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Fast Hue and Range Preserving Histogram
Specification: Theory and New Algorithms

for Color Image Enhancement
Mila Nikolova, Senior Member, IEEE, and Gabriele Steidl

Abstract—Color image enhancement is a complex and chal-
lenging task in digital imaging with abundant applications.
Preserving the hue of the input image is crucial in a wide range
of situations. We propose simple image enhancement algorithms,
which conserve the hue and preserve the range (gamut) of the R,
G, B channels in an optimal way. In our setup, the intensity input
image is transformed into a target intensity image whose his-
togram matches a specified, well-behaved histogram. We derive a
new color assignment methodology where the resulting enhanced
image fits the target intensity image. We analyze the obtained
algorithms in terms of chromaticity improvement and compare
them with the unique and quite popular histogram-based hue
and range preserving algorithm of Naik and Murthy. Numerical
tests confirm our theoretical results and show that our algorithms
perform much better than the Naik-Murthy algorithm. In spite
of their simplicity, they compete with well-established alternative
methods for images where hue-preservation is desired.

Index Terms—color image enhancement, scaling and shifting
methods, hue preservation, gamut problem, exact histogram
specification, color perception.

I. INTRODUCTION

This paper assists to the tremendous progress in digital
color imaging and display technology. In spite of the important
amount of research, color perception and color appearance are
still open problems. The demand for fast efficient algorithms
improving the color content of digital images has increased
dramatically. The applications of color image improvement are
abundant. They concern for example digital cameras and mo-
bile phone cameras, medical imaging, video, post-production
industry, restoration of old pictures and movies.

Typically, color images are stored and viewed using three
components (channels): red (R), green (G) and blue (B). In this
paper we aim to design color image enhancement methods
in the RGB space sharing three important features, namely
hue and range (gamut) preservation and low computational
complexity. The hue describes in each area of an image the
dominant color ingredient that one really perceives, e.g., red,
orange, magenta, yellow and so on [1], [2]. The hue has the
nice property of being invariant under changes of direction
and intensity of the incident light [3]. Thus, by preserving
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Fig. 1. Histogram equalization (HE). Left: Original image onion (Matlab
IPT image credits notice). Middle: HE to each color channel independently.
Right: Enhancement in three steps following [2]: RGB to HSI transform, HE
of the intensity channel, then HSI to RGB transform. Here 36.1 % of the
pixels have values in (255, 443.5].

the hue and enhancing the brightness, the obtained image will
appear more colorful. Examples where the hue is modified
are shown in Fig. 1. The range (gamut) preservation is often
omitted in works on image enhancement; see, e.g. the recent
textbook [2, p. 80]. Each color channel in a digital image
can only take a limited number, say L, of integer values, e.g.,
L = 256 for 8-bit coding. If the enhancement method produces
larger or smaller values these are clipped back to the boundary
of [0, L − 1] which also changes the hue. In Fig. 1 right
36.1 % of the pixels are clipped back to 255 which yields too
many yellow pixels. Finally, a low computational complexity of
algorithms is particularly important when dealing with “mega-
pixel” images taken by commercial cameras, resources in
hardware implementations and extensions to video.

Remark 1. Fully automatic color image enhancement faces
(at least) two major limits: i) ”The chemical compounds
that form color receptors vary among the population. The
physical shapes of the receptors vary among the population
and within the retina. Thus, the color vision among observers
with normal color vision varies significantly” [1, p. 18].
ii) Image enhancement is always driven by an application:
typically the user needs specific visual information determined
by his/her purpose. Further subjective criteria are of paramount
importance [2].

Consequently, we do not look for fully automatic image
enhancement algorithms. Here we focus on histogram based
methods. The selection of a suitable target histogram enables
the user’s needs to be satisfied. Moreover we wish to conceive
fast algorithms. In order to achieve our goals, we propose
simple algorithms composed of two stages:

(a) the intensity channel of the input RGB image is matched
to a specified histogram which gives us the target intensity
image;

(b) the RGB color values are computed based on the target
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intensity image so that they satisfy the hue and gamut
constraints in an optimal way.

These stages are briefly commented below.
Stage (a). Exact histogram specification (HS), also known

as histogram matching, of single-valued (gray-valued) images
aims to transform an input image to an output image which ex-
actly fits a prescribed target histogram. Histogram equalization
(HE) is a particular case of HS where the target histogram is
uniform. Usually HE leads to unnatural images and should not
be the target of choice. We do not focus on the construction
of target histograms. Instead, we adopt a simple approach
inspired by [4]. For digital image HS is an ill posed problem
[5]. The clue to ensuring exact HS is to obtain a meaningful
total strict ordering of all pixels in the input digital image. We
perform exact HS using the algorithm in [32] which currently
provides the best pixel ordering in terms of quality and speed.

Stage (b). The extension of histogram methods to color
images is a quite complex task. The histogram of a gray-
value image is 1D while the histogram of a color image is 3D
which gives rise to an under-determined problem. For instance,
applying HE to each color channel independently changes the
color content (the hue) of the image, see Fig. 1 middle. Further
it is not easy to produce color images that respect the range
constraints; see Fig. 1 right. As a central result of this paper,
we propose a general and optimal hue and range preserving
color assignment methodology.

Related Work. Since the inaugural paper [6] providing
PDE-based and variational formulations for image histogram
modifications, these methods were further expanded to deal
with color image enhancement; see [7], [8], [9], [10]. These
approaches provide flexible tools to incorporate various knowl-
edge on human visual perceptual phenomena, typically in
relation with Retinex theory [11]. An automatic color en-
hancement (ACE) algorithm for digital images, mimicking
some characteristics of the human visual system, has been
proposed in [12] and refined in [13]. A fast implementation
of ACE was developed in [14]. A perceptually inspired vari-
ational approach allowing a more flexible control of contrast
adjustment and attachment to data was proposed in [7]. A
numerical implementation of the gradient descent technique
applied to the corresponding energy functionals coincides
with the equation of the ACE. Some basic requirements for
”perceptually inspired” objectives were formulated in [8] and
gave rise to successful algorithms [8], [15].

Next we summarize the main approaches via histogram
modification of color images following a chronological order.
Since the suitably normalized histogram of an image is also
the empirical probability distribution of its pixel values, a
statistical vocabulary is used in many papers. In [16] a 3D
color histogram in the RGB color space was proposed for HE;
the resultant images present an excessive brightness for bright
pixels, see [17]. A method that preserves both the hue and
the range (gamut) constraints was inaugurated by Naik and
Murthy in [18]. Even though this article did not show color
image applications, it is a state-of-the-art method applied in
many papers; see, e.g., [19], [17]. As to the choice of the
color space, some methods work directly in the RGB space
while others operate in transformed color spaces, e.g., LHS,

HSI, YIQ, HSV, etc., see [5]. When processing is done in
a transform color space, coming back to the original RGB
space typically generates a gamut problem, as cautioned in
[18]. Beyond the additional numerical cost, a post-processing
in RGB is then needed (often realized using [18]). Gray-
value grouping was tentatively extended to color HE in [20].
In [21], a new definition of the histogram of a color image
was introduced whose cumulative distribution function (cdf)
is the product of the marginal cdf’s of each color channel.
Then the color values are increased / decreased by the same
amount iteratively. This work was refined in a later paper
[22]. Another approach, developed in [19], is to work in the
HSI space where the hue and the saturation are equalized
and then processed using probability smoothing. All pixels
in the RGB space that present gamut problem are corrected
using [18]. A generic brightness preserving dynamic histogram
equalization scheme, composed of five steps, was proposed
in [23]. This scheme was applied to color images in several
ways, including transforms into other color spaces. The work
in [17] demonstrates that the methods in [16], [19], and [21]
based on higher dimensional histogram definition, increase the
brightness of the image and cannot fit the prescribed uniform
histogram. The main conclusion is that only the 1D histogram
of the intensity channel can be considered for equalization.
The new color values are then computed using the algorithm
in [18]. The method in [17] was recently improved in [24].
In order to avoid the excessive contrast enhancement due to
HE, a histogram mixing strategy was applied in [25]. There are
also many histogram based techniques where the enhancement
function is an S-type, or power, or logarithmic transform;
see [26]–[29]. In particular, the approach in [27] is based on
models for color perception and is automatic. Unfortunately,
there are no algorithms nor tests on color images.

