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M-Power Regularized Least Squares Regression

Julien Audiffren! and Hachem Kadri!
'QARMA, Aix-Marseille Université, CNRS, LIF, 13000, Marseille, France

Résumé

Regularization is used to find a solution that both fits the data and is sufficiently smooth, and thereby is
very effective for designing and refining learning algorithms. But the influence of its exponent remains poorly
understood. In particular, it is unclear how the exponent of the reproducing kernel Hilbert space (RKHS)
regularization term affects the accuracy and the efficiency of kernel-based learning algorithms. Here we
consider regularized least squares regression (RLSR) with an RKHS regularization raised to the power of m,
where m is a variable real exponent. We design an efficient algorithm for solving the associated minimization
problem, we provide a theoretical analysis of its stability, and we compare it with respect to computational
complexity, speed of convergence and prediction accuracy to the classical kernel ridge regression algorithm
where the regularization exponent m is fixed at 2. Our results show that the m-power RLSR problem can be
solved efficiently, and support the suggestion that one can use a regularization term that grows significantly
slower than the standard quadratic growth in the RKHS norm.

1 Introduction

Regularization is extensively used in learning algorithms. It provides a principled way of addressing the well-
known overfitting problem by learning a function that balances fit and smoothness. The idea of regularization
is hardly new. It goes back at least to [Tik63|], where it is used for solving ill-posed inverse problems. Recently,
there has been substantial work put forth to develop regularized learning models and significant progress has
been made. Various regularization terms have been suggested, and different regularization strategies have been
proposed to derive efficient learning algorithms. Among these algorithms one can cite regularized kernel methods
which are based on a regularization over reproducing kernel Hilbert spaces (RKHSs) [SS02, [STCO04].

A considerable amount of flexibility for fitting data is gained with kernel-based learning, as linear methods are
replaced with nonlinear ones by representing the data points in high dimensional spaces of features, specifically
RKHSs. Many learning algorithms based on kernel methods and RKHS regularization [SS02], including support
vector machines (SVM) and regularized least squares (RLS), have been used with considerable success in a
wide range of supervised learning tasks, such as regression and classification. However, these algorithms are, for
the most part, restricted to a RKHS regularization term with an exponent equal to two. The influence of this
exponent on the performance of kernel machines remains poorly understood. Studying the effects of varying
the exponent of the RKHS regularization on the regularization process and the underlying learning algorithm
is the main goal of this research.

To the best of our knowledge, the most directly related work to this paper is that of Mendelson and Nee-
man [MNI0] and Steinwart et al. [SHST09], who studied the impact of the regularization exponent on RLS
regression (RLSR) methods from a theoretical point of view. In [MNI0] the sharpest known learning rates of
the RLSR algorithm was established in the case where the exponent of the regularization term m is less than
or equal to one, showing that one can use a regularization term that grows slower than the standard quadratic
growth in the RKHS norm. In [SHST09| an oracle inequality that holds for all m > 1 was provided, arguing that
the exponent m may be chosen on the basis of algorithmic considerations. In this spirit we have asked whether,
by additionally focusing attention on the algorithmic problem involved in the optimization, one could develop



an efficient algorithm for RLSR with a variable RKHS regularization exponent. The remainder of the paper is
devoted to presenting an approach to answering this question.
In this work we demonstrate that the m-power RLS regression problem can also be solved efficiently and
that there is no reason for ignoring this possibility. Specifically, we make the following contributions :
— we derive a semi-analytic expression of the solution of the regularized least squares regression problem
when the RKHS regularization is raised to the power of m, where m is a variable real exponent, and we
design an efficient algorithm for computing the solution (Section ,

— we show that the proposed algorithm, called M-RLSR (m-power RLS regression), and the kernel ridge
regression (KRR) algorithm, although they give the same solution under particular conditions, are not
equivalent, and thus have not the same theoretical and practical properties (Section ,

— we establish a theoretical result indicating that the M-RLSR algorithm is 5-stable when m > 2 (Section,

— we experimentally evaluate the proposed algorithm and compare it to KRR with respect to speed of
convergence and prediction accuracy (Section [6).

