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Abstract—Maximizing the lifetime of energy constrained wire-
less sensor networks is a very challenging issue. It has been
demonstrated that the use of a mobile sink can significantly
increase the network lifetime by balancing the load among nodes.
However, in existing solutions, nodes either send their data
through multihop towards the sink or store the data until the sink
comes at the node’s vicinity, which usually requires an infinite
buffer capacity. In this paper, we propose a new approach in
which nodes send their data through multihop towards the sink,
but they have the possibility to bufferize data while waiting the
sink coming closer (not necessarily at node’s radio range), which
exempts more sensors from relaying these data. This strategy
allows to save energy, while ensuring there is no data loss due
to buffer overflow.

We modelize the problem of optimizing WSN lifetime with
limited buffer capacity and controlled mobile sink using a Linear
Program (LP). For arbitrary topologies, our LP determines the
sink sojourn times at each possible locations, the data transfer
rates between nodes and the bufferized packets quantities.
Compared to previous models, our solution achieves better
lifetime and enables to generate and transmit more data to
the mobile sink. We show that this lifespan prolongation does
not results in an increased energy consumption at nodes level.
Finally, the numerical results give useful indications for network
dimensioning in terms of buffer capacity and link capacity.

I. INTRODUCTION

In Wireless Sensor Networks architectures using a unique
static base station, sensor nodes located close to the base
station deplete their battery faster than other sensor nodes,
leading to an early disconnection of the network. This is
due to the fact that all traffic is forwarded towards the Base
Station (or Sink) which induces a workload of few nodes
closed to the sink. To increase the network lifetime, one of
the efficient solution is to balance the load among nodes using
a mobile base station which moves in the network to collect
nodes information. Moreover, this kind of operation can be
envisioned in many effective applications, such as collecting
data from WSN deployed in an agricultural unit using using a
mobile sink embedded in aerial drone or motorized agricultural
engine.

The sink mobility can be controlled or uncontrolled. For
the uncontrolled solution, the mobile sink moves randomly in
the monitored region, while the controlled mobile sink can
only move along a pre-defined trajectory. Finding the optimal
trajectory that maximizes the network lifetime is very chal-
lenging. Indeed, the maximum lifetime can only be achieved

by solving optimally two joint problems: a scheduling problem
that determines the sojourn times of the sink at different
locations, and a routing problem which defines the path that
will be used by the collected data to reach the mobile sink in
an energy-efficient way [2], [1]. In other words, routing and
mobility are strongly interrelated because the routing strategy
greatly influences energy consumption and as the sink moves,
paths will change.

However, in existing joint scheduling and routing problem
solutions, the considered routing paradigm is a pure multihop
forwarding, as nodes continuously send data towards the
mobile sink. It results in higher energy expenditure compared
to a pure direct communication approach where the mobile
sink visits each sensor and retrieves data through single-
hop. Indeed, direct communications enable a minimum energy
consumption at each node, but only at the expense of an
increased data delivery delay. One solution to trade-off energy
and latency is to consider hybrid routing schemes which
combine single-hop and multi-hop communication strategies.
Nevertheless, in hybrid solutions data are either bufferized
while waiting the sink passage or sent through multihop
towards the mobile sink. But in real scenario, nodes may
experiment data loss due to buffer overflow while waiting the
sink coming into the node’s vicinity. Instead, we propose to
offer nodes the possibility to delay their transmissions, but not
necessarily to wait until the sink is at a one-hop proximity. The
idea is to allow nodes to bufferize data while waiting the sink
to come closer to the node (not necessarily at the node), which
would relieve more nodes from relaying these data. We also
ensure that there is no data loss due to buffer overflow.

In this paper, we develop a new Linear Programming model
for the joint scheduling and routing problem with limited
buffer capacity. Our solution achieves better lifetime compared
to previous works and assesses the efficiency of the delayed
communication paradigm. The LP resolution determines the
sink sojourn times at visited nodes, the data transfer rates and
the packets bufferization for arbitrary topologies. Furthermore,
the numerical experiments provide valuable clues to the future
design of a distributed routing protocol and a sink mobility
control policy. The paper is organized as follows. In the
next section we review existing solutions regarding joint sink
mobility and routing problem for lifetime prolongation via
controlled mobile sink. Then in section III we present the



network model and our optimization problem formulation. In
Section IV we report numerical results of the proposed model
and show how far our approach outperforms existing schemes
in terms of lifetime. Finally, SectionV concludes the paper.