Contributions. We propose a general affine model for
fast hue and range preserving image enhancement in the
RGB space which gives rise to Algorithm 3. Two simple but
important instances of this algorithm are the Multiplicative
algorithm 4 and the Additive algorithm 5. We show how the
outcome of Algorithm 3 can be faithfully approximated as
a convex combination of the images obtained by Algorithm
4 and Algorithm 5, which is quite practical. The enhance-
ment performances of our algorithms and the Naik-Murthy
algorithm [18] are analyzed in terms of their chromaticity
improvement. In all cases, our algorithms clearly outperform
the algorithm in [18] recently applied to color images in
[17]. All numerical tests confirm our theoretical results. Our
algorithms are simple and fast. They are really efficient when
one wishes to give a better clarity of images (not too altered
by artifacts) while preserving the original color ambience.

Outline. In Section II we sketch our HS method and present
the Maik-Murthy algorithm [18]. Section III presents our
approach for color image enhancement. In Section IV we
evaluate our algorithms and the algorithm in [18] analytically
in terms of saturation as well as qualitatively. Section V
presents numerical results. Conclusions and points for future
work are drawn in Section VI.

The proofs of all statements are given in the Appendix.
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II. PRELIMINARIES

Let w = (wr, wg, wb) be an RGB image of size M × N ,
where wc ∈ {0, . . . , L − 1}, c ∈ {r, g, b} are its red, green
and blue channels, respectively. For 8-bit images we have L =
256. We reorder each color channel columnwise into a vector
of size n := MN and address the pixels by the index set
In := {1, · · · , n}.

A. Histogram Specification
The intensity of an RGB image w is defined by [5]

f(w) :=
1

3
(wr + wg + wb). (1)

Then f has 3(L−1)+1 different values in 1
3{0, · · · , 3(L−1)}.

Remark 2. Instead of the intensity f we can also work with
other convex combinations of RGB values. E.g., we can use
the weights 0.299, 0.587 and 0.114 which are in proportion
to the human perception of the RGB channels, see [1], [2].

We want to find an intensity image f̂ with gray values in
{0, . . . , L − 1} which has a specified (target) histogram ĥ =
(ĥ1, . . . , ĥL), i.e., ĥ[k] := ♯ {i ∈ In : f̂ [i] = k − 1}, k =
1, . . . , L, where ♯ stands for cardinality. Such exact HS can
almost never be achieved for images with a small number of
different values compared to the number of pixels using the
classical statistical method based on the cumulative density
function, see [5]. Instead we will apply a procedure based on a
meaningful strict ascending ordering of the pixels in f . Various
ordering algorithms for digital images were proposed in the
literature, see e.g. [30], [31], [33]. The method in [32], based
on [33], provides currently the best way in terms of speed and
quality to order the pixels in digital images. The basic idea is to
minimize a smoothed ℓ1−TV functional by simple fixed point
iterations with the original image as initialization. After a few
iterations the approximate minimizer has entries which differ
(up to very few outliers) pairwise from each other while the
ordering of the original gray values is retained. Let ∇ denote
the discrete gradient operator (horizontal and vertical forward
differences), see [32], ∇T its transposed and let

η(t) :=
t

α+ |t|
and η−1(y) =

αy

1− |y|
, (2)

where α := 0.05 is the default value. Note that η = θ′ where
θ(t) := |t| −α log(1+ |t|

α ), see [32]. Once a strict ordering is
obtained, exact HS is direct. Our HS algorithm reads as:

Algorithm 1 HS using strict ordering [32]

Initialization: u(0) := f , β := 0.1, target histogram ĥ,
iteration number K (default K := 5), c0 := 0.
———————————————————————–
1. For k = 1, . . . ,K compute

u(k) := f − η−1
(
β∇Tη(∇u(k−1))

)
.

2. Obtain the ordering {ij}nj=1 of In from the ascending
sort of the entries of u(K).
3. For k = 0, . . . , L− 1 set ck+1 := ck + hk and

f̂ [ck + 1] = . . . = f̂ [ck+1] = k.

The importance of a meaningful strict ordering for HS is
illustrated in Fig. 2 in the context of HE. The Matlab built-in
function histeq does not involve a strict ordering of f and
the resulting histogram of f̂ is not uniform. This entails some
artifacts shown in (a). Such artifacts are not observed in (b)
obtained using our Algorithm 1. The colors in Fig. 2(a)-(b)
were assigned using Algorithm 2 given in the next subsection.

original (a) histeq histogram of (a) zoom of (a)

0 255

(b) Algorithm 1 histogram of (b) zoom of (b)

0 255

Fig. 2. Illustration of the importance of a meaningful ordering. Top: Original
image and application of Matlab histeq. Bottom: Application of Algorithm 1.

B. Hue and Range Preservation

Range preservation is a mandatory constraint for all digital
imaging devices [4]. A transformed version ŵ of w can be
correctly depicted only if

ŵc[i] ∈ [0, L− 1] ∀ i ∈ In ∀ c ∈ {r, g, b} , (3)

since no more than L digits can be displayed. Otherwise,
the obtained image is modified according to the visualization
device - which is quite an ad-hoc option; see e.g., Fig. 1 right.

The hue of an image w is given by H(w) = 0 if wr =
wg = wb and otherwise by

H(w) :=

{
θ if wb ≤ wg,
360o − θ if wb > wg,

(4)

where

θ := arccos
1
2 ((wr − wg) + (wr − wb))

((wr − wg)2 + (wr − wb)(wg − wb))
1
2

,

see [5]. Note that the denominator of θ can be rewritten as
( 12 ((wr − wg)

2 + (wr − wb)
2 + (wg − wb)

2))
1
2 .

Remark 3. The simplest hue and range preserving method
is to apply the same affine mapping ξ(w) := aw + b to
all pixels, computing a and b so that the least and the
largest pixels in ξ(w) are 0 and L − 1, respectively. Let
wmax := max{wc[i]; c ∈ {r, g, b}, i ∈ In} and let wmin :=
min{wc[i]; c ∈ {r, g, b}, i ∈ In}. Then ξ(w) given by

ξ(w) := (L− 1)
w − wmin

wmax − wmin
(5)

is the desired stretching of w. For example, see Fig. 16, top.