2 Problem Overview

This section presents the notation we use throughout the paper and introduces the problem of m-power
regularized least squares regression.

Notation. Let m > 0 be a real number, X a polish space, H C R? a separable reproducing kernel
Hilbert space (RKHS), and k : X x X — R its positive definite kernel. For all set of n elements of X x R,
we denote by Z = {(z1,41), -, (Tn,yn)} the training set, and by K the Gram matrix associated to k for Z
with (Kz); ; = k(xi,2;). Finally, let Y = (y1,...,y,) " be the output vector.

M-power RLS regression. The algorithm we investigate here combines a least squares regression with an
RKHS regularization term raised to the power of m. Formally, we would like to solve the following optimization

problem :

fz = argmin > (s — fw0))? + NI (1)
fen i3

where m is a suitable chosen exponent. Note that the classical kernel ridge regression (KRR) algorithm [SGV9S]

is recovered for m = 2.

The problem is well posed for m > 1. Indeed, the function to minimize is strictly convex, coercive and
continuous, hence it has a unique minimum. For m = 1 the problem is not strictly convex and the solution is
then not necessarily unique, while for m < 1 the problem is no longer convex, so the function to minimize may
not have a global minimum and the existence of a solution is not guaranteed.

To solve the problem , one can perform a gradient descent algorithm to minimize the objective function
in the primal, e.g. using a Newton method as in [Cha(7]. However, because m # 2, this requires the storage
and the inversion of a Hessian of size O(n?) at each stepE| and becomes computationally infeasible. In the next
section, we introduce a novel fast m-power RLS regression algorithm, generalizing the kernel ridge regression
algorithm to an arbitrary regularization exponent.

In addition, it is crucial to note that even though there is a certain equivalence between the M-RLSR and
KRR optimization problems in the case of m > 1, the underlying algorithms are not equivalent, and thus have
not the same theoretical and practical properties. Section [4] is devoted to this purpose. This does not occur
when m < 1. Indeed, the objective function of the M-RLSR, problem defined in is not convex for m < 1,
and the two optimization problems then become different.

1. For the particular case of m = 2, the Hessian does not depend on the function f to minimize and therefore needs to be
computed only once, see [Cha07| for more details.



Algorithm 1  M-Power RLS Regression Algorithm (M-RLSR)

Input : training data Z = {(x1,%1), .., (Zn, yn)}, Parameter A € R, exponent m € R
1. Kernel matrix : Compute the Gram matrix K from the training set Z
K = (k(xl, xj))lgi,jgn
2. Matrix diagonalization : Diagonalize K in an orthonormal basis
K=QDQ" ; di=D;,V1<i<n
3. Change of basis : Perform a basis transformation
Y=QTY ; y=Y;, Vl<i<n
4. Root-finding : Find the root Cy of the function F' defined in
We employ a Newton method

5. Solution : Compute « from and reconstruct the weights
2y,

. AY d _
2d; + dmnCy an o= Qa

(i)1<i<n =

3 M-Power Regularized Least Squares Regression Algorithm

We now provide an efficient learning algorithm solving the m-power regularized least squares problem. It is
worth recalling that the minimization problem with m = 2 becomes a standard kernel ridge regression, which
has an explicit analytic solution. In the same spirit, the main idea of our algorithm is to derive analytically from
a reduced one-dimensional problem on which we apply a root-finding algorithm.

First notice that, the objective function to minimize is Gateaux differentiable in every direction. Thus, since
fz is a minimum, we have :

n

0= 3" ~2k(, ) (s — fz (@) + Amnllfzll5; > fz.

i=1

ie.,

— fz(z:)
fZ‘Z% ) Sl ol

That is to say, fz can be written in the followmg form :

fZ = Zaikj(.,xi), (2)

with a; € R. Notice, that we have recovered exactly the form of the representer theorem, which can also be
derived from a result due to Dinuzzo and Schélkop [DS12]. Now by combining and , the initial problem
becomes
o =argmin(Y — Ka)" (Y — Ka) 4+ n\(a" Ka)™/?, (3)
a€R™
where a = (a;)1<i<n is the vector to determine. The following theorem gives an explicit formula for o« that
solves the optimization problem .