II. RELATED WORKS

In this section we review existing works related to the use
of a controlled mobile sink for lifetime prolongation in WSN.

Wang et al. [3] consider a bi-dimensional square grid
topology and give a linear programming model for determining
the sink sojourn times at each node that induce the maximum
netwok lifetime. In their approach, authors assume that half
of the work load of each node flows along its horizontal and
vertical links towards the current location of the mobile sink.
Thus, their LP formulation only solves the scheduling problem
while the routing problem is solved offline by imposing the
pre-defined routing strategy.

Papadimitriou et al. [2] extend the work of Wang et al.
by turning the constants of the model into variables. Their
LP formulation finds the sink sojourn times and the transfer
rates between neighboring nodes that maximize the network
lifetime. Note that in [2] and [3], the visiting order of the
mobile sink is not important since the data generation rate
at each node is independant of time and the traveling time
between two locations is considered negligible. However, with
other assumptions, the problem integrates a new dimension
which is to determine the visiting order of the sink.

Basagni et al. [4] introduce new constraints: the minimum
sojourn time at each sojourn location, the maximum distance
the sink can travel while moving from one site to another and
the energy cost for building new routes when the sink moves.
They propose a Mixed Integer Linear Programming (MILP)
model that determines the sink’s path and its sojourn times
at the different locations while the routing protocol remains a
parameter. Then they propose a simple decentralized routing
protocol called GMRE: after spending the minimal time at a
location, the mobile base station decides to change its location
or to stay based on the residual energy of the neighboring
nodes of potential future sites.

In [5], Liang et al. consider a mobile sink that must start
from and return to a given location to periodically recharge
petrol or electricity. They introduce new constraints about
this total tour distance, the maximum distance between two
consecutive movements and the minimum sojourn time at each
location. However, the routing protocol is predefined and does
not appear as a variable in the MILP formulation. Because of
the complexity of the resulting MILP they introduce a near
optimal heuristic algorithm.

Luo et al. [6] propose a distributed protocol to control sink
mobility based on the LP developed in [3]. In an initialization
phase, the sink visits all possible locations for a sampling
period to collect the power consumption records from all
nodes. At the end of this phase, the sink is able to perfom the
LP. In the operation phase, the sink goes through each location
determined by the LP and still continue to collect information

in order to obtain a better estimation and regularly resolve the
LP.

Luo et al. [7] prove the NP-hardness of the joint sink
mobility and routing problem for lifetime maximization with
multiple mobile sinks. They also present an algorithm to solve
the problem involving a single sink and then generalized it to
approximate the problem with multiple sinks.

Gandham et al. [8] consider that the network lifetime is
split into equal periods of time called rounds and that multiple
mobile base stations stay fixed at feasible locations during a
round. Then, at the beginning of each round, a base station
computes an Integer Linear Program (ILP) that gives the new
location of all the base stations and the flow of information
at each node for the duration of the round. It is not exactly
a joint routing and scheduling problem as the time spent by
each sink at a location is predefined by the round length.

As explained in the introduction, these research works
rely on a pure multihop forwarding paradigms, while other
approaches have been proposed to compute a mobile sink
trajectory for single-hop data collection, which maximizes
the network lifetime at the expense of an increased latency.
Somasundara et al. [9] and Gu et al. [10] were interested in
networks of sensors operating at different sampling rates and
propose a solution to schedule the sink movement so that there
is no data loss due to buffer overflow. However, the routing
strategy is limited to direct communication with the mobile
base stations. Rao et al. [11] develop distributed algorithms to
compute the sink trajectory for single-hop data collection in
order to reduce the average collection delay. They determine
a trip for the mobile base station so that the trip distance is
minimized and the MBS come within the radio range of every
sensor during its trip, without necessarily being colocated to
sensors.