It is easy to see that the hue of the modified image ŵ is
also preserved if the color values of each pixel are modified
by the same affine transform

ŵc[i] = a[i]wc[i] + b[i], c ∈ {r, g, b}, (6)

where the constants a[i] and b[i] have to be chosen for any
i ∈ In. Finding other appropriate hue-preserving transforms is
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an interesting problem. For a[i] = 1, model (6) amounts to an
additive transform, usually called shifting. For b[i] = 0, it is a
linear/multiplicative transform known as scaling. Both scaling
and shifting have been introduced in [34], [35]. In general, the
result of (6) fails the range constraint (3).

The gamut problem was examined by Naik and Murthy in
[18] in the scaling case for a[i] = f̂ [i]/f [i], where f̂ is a target
intensity. If f̂ [i]/f [i] > 1, the range constraint (3) might not
be guaranteed. In such a case the authors propose to avoid the
potential problem by switching from the RGB color space to
the CMY (Cyan = L − 1−R, Magenta = L − 1−G, Yellow
= L−1−B) space and then to transform back into RGB. This
correction step reads for all c ∈ {r, g, b} as

ŵc[i] = L− 1− L− 1− f̂ [i]

L− 1− f [i]
(L− 1− wc[i]) if

f̂ [i]

f [i]
> 1.

This formula is equivalent to ŵc[i] =
L−1−f̂ [i]
L−1−f [i] (wc[i]−f [i])+

f̂ [i], so that the algorithm in [18] can be formulated as follows:

Algorithm 2 Naik and Murthy [18]

1. Compute the intensity f of w and the target intensity f̂ .
2. For i ∈ In compute

(i) ŵc[i] :=
f̂ [i]
f [i] wc[i] if f̂ [i]

f [i] ≤ 1

(ii) ŵc[i] :=
L−1−f̂ [i]
L−1−f [i] (wc[i]− f [i]) + f̂ [i] if f̂ [i]

f [i] > 1

Algorithm 2 is often used to avoid the gamut problem.

III. NEW AFFINE HISTOGRAM SPECIFICATION MODELS

In this section we develop our affine color enhancement
methodology. Given an RGB image w and a target histogram,
we compute its intensity f by (1) and then the target intensity
image f̂ by Algorithm 1. Our next goal is to transform w into
an image ŵ having the following properties:
(a) Intensity fit: f̂ = 1

3 (ŵr + ŵg + ŵb).
(b) Hue preservation: the hue of ŵ and w coincide.
(c) Range preservation: 0 ≤ ŵc ≤ L− 1, c ∈ {r, g, b}.

We adopt the hue preserving affine transform (6). Summing
up over c in (6) shows that property (a) holds if and only if

f̂ [i] = a[i]f [i] + b[i] ⇔ b[i] = f̂ [i]− a[i]f [i]. (7)

Therefore the affine model (6) obeys (a) if and only if

ŵc[i] = a[i](wc[i]− f [i]) + f̂ [i], c ∈ {r, g, b}. (8)

Two particular instances of (6) are the following:
− Scaling: For b[i] = 0, model (8) reads as

ŵc[i] =
f̂ [i]

f [i]
wc[i], c ∈ {r, g, b}. (9)

− Shifting: For a[i] = 1, model (8) becomes

ŵc[i] = wc[i]− f [i] + f̂ [i], c ∈ {r, g, b}.

We have to adapt these models so that they preserve the range.
We will use for all i ∈ In the magnitudes

M [i] := max{wc[i] : c ∈ {r, g, b}},
m[i] := min{wc[i] : c ∈ {r, g, b}}

(10)

and similarly M̂ [i] for the maximum and m̂[i] for the mini-
mum of the RGB components of ŵ[i] given in (8).

Remark 4. By the definitions of f , m and M we have

0 ≤ m[i] ≤ f [i] ≤ M [i] ≤ L− 1.

Further M [i] = f [i], resp., m[i] = f [i] if and only if wr[i] =
wg[i] = wb[i], i.e., w[i] is a gray pixel.

A pixel ŵ[i] has an upper gamut problem if M̂ [i] > L− 1
and a lower gamut problem if m̂[i] < 0. We will treat these
gamut problems in an optimal way in the following sense:
• Assume that we have an upper gamut problem, i.e., M̂ [i] >

L − 1 for some i ∈ In. Then M̂ [i] = ŵk[i] for some k ∈
{r, g, b} and the best correction of this pixels is clearly to
choose a[i] in (8) so that ŵk[i] has the closest value in the
range, i.e. ŵk[i] = L− 1, see, e.g., [4]. Equivalently,

L− 1 = a[i](M [i]− f [i]) + f̂ [i]. (11)

From Remark 4 we know that for non gray-valued pixels
M [i]− f [i] > 0, so that

a[i] =
L− 1− f̂ [i]

M [i]− f [i]
≥ 0.

Thus, for the upper gamut problem, the corrected color
values of pixel i are given by

ŵc[i] =
L− 1− f̂ [i]

M [i]− f [i]
(wc[i]−f [i])+f̂ [i], c ∈ {r, g, b}. (12)

• Assume we have a lower gamut problem m̂[i] < 0 for some
i ∈ In. Let k ∈ {r, g, b} be such that ŵk[i] = m̂[i]. Then the
optimal correction in (8) obeying (c) is to set ŵk[i] = 0, i.e.,

0 = a[i] (m[i]− f [i]) + f̂ [i]. (13)

By Remark 4 f [i]−m[i] > 0 for non gray pixels, so that

a[i] =
f̂ [i]

f [i]−m[i]
≥ 0.

Hence for the lower gamut problem, the corrected color
value at i is given by

ŵc[i] =
f̂ [i]

f [i]−m[i]
(wc[i]−f [i])+ f̂ [i], c ∈ {r, g, b}. (14)

A. Affine Algorithm With Optimal Range Preservation

Our affine model is a convex combination of the shifting
and scaling models for some λ ∈ [0, 1]:

ŵc[i] = λ
f̂ [i]

f [i]
wc[i] + (1− λ) (wc[i]− f [i] + f̂ [i]) (15)

= a[i](wc[i]− f [i]) + f̂ [i],
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where

a[i] := λ
f̂ [i]

f [i]
+ 1− λ (16)

with upper and lower gamut corrections (12) and (14) if
necessary. Clearly, for λ = 1 we have the scaling model and
for λ = 0 the shifting one. Algorithm 2 corresponds to λ = 1
in (15) but the gamut problem is tackled just by thresholding
a[i] at one; this appears to be an important drawback.

The next propositions show that correcting the gamut prob-
lems using (12) or (14) does not yield new gamut problems.

Proposition 1. Assume that pixel i ∈ In in (15) has an upper
gamut problem. Then its correction ŵc[i] in (12) satisfies

0 ≤ ŵc[i] ≤ L− 1, c ∈ {r, g, b}.

Let us mention that a lower gamut problem can obviously
not appear for the multiplicative model (9) i.e. for λ = 1.

Proposition 2. Let λ ∈ [0, 1). Assume that pixel i ∈ In in
(15) has an lower gamut problem. Then its correction ŵc[i]
in (14) satisfies

0 ≤ ŵc[i] ≤ L− 1, c ∈ {r, g, b}.

Using Propositions 1 and 2, the optimal range-preserving
approximation of our affine model (15) can be computed in
one iteration where all pixels in the input image are modified
only once. The algorithm is described below.