Theorem 1 Let Q an orthonormal matriz and D a diagonal matriz such that K = QDQ". Let y. be the
coordinates of Q1Y (d;)1<i<n the elements of the diagonal of D, Co € Ry and m > 1 . Then the vector
a = Qo' with

) 2y;

= V1< i< 4
@i 2d; + AmnCy '’ =t=ns (4)



is the solution of if and only if Cy is the root of the function F: Ry — R defined by

n

Zyz m/2_1 _
l:zl 2d; + Amn(C')? s AmnC)) ¢ (5)

PROOF : By computing the Gateaux derivative of the objective function to minimize in , we obtain that a
must verify

Y =Ka+ A%(oﬁ[(&)m/%la.

Then, since K is symmetric and positive semidefinite, 3Q) an orthonormal matrix (the matrix of the eigenvectors)
and D a diagonal matrix with eigenvalues (d;)1<i<n > 0 such that K = QDQ". Hence,

Y =QDQ o+ A2 ((QT )TD@QTa))™? 1
= QY =DQ a+ 2" ((QT )T D(QTa)™* QT a.

Given this, one can define a new representation by changing the basis such that Y/ = Q'Y and o = Q" a. We

obtain
Y' = Do + /\@(O/TDO/)m/Zflal'
2

Now if we write the previous equation for every coefficient of the vectors, we obtain that
{y;_ ; Z—i—)\— Zdj 2ym/2=lal W1 <i<n.

Note that (3°7_, d; ;a/?)™/271 is the same for every equation (i.e. it does not depend on i), so we can rewrite
the system as follows where C' € R

Zd] ,2 m/2—1

and (6)

o — 2

- vyi<i<n
i 9%, + AmnC =t=n

which is well defined if d; + AmnC # 0, which is the case when C' > 0. Since C' > 0 by definition, the only
possibly problematic case is C' = 0, but this implies that Y = 0, which is a degenerated case. Now we just need
to calculate C, which verifies :

m - 4d‘y/'2 m/2—1
d /2 /2—1 _ 1J% .
Z (; (2d; + /\mnC)Q)
Thus to obtain an explicit value for o/, we need only to find a root of the function F' defined as follows :

o 4d;yi? m/2—1
Fle) = (; (2d; + /\mnC')Q) -C

We have proven that any solution of can be written as a function of Cy, a root of F. But for m > 1, F is
strictly concave, and F'(0) > 0, hence it has at most one root in R,. Thus since limg_, 4 F(C) = —o0, F has
exactly one root, which proves Theorem [} O

In Theorem [I] we have shown that F has a unique root Cyp and that the solution of the optimization problem
is expressed analytically as a function of Cj. It is important to note that F' is a function from R to R, and



then computing C( using a root-finding algorithm, e.g. Newton’s method, is a fast and accurate procedure. Our
algorithm, which we call m-power RLSR, uses these results to provide an efficient solution to regularized least
squares regression with a variable regularization exponent m (see Algorithm 1).

The case m < 1. It is important to note that for m < 1, although the m-power RLS minimization
problem is no longer strictly convex, Algorithm 1 can still be applied. Indeed, when m < 1, the objective
function to minimize in ([1) can have local extrema and the function F' in (5)) associated to the solution of (1)) may
have multiple roots. But, it is easy to see that each extrema (local or global) of the minimization problem ,
corresponds to a root of F. Hence, for m < 1, the root-finding step of the M-RLSR algorithm is modified as
follows to search for the global minima :

1. iterate the newton method ten times starting from ten different initialization values, equally spaced on a

logarithmic scale between 1 and 10,

2. for each root, calculate the corresponding a using @,
3. for each a, compute the corresponding error using and ,

4. choose a with the lowest error.
While this procedure does not guarantee to find the solution of the M-RLSR, problem , which may not exist
when m < 1, it yields good results in practice (see Section |§| for more details).