Some hybrid routing schemes that combine direct and
multihop communication strategies with a MBS have been pro-
posed. Rao and Biswas solution [12] computes the minimum-
distance trajectory so that while the MBS moves along this
path, it comes within up to k hop reach of all network nodes.
They define some Designated Gatways (DG) nodes that can
reach the sink in 1-hop when it passes close to them. A DG
buffers data from other nodes that are at most k-1 hop away
from it, and uploads these collected data to the MBS. Even if
the solution enables a trade-off between energy and latency,
it results in a uneven distribution of the energy consumption
among nodes. Indeed, the energy consumption of a node
depends on the number of hops that separates it from its
assigned DG. Moreover, DGs are supposed to have an infinite
buffer capacity. Sugihara and Gupta [13] propose a framework
that combines direct communication and multihop forwarding
which aims at planning a MBS motion to minimize the data
delivery delay. Because of the NP-hardness of the problem,
they propose to solve several subproblems: i) a forwarding
subproblem that gives the information transfer rates of each
node given a limit on their energy consumption, ii) a path
selection subproblem that determines a trajectory so that the
MBS travels within each node’s communication range at least



TABLE I
COMPARING VARIABLES OF DIFFERENT MODELS

Pure multihop
Variables [3] [2] [5] [4] [7] [8]

sojourn times + + + + + -
visiting order - - + + - +

routing - + - - + +

Pure single hop Hybrid
Variables [9] [10] [11] [12] [13]

sojourn times + + + + - - +
visiting order + + + + - + -

routing - - - - + - -

once, iii) a joint speed control and scheduling problem that
gives the schedule of data collection from each node and its
speed displacement along the path so that it can collect all the
data from all sensor nodes.

In these hybrid routing schemes, data are either bufferized
while waiting the sink passage or sent through multihop
towards the mobile sink. But in real scenario, nodes may
experiment data loss due to buffer overflow while waiting
the sink coming into the node’s vicinity. To overcome this
limitation, in our solution we address the joint scheduling
and routing problem by taking into consideration hybrid
communication schemes. Nodes can forward their data through
multihop towards the mobile sink, and they can also bufferize
a certain amount of data while it does not exceed their buffer
capacity. So, the network lifetime is improved. We describe in
the next section our system model and give our optimization
problem formulation.

III. SYSTEM MODEL

A. Model formulation

In this section, we propose a modelization for the lifetime
prolongation of a WSN with a controlled mobile base station.
We define a Linear Programming model that determines for a
given topology: the sink sojourn times at different locations,
the data flows between neighboring nodes, and the packets
bufferization. Thus, we obtain both the optimal sink mobility
displacement and the optimal data routing scheme that maxi-
mize the lifetime of a specified network.

We consider that the wireless sensor network is composed of
a set N of static sensor nodes and one mobile sink s collecting
the information. The sensors are randomly deployed to monitor
their physical surroundings and generate a constant data rate
Qi > 0, i ∈ N . We denote by L the set of possible locations
of the sink, not necessarily colocated with the sensors. We
also assume that K = (l1, l2, l3, ..., l|L|−1, l|L|) is an ordered
list of sink visiting locations, i.e. the sink will first visit l1 and
then l2 and so on. We will later detail the implication of this
assumption at the end of this section. The sink sojourns at the
location lk for a time duration tlk ≥ 0 and change its position
from one location to another with a negligible traveling time
as considered in [3], [2], [7].

The set Slk
i ⊆ N ∪{s} represents the nodes (either sensors

or the sink) that are in the transmission range of sensor i ∈ N

for a given location lk ∈ K of the sink. Note that the only
possible difference between two sets Slk1

i , S
lk2
i is the sink s.

Every sensor sends its data either through multihop towards
the sink or via direct communication if the sink is in the
nodes’s vicinity. We consider that qlkij ≥ 0 represents the
data rate transmission from node i to its neighboring node
j ∈ Slk

i when the sink is at the location lk ∈ K. Additionaly,
each sensor has the possibility to buffer a certain amount of
data while this quantity does not exceed its buffer capacity
Wi ≥ 0. wlk

i ≥ 0 corresponds to the amount of data contained
in the buffer of the sensor i ∈ N at the end of the sink
sojourn time at location lk ∈ K. Additionaly, we denote by
Rij(i ∈ N, j ∈ Slk

i ), the capacity of the link (i, j). It is
a constant quantity that upper bounds the transmission rates
qlkij .