Algorithm 3 Optimal Range-Preserving Enhancement
1. Compute the intensity f of w by (1) and the target
intensity f̂ using Algorithm 1 for given ĥ.
2. For i ∈ In compute M [i] and m[i] by (10). If f [i] = 0,
then ŵ[i] := 0. Otherwise compute

a[i] := λ
f̂ [i]

f [i]
+ (1− λ),

Gλ
m[i] := a[i](m[i]− f [i]) + f̂ [i],

Gλ
M [i] := a[i](M [i]− f [i]) + f̂ [i]

and for all c ∈ {r, g, b}:
(i) ŵc[i] := a[i] (wc[i]− f [i]) + f̂ [i]

if Gλ
m[i] ≥ 0 and Gλ

M [i] ≤ L− 1 ,
(ii) ŵc[i] :=

L−1−f̂ [i]
M [i]−f [i] (wc[i]− f [i]) + f̂ [i]

if Gλ
M [i] > L− 1,

(iii) ŵc[i] :=
f̂ [i]

f [i]−m[i] (wc[i]− f [i]) + f̂ [i]

if Gλ
m[i] < 0.

Algorithm 3 and the role of λ is illustrated in Fig. 3. The
images were computed for Gaussian target histogram with
parameters (l, r) = (0.9, 0.1), see (27), Sec. V-A.

B. Multiplicative, Additive Algorithms and Their Combina-
tions

For λ ∈ {0, 1} Algorithm 3 yields two simple range pre-
serving scaling and shifting algorithms called Multiplicative

Fig. 3. Input image couple (top left) and its enhancement by our Algorithm
3 for λ = 0, 1

4
, 1

2
, 3

4
, 1. Here the size of the sets U(λ) in (18) in percent

of all image pixels are 0.70, 1.24, 2.12, 3.13, 4.17 and the sets L(λ) are
empty. All nuances between the very colorful image ŵ× and the grayish
image ŵ+ can be also obtained by their convex combinations in (17).

and Additive algorithm, respectively. Observing that

G0
m[i] = m[i]− f [i] + f̂ [i],

G0
M [i] = M [i]− f [i] + f̂ [i],

G1
M [i] = f̂ [i]

f [i]M [i]

these algorithms read as follows:

Algorithm 4 Multiplicative Color Enhancement

1. Compute the intensity f of w and the target intensity f̂
using Algorithm 1.
2. For i ∈ In compute M [i] by (10). If f [i] = 0, then
ŵ[i] := 0. Otherwise compute

G1
M [i] = f̂ [i]

f [i]M [i]

and for all c ∈ {r, g, b}:

(i) ŵc[i] :=
f̂ [i]
f [i] wc[i]

if G1
M [i] ≤ L− 1,

(ii) ŵc[i] :=
L−1−f̂ [i]
M [i]−f [i] (wc[i]− f [i]) + f̂ [i]

if G1
M [i] > L− 1.

Algorithm 5 Additive Color Enhancement

1. Compute the intensity f of w and the target intensity f̂
using Algorithm 1.
2. For i ∈ In compute M [i] and m[i] by (10). If f [i] = 0,
then ŵ[i] := 0. Otherwise compute
G0

m[i] = m[i]− f [i] + f̂ [i] and G0
M [i] = M [i]− f [i] + f̂ [i]

and for all c ∈ {r, g, b}:
(i) ŵc[i] := wc[i]− f [i] + f̂ [i]

if G0
m[i] ≥ 0 and G0

M [i] ≤ L− 1,
(ii) ŵc[i] :=

L−1−f̂ [i]
M [i]−f [i] (wc[i]− f [i]) + f̂ [i]

if G0
M [i] > L− 1,

(ii) ŵc[i] :=
f̂ [i]

f [i]−m[i] (wc[i]− f [i]) + f̂ [i]

if G0
m[i] < 0.
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Let ŵ× be obtained by the Multiplicative algorithm 4 and
ŵ+ by the Additive algorithm 4. For some λ ∈ [0, 1], consider

w̃c := λŵ×
c + (1− λ)ŵ+

c ∀c ∈ {r, g, b}. (17)

Since w̃c is a convex combination of ŵ× and ŵ+, it obeys
all conditions (a)-(c). We want to know if w̃c can replace the
affine Algorithm 3. In order to answer this question, we set

U(λ) := {i ∈ In : Gλ
M [i] > L− 1},

L(λ) := {i ∈ In : Gλ
m[i] < 0}.

(18)

Here U(λ) corresponds to the upper gamut step (ii) and L(λ)
– to the lower gamut step (iii) in Algorithm 3.

Proposition 3. The sets U(λ) and L(λ) defined in (18) fulfill
L(1) = ∅ and

U(λ1) ⊆ U(λ2), L(λ1) ⊇ L(λ2), 0 ≤ λ1 < λ2 ≤ 1.

In particular, (18) yields

U(1) =
{
i ∈ In : f̂ [i]

f [i]M [i] > L− 1
}
,

U(0) =
{
i ∈ In : f̂ [i]− f [i] +M [i] > L− 1

}
,

L(0) =
{
i ∈ In : f̂ [i]− f [i] +m[i] < 0

}
.

(19)

From Proposition 3 one has U(0) ⊆ U(1). The notation in
(19) enables Algorithms 4 and 5 to be restated as follows:
− Multiplicative algorithm (λ = 1)

(i) ŵc[i] =
f̂ [i]
f [i] (wc[i]− f [i]) + f̂ [i] if i ∈ In \U(1),

(ii) ŵc[i] =
L−1−f̂ [i]
M [i]−f [i] (wc[i]− f [i]) + f̂ [i] if i ∈ U(1).

(20)

− Additive algorithm (λ = 0)

(i) ŵc[i] = (wc[i]− f [i]) + f̂ [i] if i ∈ In \ {U(0) ∪ L(0)},

(ii) ŵc[i] =
L−1−f̂ [i]
M [i]−f [i] (wc[i]− f [i]) + f̂ [i] if i ∈ U(0),

(iii) ŵc[i] =
f̂ [i]

f [i]−m[i] (wc[i]− f [i]) + f̂ [i] if i ∈ L(0).
(21)

The relation between w̃c in (17) and the outcome ŵ of Al-
gorithm 3 for the same λ is described in the next proposition.

Proposition 4. Let ŵ be obtained by Algorithm 3 and w̃
by (17) for the same λ ∈ [0, 1]. Then it holds for i ∈
In \

{
U(1) \U(0) ∪ L(0)

}
that w̃c[i] = ŵc[i].

The sets U(1), U(0) and L(0) are usually small for reason-
able target intensity images f̂ (see Table I) and U(1) \U(0)
contains generally much less pixels than U(1). If we wish
to see the enhancement results ŵ of Algorithm 3 for various
λ ∈ [0, 1], Proposition 4 justifies to compute instead w̃ by (17)
which is much more practical. Thus, by sliding λ in (17), we
can easily move between the two models.