Complexity analysis. Here we consider a naive implementation of the m-power RLSR algorithm. Obtaining
the Gram matrix has complexity O(n?), while diagonalizing has complexity O(n?). The cost of change of basis
is O(n?). The complexity of the root-finding algorithm depends on two parameters : the maximum number of
iteration and the precision. In our case, we fix the maximum number of iteration to 500 and the precision to
1072° and we used the Newton algorithm. Finally, computing o and Qo has complexity O(n?). Then, the total
complexity of a naive implementation of Algorithm 1 is O(n?).

4 M-Power RLSR Versus KRR

In this section, we examine the relation between m-power regularized least squares regression and kernel ridge
regression algorithms. In particular, we show that while the two algorithms may under particular conditions
give the same solution, they are not equivalent.

M-RLSR and KRR : are they equivalent ? One crucial issue regarding the interpretation of the M-RLSR
algorithm is whether by rescaling the regularization parameter A, M-RLSR gives the same solution as KRR.
Indeed, when m > 1, the objective function of the M-RLSR optimization problem is strictly convex, and
then by Lagrangian duality it is equivalent to its unconstrained version. In this case, it is possible to find a
value of the regularization parameter such that the solution of the M-RLSR minimization corresponds to that
of the KRR optimization problem. However, this is not the case when m < 1. Moreover, even though there is an
equivalence between M-RLSR and KRR optimization problems, the underlying algorithms are not necessarily
equivalent. In order to explain this claim, the notion of equivalent algorithms need to be clearly defined. In the
following we provide two definitions of such equivalence. The first definition, called Z-equivalence, corresponds
exactly to the equivalence between the associated minimization problems. By Z-equivalence, we would like to
emphasize here that this equivalence holds only for a fixed training set Z. This matches the equivalence between
the optimization problems since the objective function is minimized for the set Z of examples {(x;,y;)}"_;. The
second definition is more general, in the sense that two learning algorithms are equivalent if they always provide
the same predictive and optimality guarantees. We show below that, even for m > 1, M-RLSR and KRR
algorithms are not equivalent but only Z-equivalent. Hence, they do not have the same theoretical and practical
performances. To formalize these ideas, let Z = J,,~; (X x J)" denotes all possible training set where X € X
and Y € Y, and H C Y¥ be a normed vector space. We use here the same definition of a learning algorithm as
given by Bousquet and Elisseeff [BE02], but for simplicity we restrict ourselves to learning algorithms associated
to strictly convex optimization problems.



Definition 4.1 A learning algorithm A is a function A : Z — H which maps a learning set Z onto a function
A(Z), such that
A(Z) = argmin R(Z, g),
geEH

where R(Z,) is a strictly convex objective function.

For simplicity, we use in the following the same notation for a minimization problem and its objective
function. In our case, since we consider only strictly convex objective functions, the learning algorithm tries to
find the unique solution of the minimization problem. Based on this, an equivalence between two algorithms
can be defined as follows.

Definition 4.2 Let Z € Z. Two algorithms A and B are Z-equivalent if and only if A(Z) = B(Z).

Note that this first definition (Z-equivalence) is directly related to the equivalence between the optimization
problems. In other words, let A (resp. B) be a learning algorithm associated to the optimization problem R
(resp. S), then A and B are Z-equivalent if and only if S and R are equivalent on Z, that is, the optimal
solution of R is the optimal solution of S. It is important to point out that the optimal solutions of R and S
are computed for a set Z, and even though they are equal on Z, there is no guarantee that this remains true if
Z varies. This means that the two algorithms A and B provide the same output with the set Z, but this may
not be necessarily the case with another set Z’.
We can now consider a stronger definition of equivalence between algorithms.

Definition 4.3 Two algorithms A and B are equivalent if and only if A = B (equality between the functions A
and B in HZ).