We consider that each sensor has an initial energy Ei

and we suppose that the main factors of energy consumption
are data reception and transmission. We denote by eTij the
energy consumption of sensor i to transmit a data unit to its
neighboring node j and by eRji, the energy consumption of
sensor i when receiving a data unit from its neighboring node
j.

We suppose that the sink has an unlimited energy and
keeps moving until the end of the network lifetime, which
is defined as the time until the first node dies due to energy
depletion. The objective of our optimization problem is to find
the optimal routing strategy and the optimal sojourn times at
each sink location so that the network lifetime is maximized
for a given order of visited locations. In the following, we give
the formulation of the problem of maximizing the network
lifetime and then derive a Linear Programming model.

max
∑
lk∈K

tlk subject to (1)

tlk ≥ 0, lk ∈ K (2)

qlkij ≥ 0, i ∈ N, j ∈ Slk
i , lk ∈ K (3)

wlk
i ≥ 0, i ∈ N, lk ∈ K (4)

∑
lk∈K

∑
j∈Slk

i

eTijq
lk
ij tlk +

∑
lk∈K

∑
j:i∈Slk

j

eRjiq
lk
ji tlk ≤ Ei, i ∈ N

(5)

wlk
i =

∑
j:i∈Slk

j

tlkq
lk
ji + tlkQi −

∑
j∈Slk

i

tlkq
lk
ij + w

lk−1

i ,

i ∈ N, k ∈ {0, 1, .., |L|} (6)

wl0
i = 0, i ∈ N (7)



∑
i∈N

Qitlk +
∑
i∈N

w
lk−1

i −
∑
i∈N

wlk
i =

∑
j:s∈Slk

j

tlkq
lk
js,

lk ∈ K (8)

qlkij ≤ Rij , i ∈ N, j ∈ Slk
i , lk ∈ K (9)

wlk
i ≤Wi, i ∈ N, lk ∈ K (10)

The objective function (1) maximizes the network lifetime,
i.e. the sum of the sojourn times of the mobile sink at all
locations. Constraints (2), (3) and (4) assure the non-negativity
of sojourn times tlk , the rates qlkij and the quantities wlk

i .
Constraint (5) states that the energy consumed in sensor i for
transmission and reception must not exceed its initial energy
Ei.

Constraints (6) and (8) correspond to flow constraints with
buffer capacity. The left part of the inequality in constraint (6)
represents the amount of data bufferized by node i when the
sink sojourns at the location lk for a duration tlk . It is equal
to the difference between the amount of data the node has to
transmit (i.e. the data received from its neighboring nodes, its
own generated data and the data previously bufferized) and
the amount of data it effectively transmits. Note that we have
introduced an artificial state l0 and we impose in constraint
(7) wl0

i = 0 to represent the fact that at the beginning of the
network operation buffers are empty. Similarly, we can set
wlL

i = 0 to impose that buffers are empty at the end of the
network lifetime.

Constraint (8) assures that at any time tlk , the sink is the
final destination of all the data transmitted by nodes, which
consist in the data generated by all nodes and their previously
bufferized data minus the data bufferized at tlk .

Constraint (9) ensures that at any time the flow information
rates going through a link (i, j) do not exceed the capacity of
the link (i, j).

Constraint (10) states that at any time, the amount of data
bufferized at node i should not exceed its buffer capacity Wi.

By defining q̂lkij = tlkq
lk
ji as the amount of data transmitted

from sensor i to its neighboring node j during time tlk , the op-
timization problem can be expressed as a Linear Programming
model:

max
∑
lk∈K

tlk subject to (11)

tlk ≥ 0, lk ∈ K (12)

q̂lkij ≥ 0, i ∈ N, j ∈ Slk
i , lk ∈ K (13)

wlk
i ≥ 0, i ∈ N, lk ∈ K (14)