IV. COMPARISON OF THE ALGORITHMS

A. Saturation Properties
Here we analyze the saturation of images enhanced by our

methods and by the Naik-Murthy algorithm. The saturation of
an RGB image w in the HSI model [5] is defined by

S(w) :=

 1− min{wr, wg, wb}
f(w)

if f(w) > 0,

0 if f(w) = 0 .
(22)

Proposition 5. Let S(w[i]) and S(ŵ[i]) denote the saturation
of pixel i in the input image w and the image ŵ obtained by
our Algorithm 3, respectively. If f [i] ∈ {m[i],M [i]} we have
S(ŵ[i]) = 0. Otherwise the obtained saturation is given by

(i) S(ŵ[i]) = S(w[i])
(
λ+ (1− λ) f [i]

f̂ [i]

)
if i ∈ In \ {U(λ) ∪ L(λ)},

(ii) S(ŵ[i]) = S(w[i]) f [i]

f̂ [i]

L−1−f̂ [i]
M [i]−f [i] if i ∈ U(λ),

(iii) S(ŵ[i]) = 1 if i ∈ L(λ).

To clarify the comparison, all magnitudes relevant to Al-
gorithm 2 (Naik and Murthy) hold the superscript •, those
relevant to Algorithms 4 (Multiplicative) and 5 (Additive) have
the superscripts × and +, respectively. In particular, we obtain:
− Algorithm 4 (Multiplicative)

(i) S(ŵ×[i]) = S(w[i]) if i ∈ In \U(1),
(ii) S(ŵ×[i]) = S(w[i]) f [i]

f̂ [i]

L−1−f̂ [i]
M [i]−f [i] if i ∈ U(1).

(23)
− Algorithm 5 (Additive)

(i) S(ŵ+[i]) = S(w[i]) f [i]

f̂ [i]
if i ∈ In \ (U(0) ∪ L(0)),

(ii) S(ŵ+[i]) = S(ŵ×[i]) if i ∈ U(0),

(iii) S(ŵ+[i]) = 1 if i ∈ L(0).
(24)

Let us denote

V :=

{
i ∈ In :

f̂ [i]

f [i]
> 1

}
. (25)

By (19) and Remark 4 we find that if i ∈ U(1) then f̂ [i]
f [i] >

L−1
M [i] ≥ 1 and that if i ∈ L(0), then f̂ [i]

f [i] < 1−m[i]
f [i] < 1. Hence

V ⊇ U(1) and L(0) ⊂ In \ V. (26)

Using the notation in (25), case (i) in Algorithm 2 (Naik-
Murthy) holds for any i ∈ In \ V and step (ii) holds for any
i ∈ V . The saturation of images enhanced by applying the Naik
- Murthy Algorithm 2 is given by the following proposition.

Proposition 6. Let S(w[i]) and S(ŵ •[i]) denote the satura-
tion of pixel i in the input image w and the image ŵ • obtained
by the Naik-Murthy Algorithm 2, respectively. Then

(i) S(ŵ •[i]) = S(w[i]) if i ∈ In \ V,

(ii) S(ŵ •[i]) = S(w[i]) f [i]

f̂ [i]

L−1−f̂ [i]
L−1−f [i] if i ∈ V.

Remark 5. Proposition 3 and (26) show that V ⊇ U(1) ⊇
U(0). Note that all these inclusions are almost always strict;
see Table I. E.g., in (26) we find U(1) = V if and only if
M [i] = L− 1 for all i ∈ V .

Using Propositions 5 and 6, the saturation that Algorithms 4,
5 and 2 provide can be rigorously compared.
• Let i ∈ In \V . Then i ̸∈ U(1) and i ̸∈ U(0). Hence

S(w[i]) = S(ŵ×[i]) = S(ŵ •[i]) ≤ S(ŵ+[i]),
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where the last inequality becomes an equality only for
f̂ [i] = f [i]. Beyond this case, only the Additive algorithms 5
increases the saturation if f̂ [i] < f [i]. But since the output
intensity is decreased, the perceived colorfulness of the pixel
is decreased.

• Let i ∈ V \U(1) = {i ∈ In : 1 < f̂ [i]
f [i] ≤ L−1

M [i]}. Then
i ̸∈ (U(0) ∪ L(0)) and consequently

S(w[i]) = S(ŵ×[i]) > S(ŵ+[i]) > S(ŵ •[i])

and S(ŵ •[i]) decreases faster than S(ŵ+[i]) when f̂ [i]
increases because

S(ŵ •[i])

S(ŵ+[i])
=

M [i]− f [i]

L− 1− f [i]
< 1.

• Let i ∈ U(1). Then

S(w[i]) > S(ŵ×[i]) ≥ S(ŵ •[i]),

where the equality is reached if and only if M [i] = L− 1.
But for most of the pixels one has M [i] < L− 1. Further,

S(w[i]) > S(ŵ+[i]) ≥ S(ŵ •[i]),

where the equality holds if and only if M [i] = L − 1 and
i ∈ U(0). So the inequality is strict for most of the pixels.

In all cases, the images enhanced by the Maik-Murthy al-
gorithm have the weakest saturation. On In \V , where the
target intensity is less than the input intensity, the Additive
algorithm 5 gives a better saturation than the Multiplicative
algorithm 4. On V \U(1) the Multiplicative algorithm 4 gives
rise to a better saturation than the Additive algorithm 5.

B. Qualitative Comparison

We begin with a simple but instructive example where we
apply Algorithms 4, 5 and 2 to two different ”images” each
composed of one dark and one bright pixel, resp.,

wdark = (25, 48, 32), wbright = (80, 172, 108)

having the same hue but different intensities fdark = 35 and
fbright = 120. In Figs. 4 and 5, the input pixels w are shown
on the top row, while the next rows detail the results of the
algorithms w.r.t. the target intensity f̂ ∈ {0, . . . , 255} given
on the x-axis. By (19) we see that the pixel belongs to U(1)
for f̂ > (L−1)f

M =: fU(1), to U(0) for f̂ > (L − 1) − M +

f =: fU(0), to L(0) for f̂ < f − m =: fL(0) and to V for
f̂ > f := fV . The corresponding values for our dark and
bright image are given in the following table:

fU(1) fU(0) fL(0) fV
wdark 185.9 242 10 35
wbright 177.9 203 40 120

Fig. 4 deals with the dark pixel wdark. The Multiplicative
algorithm 4 (i) is applied for f̂ ∈ [0, 185.9]. All color values
are multiplied by f̂/f , where f̂/f > 1 for f̂ > 35 which
yields a clear increase of the distance between all color
channels. The third row shows a pleasant enhancement of the
dark input pixel. By (23) the input saturation is preserved. The
Additive Algorithm 5 (i) is performed for f̂ ∈ [10, 242], where
all color values are increased by the same amount f̂−f . Since

w = (25, 48, 32), f = 35, H(w) = 137.3, S(w) = 0.29

Alg. 4 (×) Alg. 5 (+) Alg. 2 (NM)
(ŵ×

r , ŵ×
g , ŵ×

b ) (ŵ+
r , ŵ+

g , ŵ+
b ) (ŵ •

r , ŵ
•
g , ŵ

•
b )

0 35 186 255
0

132.1

169.1

255

10 35 242
0

20.7

238
255

0 35 255
0

24.29
46.63

255

ŵ× ŵ+ ŵ •

35 255 35 255 35 255

S(ŵ×) S(ŵ+) S(ŵ •)

0 35 186 255
0

0.29

1

10 35 242
0

0.29

1

0 35 255
0

0.29

1

Fig. 4. Enhancement of a quite dark pixel shown in the first row. Second
and third rows: the output intensity f̂ is on the x-axis and the plots depict the
results of Algorithms 4, 5 and 2. The second row specify the value of each
color channel. The third row shows the resulting color ŵ w.r.t. f̂ and the last
row plots the saturation of the output pixel as a function of f̂ .

the input pixel is quite dark, the values wc, c ∈ {r, g, b} and
f are relatively close to each other. For this reason, all color
channels ŵ+

c remain close to each other. On [10, 35) we have
f > f̂ so by (24), S(ŵ+) > S(w) and S(ŵ+) continuously
decreases from 1 to S(w) = 0.29. On [35, 242], S(ŵ+)
decreases from S(w) = 0.29 to 0.04 according to S(w)f/f̂ .
This explains why the colors on the third row remain quite
dull, compared to Algorithm 4. For Algorithm 2, case (i) holds
only for f̂ ∈ [0, 35], where the input saturation is preserved.
If f̂ > 35, step (ii) is performed and S(ŵ •) decreases much
faster than in Algorithm 5. As a consequence, on (35, 255]
the enhanced colors tend to be nearly equal and the obtained
color values are nearly gray, see the third row in the figure.