With this definition, two algorithms A and B are equivalent if they provide identical solutions for any training
set Z. That means, applying A or B for any theoretical or practical learning purpose is exactly the same. This
is in contrast to the Z-equivalence where the two algorithms give the same solution only with identical and
fixed training data Z, which does not imply that they have the same theoretical and practical performance, nor
the same optimality guarantee. In other words, if two algorithms are equivalent, they define the same function
while if they are only Z-equivalent, their respective functions coincide only on a given training set Z. Also,
if two algorithms A and B are Z-equivalent then A(Z) = B(Z) but VZ' # Z element of Z, nothing can be
said regarding A(Z') and B(Z’). As a consequence, it is easy to see that any property of A involving varying
the training data, such as stability, generalization, or cross-validation, does not bring any information about
B. In the following, we show that M-RLSR and KRR algorithms are Z-equivalent, but not equivalent. It is
important to note that with Definition each value of the regularization parameter, defines a different KRR
and M-RLSR algorithms.

Lemma 4.4 Ym > 1, VZ € Z,3Fz,, : Rt — R, bijective, such that VA > 0, M-RLSR with regularization
parameter A and KRR with reqularization parameter Ao = Fz .,,(\) are Z-equivalent. Moreover,

FZ:m()\) = %00(277717 >\))\7

where Co(Z,m, \) is the unique root of the function F defined in .

PrROOF : For m > 1, the equivalence between constrained and unconstrained strictly convex optimization
problems [KBSZ11l, Appendix A] implies that 3I';, z x > 0 such that the minimization problem defined by
on Z it is equivalent to the following constrained problem :

1 m
argmin — > (y— f(2))*, st [lf|5 < Tz
fen 12| w9z

The constrain is equivalent to ||f||%, < I‘i{g/\, thus we deduce that IAz(m,Z,\) > 0 such that with
regularization parameter A is equivalent to

o1
arg min —- Z (y— f(@))* + Xa(m, Z, V)| f 113
ren 121 s



i.e., the KRR minimization problem with a regularization parameter As(m, Z, ). Hence M-RLSR, with A is
Z-equivalent to KRR with \a(m, Z, A). It is easy to see from @ that the function F'z ., that maps A to the
corresponding Az has the form Fyz,,(A) := 5 Co(Z, m, A)A. O

Remark 4.5 It is important to note that since the value of Ay = Fz ,,(\) does depend on lambda, m and
Z, the algorithms M-RLSR and KRR are only Z-equivalent and not equivalent. Indeed, let m > 1, m # 2,
A>0and Z,7Z' € Z such that Co(Z,m,\) # Co(Z',m,\). Assume that M-RLSR with A and KRR with X\,
are Z-equivalent. Then, from Lemma we have Ao = AmCo(Z, m, \) # AmCy(Z', m, ), and hence the two
algorithms are not Z’-equivalentﬂ This fact is illustrated by the experiments presented in Subsection .

Since M-RLSR and KRR algorithms are only Z-equivalent and not equivalent, theoretical and practical
properties involving varying the training set, such as stability, generalization, or cross-validation selection pro-
cedure, cannot be retrieved from KRR. It is also worth noting that Lemma [4:4] and the Z-equivalence is only
valid for m > 1, and when m <= 1, M-RLSR and KRR gives rise to different solutions even with the same
training set.

5 Stability Analysis

The notion of algorithmic stability, which is the behavior of a learning algorithm following a change of the
training data, was used successfully by Bousquet and Elisseeff [BE02] to derive bounds on the generalization
error of kernel-based learning algorithms. In this section, we extend the stability results of [BE02] to cover the
m-power RLSR algorithm. As mentioned in the previous section, the stability properties of KRR does not
imply the stability of M-RLSR, since the two algorithms are only Z-equivalent and not equivalent. We show
here that the algorithm is stable for m > 2.

In this section we denote by X and Y a pair of random variables following the unknown distribution D of the
data, X representing the input and Y the output, by Z? = Z \ (x;,y;) the training set from which was removed
the element 4. Let c(y, f,2) = (y — f(x))? denotes the cost function used in the algorithm. For all f € H, let
R.(f,Z) =1/nY 1 cicn (i, f,x;) be the empirical error and R, (f, Z) = Rc(f, Z) + || f||3; be the regularized
error. Let us recall the definition of uniform stability.

