWCNT coating). We observed that Neuro2a cells

do not adhere well on virgin PDMS while DWCNT or PLL coatings

double cell density in our experimental conditions. In parallel,

the microstructures dimension plays an important role, showing

once again that groove widths smaller than cell dimension reduce

drastically the probability of adhesion on the surface. The number

of adherent cells, the proportion of cells developing neurites and

the ratio between the nucleus area and the cellular nucleus perim-

eter were analyzed. The measured values normalized with the con-

trol surface without structures are presented in Table 1.

We clearly evidence the change in the geometry of cell nucleus

in small grooves. This effect occurs for dimensions below 20 lm.

This observation is correlated with a very small adhesion rate

and also with a very poor differentiation rate (correlation coeffi-

cient of 0.98). In summary, for 20 lmwide grooves on a PDMS sub-

strate coated with DWCNTs we obtain a cell density as large as 104/

cm2 and nearly 100% of differentiation.

Fig. 3. (a) Statistical quantitative analysis of the proportion of Neuro2a cells

growing in the microgrooves as a function of groove width and surface coating. (b)

Number of Neuro2a cells adhering onto different PDMS surfaces after 48 h of

culture as a function of groove width and surface coating.

Table 1

Observation of the number of cells, the proportion of cells having neurites and the

ratio between the cells nucleus area and perimeter expressed in lm. The PDMS

surface received no coating in this case but the same trends have been observed with

PLL coating and DWCNT coating.

No

structures

50 lm 20 lm 10 lm 5 lm

Normalized number of cells 1 0.98 1 0.57 0.21

Proportion of differentiated

cells

1 0.99 1 0.75 0.04

Ratio area/perimeter of the

cell’s nucleus (lm)

1 0.91 0.93 0.76 0.5



3.3. Neurite guidance

Fig. 4 shows the effects of the microstructures on neurite guid-

ance. As can be seen from fluorescence analysis, we obtain a clear

guidance effect of the neurites along the grooves axis. On a flat

PDMS, the direction of neurites is random while guidance was sys-

tematically observed as soon as grooves are patterned at the PDMS

surface. For wide microstructures, the filaments are not guided

from their origin because the cell dimensions are much smaller

than the microgrooves’ width. When the cells dimension and the

microgrooves’ width are comparable, the alignment of the fila-

ments can start from their origin and this alignment is kept over

distances as long as 100 lm. Finally, the best alignment was ob-

tained with microgrooves measuring 20 lmwide, allowing to align

near 100% of the filaments. The same observation on the alignment

was made whatever the surface coating.

4. Conclusion

In this work, we have combined micro/nanostructuration and

molecular surface coating for controlling neuronal cell (cell line

Neuro2a) adherence, differentiation and neurite alignment. PDMS

topographical micrometric grooves turned out to promote strongly

the alignment of neurites along the groove avis, while surface func-

tionalization with conventional polylysine molecules or Double

Wall Carbon Nanotubes (DWCNT) increases significantly cell adhe-

sion and differentiation. DWCNTs turned out to be a good alterna-

tive to the usual polylysine coating for promoting cell attachment

and could be later used for electrical stimulation due to their

metallic behaviour. Pattern dimensions were found also to play a

major role. A technological compromise for optimizing cell density,

differentiation rate and neurite alignment has been obtained for

20 lm wide grooves which is a dimension comparable with the

average cell dimension.
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Fig. 4. (A) and (A0) Neuro2a cells cultured on a flat PDMS surface. (A) Optical

fluorescence image, in red: immunostaining of actin with tetramethylrhod-

amine(TRITC)-conjugated phalloidin and in blue: immunostaining of cell nucleus

with 40-6-diamidine-2-phenyl indole (DAPI). (A0) Polar visualization of the neurite

orientation of 7 characteristic cells. (B) and (B0) Neuro2a cells cultured on a

microgrooved PDMS surface (20 lm wide), (B) optical fluorescence image immu-

nostaining of actin (red) and cell nucleus (blue), (B0) polar visualization of the

neurite orientation of 7 characteristic cells, showing a perfect alignment along the

grooves axis.