Fig. 5 shows the performance for the brighter pixel wbright.
The Multiplicative algorithm 4 (i) is applied for f̂ ∈ [0, 177.9].
The input saturation is preserved. The Additive algorithm 5 (i)
holds for f̂ ∈ [40, 203]. On [40, 120] the recovered saturation
decreases from 1 to S(w) = 0.33 and on (120, 203] it slowly
decreases to 0.6S(w). In Algorithm 2, step (i) holds for f̂ ≤
f = 120 where the input saturation is unchanged. Step (ii) is
applied for f̂ ∈ (120, 255] – the interval is not so large as in
Fig. 4 and the saturation decreases much less fast to zero. On
the 3rd row one sees that the colors obtained with all the three
algorithms are quite similar.

Remark 6. From Fig. 4, if a dark pixel has a wrong hue (e.g.
due to compression or printing artifacts, noise, color cast,
etc.), the Multiplicative algorithm 4 can magnify the intensity
of this wrong color. If the input image contains a lot of such
pixels, the Additive algorithm 5 can be a better choice.

Our conclusions drawn in Subsection IV-A and our findings
for one pixel images are confirmed by our tests on the two im-
ages, bungalow (underexposed) and flower (slightly lustreless)
depicted in Fig. 6 and 7. The distribution of f̂ [i]/f [i] for these
two images is very different – the first one ranges on [0, 18]
and the second one on [0, 1.22]. Roughly speaking, bungalow
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w = (80, 172, 108), f = 120, H(w) = 137.3, S(w) = 0.33

Alg. 4 (×) Alg. 5 (+) Alg. 2 (NM)
(ŵ×

r , ŵ×
g , ŵ×

b ) (ŵ+
r , ŵ+

g , ŵ+
b ) (ŵ •

r , ŵ
•
g , ŵ

•
b )

0 120 178 255
0

118

159.3

255

0 40 120 203 255
0

27.3

89.7

162

190

255

0 120 255
0

79.33

107.1

170.6

255

ŵ× ŵ+ ŵ •

120 255 120 255 120 255

S(ŵ×) S(ŵ+) S(ŵ •)

0 120 178 255
0

0.33

1

0 40 120 203 255
0

0.33

1

0 120 255
0

0.33

1

Fig. 5. Enhancement of a quite bright pixel shown in the first row.
Arrangement of images as in Fig. 4.

Input intensity histogram Target histogram

0 221 0 255

Input image Alg. 4 (×)

Alg. 5 (+) Alg. 2 (NM)

Fig. 6. Original image bungalow (660× 1024) and enhanced versions. For
underexposed images the Naik-Murthy algorithm 2 gives nearly gray-valued
results. The Multiplicative algorithm 4 gives the most colorful image. The
Additive algorithm 5 yields color values between those of the multiplicative
and the Naik-Murthy algorithm; it performs better than the last one.

mimics the phenomena explained for Fig. 4 and flower those
relevant to Fig. 5.

V. NUMERICAL RESULTS

Here we demonstrate the performance of our algorithms to
render images where we want to preserve the hue.

A. Target Histograms

Our algorithms depend, up to a certain degree, on the
choice of a target histogram for the intensity channel. Various
target histograms avoiding the drawbacks of HE have been
proposed in the literature. Some of them leave gaps in the
target histogram which can yeild artifacts as in Fig. 2, see
[20], [26], others preserve the input brightness which limits
the enhancement of underexposed images, see,. [23], [28]. The

Input intensity histogram Target histogram

2 255 0 255

Input image Alg. 4 (×)

Alg. 5 (+) Alg. 2 (NM)

Fig. 7. Original image flower (300 × 400) and enhanced versions. All
Algorithms 2, 4 and 5 produce very similar results.

models proposed in [25] combine the input image histogram
and a uniform histogram using various penalties and parame-
ters. Instead, we adopt a simple and intuitive approach.

A common way for histogram based enhancement is to
use the histogram of a well exposed example image; see [4].
Commercials in photography and image processing software
(e.g., Photoshop) mention that well exposed pictures typically
have bell-shaped histograms. Based on these advises we focus
on target histograms whose shapes are Gaussian functions ĥG,
with domain [0, L− 1], fixed so that

l := ĥG(0) ≤ 1, max
x∈[0,L−1]

ĥG(x) = 1 and r := ĥG(L−1) < 1 .

A user has to choose two parameters:
• l ∈ (0, 1] which is the desired portion of dark pixels;
• r ∈ (0, 1] drawing the desired portion of light pixels.

Note that one cannot choose l = r = 1. Given l ∈ (0, 1] and
r ∈ (0, 1], the shape of the target histogram reads as

ĥG(x) = exp

(
− (x− µ)2

σ

)
, x ∈ [0, L− 1], for

µ= −(L−1)(ln l−
√
ln l ln r)

ln r−ln l , σ= (L−1)2(
√
− ln l−

√
− ln r)2

(ln r−ln l)2 .

(27)

Finally the target histogram ĥ is normalized according to the
number n of pixels in the image:

ĥ(x) =
n ĥG(x)∑L−1
x=0 ĥG(x)

∀ x ∈ {0, · · · , L− 1}.

Whenever (27) is used, we shall write ĥG for ĥ.

Remark 7. If the input RGB image w has no pixel values
on an interval [0, L0] for some L0 ≥ 1 one has to perform
the hue-preserving stretching in (5). The target histogram is
chosen based on the stretched histogram and the enhanced
image is computed from the stretched image; see Fig. 16.

With this cautionary remark, we can explain how to choose
good target histograms using (27). The input intensity his-
togram, after stretching if necessary, is denoted by hf .
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Remark 8. The choice of the parameters (l, r) to build ĥG in
(27) depends on the input intensity histogram hf and on the
enhancement task. E.g., (l, r) = (1, 0.99) leads to HE.

(i) Function ĥG can be easily adapted to all images whose
histogram hf is roughly unimodal – see the original
images in Figs. 6, 7, 9, 10, 11, 13, 14 and 16.
If the pixel values are mainly in the middle of the interval
[0, L− 1] and decay at the ends (see Figs. 7, 9 and 16),
a good enhancement can be done with l ' r ∈ [0.1, 0.2].
When hf rapidly decays towards L−1, one should choose
r ∈ (0, 0.1] (see Figs. 6, 10, 11, 13 and 16). The stronger
this decay, the smaller the value of r should be selected
(e.g. in Fig. 11, r = 10−4.)
A too large r should entail artifacts typical for HE.
If most of the pixel have small values (underexposed
images, see Figs. 6, 10, 11 and 13), it is reasonable to
select l ∈ [0.8, 1]. The higher the concentration near 0,
the larger the value of l / 1 should be taken.