Definition 5.1 An algorithm Z — fz is said B uniformly stable if and only if Vn > 1, V1 < i < n, VZ

a realization of n i.i.d. copies of (X,Y)V(x,y) € X x Y a Z independent realization of (X,Y), we have
|C(y,fz,l‘) - C(y,fzi,.r)| < B

To prove the stability of a learning algorithm, it is common to make the following assumptions.
Hypothesis 1 3C, > 0 such that |Y| < Cy a.s.
Hypothesis 2 3k > 0 such that sup,cy k(z,z) < K?

Lemma 5.2 If Hypotheses [1] and [ hold, then ¥n > 1, V1 < i < n, VZ a realization of n i.i.d. copies of
(X, Y) ¥(x,y) € X x Y a Z independent realization of (X,Y),

ey, fz,2) — ey, fzi,2)| < Clfz(x) = fz:(x)],

withC:Q(Cy—&—m(is)i).

PROOF : Since H is a vector space, 0 € H, and

2. The new value of Cy with Z’ may not change, but we observed experimentally and in simulations that the case when Cj
remains unchanged by varying Z is extremely rare and a degenerate case.



m 1 . m
Alfzl™ < =D (i = Fz(@) + Al fz%
i=1
1 n
< = llve = Ol + AollF; < &,

k=1
where we used the definition of fz as the minimum of and Hypothesis |1} Using the reproducing property
and Hypothesis 2] we deduce that

1

o2\ ™
F2(@)] < VE@ Dl < Al fzll < <A> ,

The same reasoning holds for fz:. Finally,

ey f2,2) = ey f70,0)] = | = f2(2)? = (4 = F7:(2)?)
<2 cy+~<c;’>m f2@) = f(@)].

O

The stability of our algorithm when m > 2 is established in the following theorem, whose proof is an
extension of Theorem 22 in [BE02]. The original proof concerns the KRR case when m = 2. The beginning of
our proof is similar to the original one; but starting from , the proof is modified to hold for m > 2, since
the equalities used in [BE02] no longer holds when m > 2,. We use inequalities involving generalized Newton
binomial theorem instead.

Theorem 2 Under the assumptz'ons and@, algorithm Z — fz defined in is B stable Ym >= 2 with

1

5o on(a8) ™
n

PROOF : Since ¢ is convex with respect to f, we have V0 <¢ <1

C(yafZ+t(fZi - fZ)"T) —C(y,fz,l')t (C(yafZivx) - C(y,fz,.i?)).

Then, by summing over all couples (xy, yi) in Z¢,

Re(fz+t(fzi = f2),2") = Re(f2,2") <t (Re(fz:,2") = Re(f2,2")). (7)
By symmetry, holds if Z and Z; are permuted. By summing this symmetric equation and , we obtain
Re(fz +t(fz: = 2).2') = Re(f2,2') + Re(fz: + H(fz = f2), Z') = Re(f2:, Z') < 0. (8)
Now, by definition of fz and fz:,
R.(fz,2Z) = Ro(fz +t(fzi — f2), Z) + Ro(f2:1, Z") — Re(fzi + t(fz — [2:), Z") < 0. (9)

By using (§) and (@) we get

(Y, fz,2i) — (i, fz + t(fz: — fz),2) + A ([fz 115 — 1fz +t(fze — 25 +fz: 5 — N fze +t(fz — fz)ll3) <0,
(10)
This inequality holds V¢ € [0, 1]. By choosing ¢ = 1/2 in ([L0), we obtain that
s fv) = el fz + (0 Sl = o (1ahiy =2 [ 222 wpai).
H




Let u= (fz+ fz:)/2 and v = (fz — fz:)/2. Then,

fzi —fz 2"
2

fzi+ fz||" ‘
2 H

— (|12, +1ol12 42 (, 0)p) ™ =2 (Jlull2) ™
+ ([l 2+ 012 =2 (u, v)5,) ™ =2 (lo]12) ™