∑
lk∈K

∑
j∈Slk

i

eTij q̂
lk
ij +

∑
lk∈K

∑
j:i∈Slk

j

eRjiq̂
lk
ji ≤ Ei, i ∈ N (15)

wlk
i =

∑
j:i∈Slk

j

q̂lkji + tlkQi −
∑

j∈Slk
i

q̂lkij + w
lk−1

i ,

i ∈ N, k ∈ {0, 1, .., |L|} (16)

wl0
i = 0, i ∈ N (17)

∑
i∈N

Qitlk +
∑
i∈N

w
lk−1

i −
∑
i∈N

wlk
i =

∑
j:s∈Slk

j

q̂lkjs,

lk ∈ K (18)

q̂lkij ≤ Rij , i ∈ N, j ∈ Slk
i , lk ∈ K (19)

wlk
i ≤Wi, i ∈ N, lk ∈ K (20)

B. The sink visiting order

Our LP finds the optimal solution of the joint scheduling and
routing problem with packets bufferization for a given ordered
list of visiting positions K. To find the optimal solution of
the general problem without a predefined sink trajectory, we
can run the LP for each possible ordered list of |L| locations.
However, this corresponds to run the LP for each possible
permutation of a list of size |L| which is equal to |L|! times.
When the possible locations of the mobile sink is restricted to a
few number of sites, it is conceivable. However, as the number
of possible locations grows we need to study the impact of
fixing a visiting order on the lifetime performance.

C. The routing graph

Once we solve the linear model, we define the routing graph
Gk(V,Ek) as the directed graph obtained for each location lk
of the mobile sink, so that V = N and there exist an edge
(i, j) ∈ Ek if and only if q̂lkij > 0 and edges are valuated
by the quantity q̂lkij . We observe that there could be cycles in
the routing graph Gk. We could have introduced additional
contraints in the LP to prevent cycle formation. However, the
number of constraints would be equal to the number of cycles
in the topology, which can grow exponentially with the number
of nodes in case of dense network.

Instead, we propose to suppress cycles after solving the
LP, by applying Johnson’s algorithm [14]. We first detect all
the elementary cycles present in the routing graph in time
bounded by O((V + E)(c + 1)), where c is the number of
elementary circuits in the routing graph. Then, for each cycle,
we subtract to all edges of the cycle, the minimum value
associated with them. In this way, one edge is set to 0 and
the cycle is suppressed. The flow validity is still ensured since



for a node, we suppress the same incoming and outcoming
number of data.

Note that the existence of such cycles does not influence the
maximum achievable lifetime. Indeed, the solver maximizes
the network lifetime, but for sensors that have remaining
energy after optimization, it can create cycles involving them.
Intuitively, a cycle consumes energy uselessly and would not
be possible for nodes whose energy constrains the problem.
Thus, when supressing cycles, we only affect the node’s
remaining energy but not the network lifetime.

IV. NUMERICAL RESULTS

A. Description of the compared models

In what follows, we compare our solution denoted OPT-B
with an approach proposed in the literature, we will call OPT.

1) OPT: This is the LP model proposed by Papadimitriou
and Georgiadis [2] which provides the optimal solution
of the joint routing and scheduling problem without
packet bufferization. It determines the sojourn times
of the sink at each possible sink locations and the
information transfer rates between neighbor nodes for
each position of the mobile sink. We add a constraint∑

i∈N Qitlk =
∑

j:s∈Slk
j

q̂lkjs, lk ∈ K to specify that the
sink is the final destination of all generated packets in the
network (which is missing in the original formulation).
The number of variables in this model is in order of
O(L+dNL) where d is the average number of neighbors
per node.

2) OPT-B: This is the LP model proposed in section III
which provides the optimal solution to the joint routing
and scheduling problem with packet bufferization for a
given order of visited locations. It determines the sink
sojourn times, the data transfer rates and the packets
bufferization rates. In our model the number of variables
is in order of O(L+(d+1)NL) where d is the average
number of neighbors per node.

B. Scenario and parameters settings

We compare the performances of the above two models
for various network sizes with respect to lifetime, which is
defined as the time until the first sensor dies. We use the
same values as in [3] for the initial energy (E = 1.35 Joules),
the energy cost of one transmission/reception (e = 0.62e−6

Joules/bit) and the data generation rate (λ = 1 Bit/sec). In
every scenario, parameters Wi and Rij are set identic for all
nodes and all links, and we specify these values. The possible
locations of the sink s are the nodes, i.e. L = N . Note that this
scenario implies an important number of variables in the order
of O(N2), because the number of possible locations is equal
to the number of nodes. For OPT-B, nodes are visited in the
increasing order of their identifier. In fact, it corresponds to a
random displacement of the mobile sink from one location to
another.