(ii) For images with important very dark and very bright
areas, function (27) should not work well. Then a good
option is to take a mixed target histogram

ĥmix :=
1

2
(hf + ĥG) (28)

where the parameters (l, r) for ĥG are selected following
the rules in (i). For example, see Figs. 8, 12 and 15.

This remark is illustrated in Fig. 8.

B. Enhancement Tests

We present some results from a large series of test images
with the goal to improve the visual quality. The enhanced
image should seem natural and an observer should not suspect
that it is a post-processing result.

We compare our Multiplicative algorithm 4 (×) with the
Naik-Murthey algorithm 2 (NM) and the Additive algorithm
5 (+). The HS in these algorithms is done by Algorithm 1.
The histogram of the original intensity image and the target
histograms are depicted beneath the images. The percentage
of pixels having a gamut problem in Alg. 4 (×), Alg. 5 (+)
and Alg. 2 (NM) is contained in Table I. Further we provide
comparison results with

• the fast implementation of ACE by [14] available online
at http://demo.ipol.im/demo/g_ace/, and

• the perceptual color enhancement through variational
methods in [7] and [8].

ACE has one main parameter, the enhancement strength α
whose default value α = 0.5 is often a good choice. For the
two perceptual enhancement methods [7] and [8], the authors
gave us their codes and helped us to tune the parameters.

We present the results for images with different defects. The
parameter values for all methods are given in the captions, as
well as the image credits. The original images in Figs. 6, 7,
8, 10, 11, 13, 12 and 16 are photos taken by the authors who
wanted to improve them. For all these images, we do not have
“ground truth”. For Fig. 17 we shot an underexposed and a
better “example” image which enabled us to compare with the
perceptual histogram-based method in [10].

(a) Original image (b) Alg. 4 (×) ĥG

0 255 0 255

(c) Alg. 4 (×) ĥmix (d) Perceptual [8]

0 255

Fig. 8. (a) Image club (1800×3200). Enhancement using our Multiplicative
algorithm with: (b) ĥG for (l, r) = (1, 0.2); (c) ĥmix by (28) for ĥG as in
(b). (d) Enhancement by the variational method in [8].

(a) Original image (b) Alg. 5 (+) (c) Perceptual [8]

12 247 0 255

Fig. 9. (a) Image islanda (courtesy of P. Greenspun) of size 294×293, and
plot of hf . Enhancement results: (b) Additive algorithm with ĥG for (l, r) =
(0.1, 0.1), see (27); (c) Perceptual variational method [8] with Michelson’s
contrast function and default parameters (courtesy of the authors of [8]).

Fig. 8 illustrates Remark 8. The image club in (a) is under-
exposed and its histogram hf does not obey Remark 8(i). The
result in (b) is obtained with a Gaussian target histogram ĥG

for parameters following (i). In (c) we use a mixed target
histogram ĥmix as proposed in (28). This image better shows
the ambience of the club. The perceptual method [8] in (d)
gives a colder color palette.

Two tests with the image islanda are shown in Fig. 9. The
original in (a) is a rather light image. The Multiplicative,
the Additive and the NM algorithms with Gaussian target
histograms produce quite similar results, which confirms our
discussion in Subsection IV-B. Only the issue of our Additive
algorithm is shown in (b). The perceptual method [8] and the
ACE perform similarly and give a nice, different color content
of the image. We depict the result by [8] in (c).

The photo boy-on-stones in Fig. 10(a) was taken in a very
sunny day. Due to camera corrections, the picture appears
underexposed. Our Multiplicative algorithm gives a realistic
result shown in (b). In particular, observe the reflectance of
the sunlight on the stones. The NM algorithm yields a grayish
result (c). The Additive algorithm (not shown) gives a slightly
better enhancement than the NM algorithm which confirms



10

(a) Original image (b) Alg.4 (×)

0 239 0 255

(c) Alg.2 (NM) (d) Perceptual [7]

(e) Perceptual [8] (f) ACE [14]

Fig. 10. (a) Image boy-on-stones (800× 800) and plot of hf . Enhancement
results: (b) Multiplicative algorithm with ĥG for (l, r) = (0.8, 0.2); (c) Naik-
Murthy algorithm with the same ĥG; (d) Perceptual variational method [7]
with data-fitting parameter γ = 0.2; (e) Perceptual variational method [8]
with a symmetric contrast function and slope parameter 10; (f) ACE, α = 5.

our findings in Subsection IV-B. The perceptional variational
algorithms [7] in (d) and [8] in (e), as well as the ACE in (f),
shift the colors towards blue; observe the stones.

The cathedral photo in Fig. 11(a) is much too dark. The
result of our Multiplicative algorithm in (b) is quite colorful.
The same algorithm for the mixed target histogram (28) gives
in (c) a darker and still colorful image. The results of [7] in (d)
and [8] in (c) have a darker color palette. The NM algorithm
produces a nearly gray value image shown in (f). All results
give a different atmosphere.

The photo taken in Jericoacoara, Fig. 12(a), has very dark
and also some quite clear areas; see hf in (c). By Remark 8(ii),
we use a mixed target histogram ĥmix. The original has lots
of JPEG artifacts so we prefer our Additive algorithm (see
Remark 6). The result in (b) is convincing and the details in
the dark are clarified. For the ACE in (d) we use a small
enhancement, α = 3, in order to limit the false color shift.

The orchid image in Fig. 13(a) has a bad flashlight effect.
This artifact is removed by all tested methods and the back-
ground of the scene is clear. Our Multiplicative algorithm gives

(a) Original image (b) Alg.4(×), ĥG (c) Alg.4(×), ĥmix

0 255 0 255 0 255

(d) Perceptual [7] (e) Perceptual [8] (f) Alg.2 (NM)

Fig. 11. (a) Image cathedral (768×1024) and plot of hf . Enhancement results:
(b) Multiplicative algorithm with ĥG for (l, r) = (1, 10−4); (c) The same
algorithm for ĥmix in Remark 8(ii) with ĥG in (b); (d) Perceptual variational
method [7], default parameters; (e) Perceptual variational method [8] with
Michelson’s contrast function; (f) NM algorithm with ĥG in (b).

(a) Original image (b) Alg. 5 (+), ĥmix

(c) Histograms (d) ACE [14]

0 248

0 255

hf

ĥmix

Fig. 12. (a) Image Jericoacoara (886 × 1181). Enhancement results: (b)
Additive algorithm with mixed target histogram ĥmix for (l, r) = (1, 0.1);
(c) Histograms of the input and the target intensities; (d) ACE for α = 3.

a realistic colorful result, see (b). As in Fig. 6, our Additive
algorithm produces a rather pale image (c) while the issue of
the NM algorithm in (d) is too gray. The images obtained by
[7] in (e) and by the ACE in (f) exhibit color shifts (see the
green leaves on the right and the grass on the bottom left).

The frog image in Fig. 14(a) has an intensity histogram
between (i) and (ii) in Remark 8. Indeed, both recipes gave
similarly good results. The result with ĥG is shown in (b). For
the ACE in (c) we select a small α = 3 limit the color shift.