> 2 (Jullg, + ol1Z) ™" = 2 (Jul3) ™ = 2 (Jol3) ™"
>0,

llu+ollF + llu = vl = 2 [lully = 2]lvlly; = ||fz||%+||fZillﬁ—2‘
H

where in the last transition we used both Newton’s generalized binomial theorem for the first inequality and
the fact that m/2 > 1 for the second one. Hence, we have shown that

Now, by combining and (12), we obtain by using Lemma

th+fZ fZI 2"

; +||f

12l — 2\ (12)

H

m—1

2>\n ((yz,fz-*- (fzi — fz),a?i)—c(yi,fz,xi))

\fz = fzill5 <

.,
<2 zmnfzi(xi)*fz(xi)ny
5 CkK
<2m QTHfzi — fzlln,
n

which gives that

1

L, Cr\ ™1
1z = Failln < <2m ) .

An
This implies that, V(x,y) a realization of (X,Y),

c(y, fz,2) = ey, fz+,2)| < C|lfz(x) = fz:(2)]ly

Ck =
< 2m727 .
<Cr ( )\n)

For 1 < m < 2, the problem is well posed but the question whether the algorithm is stable or not in tths
case remains open. Future studies need to be conducted to further address this issue explicitly.

6 Experiments

In this section, we conduct experiments on synthetic and real-world datasets to evaluate the efficiency of the
proposed algorithm. We use the following real-world datasets extracted from the UCI repositoryﬂ : Concrete
Compressive Strength (1030 instances, 9 attributes), Concrete Slump Test (103 instances, 10 attributes), Yacht
Hydrodynamics (308 instances, 7 attributes), Wine Quality (4898 instances, 12 attributes), Energy Efficiency
(768 instances, 8 attributes), Housing (506 instances, 14 attributes) and Parkinsons Telemonitoring (5875 ins-
tances, 26 attributes). Additionally, we also use a synthetic dataset (2000 instances, 10 attributes) described in
[TKLOS5)]. In this dataset, inputs (21, ..., 219) are generated independently and uniformly over [0, 1] and outputs
are computed from y = 10sin(wz122) + 20(x3 — 0.5)2 4+ 1024 + 525 + N(0,1). In all our experiments, we use a
Gaussian kernel ky,(z, ') = exp(—|lz — 2/[|3/p) with p = 75 37, . [|; — x;]|3, and the scaled root mean square

error (RMSE), defined by

\/% > (i — f(x;))?, as evaluation measure.

max y;

3. http://archive.ics.uci.edu/ml/datasets.
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FIGURE 1 — The norm of the difference between the optimal solutions given by M-RLSR and KRR on two
datasets randomly split into 4 parts Z1, ..., Z4. While the difference on Z; is zero for the two algorithms since
they are Zj-equivalent, they give different solution for Z;, Zs and Zs. (left) Concrete compressive strength
dataset : m = 1.5,\ = le — 2 (obtained by 10-fold cross validation) and A2 = 5.6e — 4(computed from the
Z-equivalence lemma). (right) Synthetic dataset : m = 1.2, A = le — 5 (obtained by 10-fold cross validation)
and Ay = 6.5e — 7 (computed from the Z-equivalence lemma).

6.1 Z-Equivalence

We start by illustrating experimentally the fact that M-RLSR and KRR algorithms are Z-equivalent but
not equivalent. We use here Synthetic and Concrete Compressive Strength datasets. We randomly split these
datasets into 4 parts of equal size Z1, ..., Z4. Using Z7, m is fixed and the regularization parameter X is chosen
by a 10-fold cross-validation for M-RLSR. Then the equivalent Ay for KRR is computed using Lemma [£.4] For
each part Z;,1 < i < 4, we calculate the norm of the difference between the optimal solutions given by M-RLSR
and KRR. The results are presented in Figure [I] The difference between the solutions of the two algorithms is
equal to 0 on Zp, since both algorithms are Z;-equivalent, but is strictly positive on Zs, Z3, Z4, showing that
the algorithms are not equivalent.