Fig. 1. Achievable lifetime for various link capacity and various network
size

We solved the LP models with CPLEX 1 and the constraints
are generated in C++. We consider arbitrary topologies (nodes
uniformly distributed within a square area) with various net-
work sizes (20,50,80,100,150,200 nodes).

C. Results

We first study the impact of the buffer capacity Wi and
the link capacity Rij parameters on the network lifetime. We
then investigate the improvement of OPT-B over OPT in terms
of network lifetime and nodes’ residual energy. We further
compare the pause time distribution of the two models. Finally
we highlight how buffers are used by nodes in OPT-B.

Figure 1 gives the average lifetime achieved by the two
models for various link capacity Rij . For each network
size and each link capacity, the results are obtained from
50 randomly generated instances. The four curves present
identical behaviour. Below a certain link capacity (we denote
by R′ij), as the link capacity increases, the network lifetime
also increases. This can be explained by the fact that when
the link capacity is small, nodes have few opportunities to
balance the load between their neighbors, whereas when the
link capacity is sufficiently high, nodes can distribute more
fairly the load between their neighbors depending on their
respective reception and transmission activities. Above R′ij ,
the maximum lifetime is achieved and do not vary anymore.
This is due to the fact that the link capacity is sufficiently high
and do not constrain anymore the problem. The optimization
problem remains constrained only by the energy consumption
limitation (and the buffer capacity for OPT-B). This result
is interesting when dimensioning the network. Indeed, it is
possible to interpolate for a given network size the minimum
optimal R′ij that permits to achieve the maximum lifetime. It
is a valuable insight when choosing the appropriate technology
standard. In all the following scenarios we set Rij equal to 90
so that the results reflect the energy limitation.

In Figure 2 we study the impact of the buffer capacity Wi on
the network operation time for our model OPT-B. As expected,
the introduction of a buffer capacity enables to increase the
network lifetime and greater is the buffer capacity, higher

1http://www-01.ibm.com/software/integration/optimization/cplex-
optimizer/



Fig. 2. Achievable lifetime for various buffer capacity in a 20-nodes network

TABLE II
AVERAGE LIFETIME OF OPT AND OPT-B IN ARBITRARY TOPOLOGIES

|N | OPT OPT-B (W=1000) Improvement
20 344 656 350 663 1.74%
50 297 606 311 367 4.62%
80 212 708 233 836 9.93%
100 94 974 124 017 30.58%
150 56 135 95 349 69.85%
200 41 378 86 570 109.23%

is the improvement. Indeed, for a 20-nodes topology when
the buffer capacity is small, e.g. equal to 10 data unit the
improvement in lifetime over OPT is quite small. But with
a buffer equal to 10000 data unit, the improvement goes to
16.95% over the overall lifetime of OPT. Moreover, with an
important buffer capacity in the order of 107 data, we observe
that the network can achieve a lifetime close to the upper
bound Ei

eis
= 2, 1774e6 which corresponds to the case nodes

only have to transmit their own data directly to the sink. In our
model this case requires an important buffer capacity as the
sink visits a location only once during the network operation
time.

Table II compares the maximum average lifetime achieved
for six different network sizes (20, 50, 80, 100, 150, 200) of
arbitrary topologies. For each network size, it represents the
average of the results obtained from 100 randomly generated
instances. We can observe that as the network size increases,
the improvement in lifetime of OPT-B over OPT also in-
creases. Indeed, for a 20-nodes network the improvement is
in the order of 2% while it goes to 109% for a 200-nodes
network with a buffer capacity Wi set to 1000 in both cases.