6.2 Prediction Accuracy

We evaluate the prediction accuracy of the M-RLSR algorithm using the datasets described above and
compare it to KRR. For each dataset we proceed as follows : the dataset is split randomly into two parts (70%
for training and 30% for testing), we set A = 1, and we select m using cross-validation in a grid varying from
0.1 to 2.9 with a step-size of 0.1. The value of m with the least mean RMSE over ten run is selected.Then, with
m now fixed, \ is chosen by a ten-fold cross validation in a logarithmic grid of 7 values, ranging from 10~° to
102. Likewise, Ay for KRR is chosen by 10-fold cross-validation on a larger logarithmic grid of 25 equally spaced
values between 10~7 and 103.

RMSE and standard deviation (STD) results for M-RLSR and KRR are reported in Table 1] It is important
to note that the double cross-validation on m and A for M-RLSR, and the cross-validation on the greater grid
for the KRR takes a similar amount of time. Table [T] shows that the m-power RLSR algorithm is capable of
achieving a good performance results when m < 2. Note that the difference between the performance of the
two algorithms M-RLSR and KRR decreases as the grid of A becomes larger, but in practice we are limited by
computational reasons.

6.3 Speed of Convergence

We compare here the convergence speed of M-RLSR with m < 1 and KRR on Concrete compressive strength,
Yacht Hydrodynamics, Housing, and Synthetic datasets. As before, each dataset is randomly split into two parts
(70% for learning and 30% for testing). The parameters m and A are selected using cross-validation : we first
fix A to 1 and choose m over a grid ranging from 0.1 to 1, then A is set by cross-validation when m is fixed. For
KRR, A3 is computed from A and m using Lemma [£.4]

Figure [2| shows the mean of RMSE over ten run for the four datasets with M-RLSR and KRR when varying
the number of examples of training data from 10% to 100% with a step size of 5%. In this figure, we can see that
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TABLE 1 — Performance (RMSE and STD) of m-power RLSR (M-RLSR) and KRR algorithms on synthetic and
UCI datasets. m is chosen by cross-validation on a grid ranging from 0.1 to 2.9 with a step-size of 0.1.

KRR M-RLSR
Dataset RMSE STD m  RMSE STD
Compressive | 8.04e-2 3.00e-3 | 1.6 7.3le-2 3.67e-3
Slump 3.60e-2 5.62e-3 | 1.1 3.52e-2  6.49e-3
Yacht Hydro 0.165 1.13e-2 | 0.1 1.56e-2 7.53e-3
Wine 8.65e-2 6.18¢-3 | 1.3 8.17e-2  6.07e-3
Energy 4.12e-2  1.79e-3 | 1.1 3.79e-2  2.87e-3
Housing 10.6e-2  7.98e-3 | 1.3 7.26e-2  9.92e-3
Parkinson 8.05e-2 4.51e-3 | 0.3 5.56e-2 3.29e-3
Synthetic 3.19e-2 1.56e-3 | 0.4 1.26e-2 5.85e-4
. 0
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FIGURE 2 — RMSE curve of M-RLSR (blue) and KRR (red) algorithms as a function of the dataset size.
(top left) Concrete compressive strength (m = 0.1). (top right) Yacht Hydrodynamics (m = 0.5). (bottom left)
Housing (m = 0.4). (bottom right) Synthetic (m = 0.1).

M-RLSR with m < 1 can improve the speed of convergence of KRR. This confirms the theoretical expectation
for this situation [MNI0], that is a regularization exponent that grows significantly slower than the standard
quadratic growth in the RKHS norm can lead to better convergence behavior.

7 Conclusion

In this paper we proposed m-power regularized least squares regression (RLSR), a supervised regression
algorithm based on a regularization raised to the power of m, where m is with a variable real exponent. Our
results show that proposed algorithm achieves good accuracy and improves the convergence speed of the standard
kernel ridge regression algorithm. This supports previous suggestions that one can use a regularization term
that grows significantly slower than the standard quadratic growth in the RKHS norm. In the future, it will be
interesting to study the effect of the exponent m on other kernel-based learning algorithms such as SVM. It will
also be useful to develop online learning algorithms for m-power regularized problems.
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