In Table III we compare the balancing of energy depletion
among sensor nodes. We recall that Ei denotes the initial
energy of sensor i ∈ N . Let Er

i be the residual energy of
i at the end of the network lifetime. For every instance, we
compute the percentages of sensors whose residual energy
is equal to zero (Er

i = 0), below 25% of the node’s initial
energy (Er

i ≤ 0.25Ei) and below 50% of its initial energy
(Er

i ≤ 0.50Ei). We then average the corresponding percent-
ages over the 100 instances of each network size. We observe
that our solution exhibits nearly the same residual energy
percentages as OPT. Because our solution lasts longer, one

TABLE III
COMPARISON OF THE RESIDUAL ENERGY OF THE SENSORS

Er
i = 0 Er

i ≤ 0.25Ei Er
i ≤ 0.50Ei

|N | OPT OPT-B OPT OPT-B OPT OPT-B
20 27.95% 27.45% 46.10% 46.05% 59.45% 58.5%
50 39.16% 31.60% 59.86% 57.54% 72.34% 72.76%
80 35.22% 28.01% 56.46% 52.72% 70.22% 72.19%
100 16.92% 14.53% 33.81% 33.14% 47.03% 52.66%

would have expected that at the end of the network operation,
nodes have less energy left. Indeed, in our solution much more
data are generated and routed towards the sink. However, we
can explain the quasi-equivalent residual energy of OPT and
OPT-B by the fact that the energy spent in sending more
data in OPT-B is compensated by the energy saved for not
relaying some of other’s packets. We also observe that the
average residual energy decreases from 20 to 50 nodes and
then increases. This is because above a certain topology size, a
single mobile base station is not sufficient to balance efficiently
the load among the important number of nodes. Thus there
remains more energy in sensors.

Figure 3 represents the residual energy distribution at the
end of the network lifetime in a 50-nodes and a 100-nodes
topology for the two models. It appears that sensors with the
most remaining energy are mostly located at the periphery
of the network. Furthermore, the relatively high quantity
of remaining energy in sensors indicates that it could be
pertinent to reconsider the definition of lifetime or to introduce
additional mobile base stations.

Figure 4 represents the pause time distribution of the
mobile sink in a 50-nodes and a 100-nodes network. An
observation already made in [7] is that the mobile sink stops
at few different locations in OPT. We have verified that these
locations do not specifically correspond to nodes with high
degrees nor location with a high node density. It requires
further investigation to highlight specific patterns for the sink
mobility in this case. For the OPT-B model we observe that
the mobile sink stops at almost all the nodes. Regarding the
routing graph, we can roughly distinguish the pause times
into two categories: long-time pauses during which all sensors
route their data towards the sink in a tree-like manner and
short-time pauses during which sensors close to the mobile
sink send their bufferized data while more distant sensors
bufferized their generated data. It is interesting to note that
long-time pauses locations are almost the same as the locations
chosen in OPT.

The average buffer utilization depending on the hop-distance
of the nodes from the mobile base station location is plotted
in Figure 5. The results are averaged over 100 instances for
each network size. It appears that the more distant is the
base station, the more the node will bufferize data. Indeed,
buffers are used to store data while waiting the base station
to come closer to the node. Then nodes take advantage of
the base station proximity to empty their buffer. This strategy
relieves more sensors from relaying other’s data and results in
an overall energy saving.



Fig. 3. Residual energy distribution of OPT and OPT-B in a 50-nodes and a 100-nodes network

Fig. 4. Pause time distribution of OPT and OPT-B in a 50-nodes and a 100-nodes networks

Fig. 5. Average buffer occupancy rates depending on the hop-distance of the nodes from the base station in various network size

V. CONCLUSION

In this paper, we gave a novel Linear Programming model
for data collection in a wireless sensor network with a con-
trolled mobile base station and limited buffer capacity. our
solution always achieves higher network lifetime compared
to existing solutions and demonstrates the efficiency of the
delayed communication paradigm. The numerical experiments

are insightful for the future design of a distributed routing
protocol and a sink mobility control policy. Depending on
their distance to the mobile base station, nodes will tend to
bufferize or transmit their data. The sink will stop at almost all
the sensors. Long-time pauses will result in the constrution of a
routing tree towards the sink and during short-time pauses the
sink will only collect data from the closest nodes. Moreover,



given a network size, the numerical results can be used to
dimension the buffer capacity and the link capacity.
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