The ferrari image in Fig. 15(a) has very dark and very bright
areas. Using Remark 8 (ii), we take a mixed target histogram.
Our Multiplicative algorithm gives a realistic image shown in
(b) with vivid colors that fit the typical red of the brand. The
variational methods [7] in (c) and [8] in (d) outperform the
ACE (result not shown).

The image fields in Fig. 16(a) was taken trough an aircraft
porthole. It has no pixels with values in [0, 109]. By Remark
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(a) Original image (b) Alg. 4 (×)

0 255 0 255

(c) Alg.5 (+) (d) Alg. 2 (NM)

(e) Perceptual by [7] (f) ACE [14]

Fig. 13. (a) Image orchid (768×1024) with a bad flashlight effect. Enhance-
ment results: (b) Multiplicative algorithm with ĥG for (l, r) = (1, 0.1); (c)
Additive algorithm for the same target histogram; (d) NM algorithm [18] for
the same target histogram; (e) Perceptual variational method [7] for γ = 0.2;
(f) ACE [14], default parameter.

(a) Original image (b) Alg. 4 (×) (c) ACE [14]

0 255 0 255

Fig. 14. (a) Image frog, 332 × 300 (credits: John D. Willson, USGS
Amphibian Research and Monitoring Initiative). Enhancement results: (b)
Multiplicative algorithm with ĥG for (l, r) = (0.4, 0.1); (c) ACE for α = 3.

3, we use in (b) the global hue-preserving stretching. Its
further enhancements using our Multiplicative and Additive
algorithms give visually the same results, so only the first one
is shown in (c). For the ACE in (d) we take α = 8 in order to
obtain an enhancement strength similar to (c). The JPEG blue
artifacts are stronger in (d) compared to (c).

Fig. 17 (a) and (b) show an underexposed and a better
exposed “example” image of the same scene flag. In [10] the
authors propose an algorithm for the color transfer between
images (usually of different scenes). Using this algorithm we
transferred the colors from the example image (b) to the
underexposed one (a). The result in (c) is close to the example

(a) Original image (b) Alg. 4 (×), ĥmix

0 254 0 255

(c) Perceptual [7] (d) Perceptual [8]

Fig. 15. (a) Image ferrari (courtesy of P. Greenspun) of size 235 × 240
and histogram of its intensity channel. Enhancement results: (b) Multiplicative
algorithm with mixed target histogram for (l, r) = (1, 0.1); (c) Perceptual
variational method [7] with default parameters (courtesy of the authors); (d)
Perceptual variational method [8] with Michelson’s contrast function and
default parameters (courtesy of the authors).

(a) Original image (b) Stretch

110 254 9 241

(c) Alg. 4 (×) (d) ACE [14]

0 255

Fig. 16. (a) Image fields (512 × 512) and histogram of its intensity.
Enhancement results: (b) Global affine stretching (Remark 3) and intensity
histogram; (c) Multiplicative algorithm applied to (b) with Gaussian target
histogram for (l, r) = (0.1, 0.1); (d) ACE for α = 8 applied to (a).
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image ♯U(1) ♯U(0) ♯L(0) ♯V
bungalow ĥG 1.90 0.94 0 98.15
islanda ĥG 0.89 0.85 0.94 2.93
club ĥG 0.98 0.23 0.67 94.61
club ĥmix 0.33 0.15 1.39 92.61
boy-on-stones (ĥG) 4.76 2.40 0.54 94.15
cathedral (ĥG) 1.04 0.00 1.38 95.71
Jericoacoara (ĥmix) 5.98 5.71 0.40 68.26
orchid (ĥG) 0.21 0.10 1.85 87.93
frog (ĥG) 0.09 0.08 6.79 80.04
ferrari (ĥmix) 4.40 4.22 0.30 60.7
fields (ĥG) 4.61 2.99 2.06 89.16

TABLE I
Percentage of pixels requiring an upper or lower gamut correction. For our
Algorithms 4 (×) and 5 (+) the numbers ♯U(1), resp., ♯U(0), ♯L(0) are

very small in all tests; this is not the case for ♯V in the NM algorithm.

(a) Input (b) Example (c) Alg. [10] (d) Alg.4 (×)

0 163 0 213

zoom of (a) zoom of (b) zoom of (c) zoom of (d)

Fig. 17. (a) Input underexposed image flag (1500× 1125) and (b) example
better-exposed flag together with the histograms of their intensities. Enhance-
ment results: (c) the color transfer method [10] and (d) our Multiplicative
algorithm with the example target intensity histogram in (b).

image. We have applied our Multiplicative algorithm to image
(a) using the intensity histogram of (b). The result, shown in
(d), is less dull than the example (b). The third row in Fig. 17
depicts a zoom into the area with the raven (right middle). One
observes that the bird is fused with part of the background in
(c), whereas it is distinguishable in (b) and (d).

VI. CONCLUSIONS AND FUTURE WORK

This work provides the first comprehensive and rigorous
presentation of the wide family of histogram specification
based affine color assignment models. We have proposed a
fast hue and range preserving algorithm. We analyzed the
performances of this algorithm and two of its important
instances as well as the gamut preserving method in [18].

Many open questions have been raised that we want to
answer in our future research. Since our algorithms are fast,
extensions to video should be envisaged. We are aware of
the broad literature on color enhancement taking both global
and local neighborhood of pixels into account see, e.g., [6],
[7], [8], [13], [36]. It will be interesting to incorporate such

information into our framework. Moreover, we want to take
into account other important properties of the human visual
system.

VII. APPENDIX

Proof of Proposition 1: A pixel i ∈ In in (15) has an upper
gamut problem if

λf̂ [i] + (1− λ)f [i]

f [i]
M [i] + (1− λ)(f̂ [i]− f [i]) > L− 1. (29)

The upper bound follows from the choice of ŵc[i], c ∈
{r, g, b} in (12). We focus the lower bound. First we see
that (29) implies f̂ [i] ≥ f [i], since in case f̂ [i] < f [i] we
would get by replacing f̂ [i] by f [i] in the denominator of the
quotient and the second summand in (29) the contradiction
M [i] > L − 1. Since M [i]− f [i] > 0 the lower bound holds
true if and only if

(L− 1− f̂ [i])(wc[i]− f [i]) + f̂ [i](M [i]− f [i]) ≥ 0,

(L− 1− f̂ [i])wc[i]− (L− 1)f [i] + f̂ [i]M [i] ≥ 0

which is clearly fulfilled if

f̂ [i]M [i]− (L− 1)f [i] ≥ 0. (30)

By (29) we have

f̂ [i]M [i]− (L− 1)f [i]

> f̂ [i]M [i]−
(
λf̂ [i] + (1− λ)f [i]

)
(M [i]− f [i])− f̂ [i]f [i]

=
(
f̂ [i]−

(
λf̂ [i] + (1− λ)f [i]

))
(M [i]− f [i]).

By f̂ [i] ≥ f [i] the first factor on the right-hand side is ≥ 0
the second one is > 0. Thus, (30) is satisfied. �
Proof of Proposition 2: A pixel i ∈ In in (15) has a lower
gamut problem if

λf̂ [i] + (1− λ)f [i]

f [i]
m[i] + (1− λ)(f̂ [i]− f [i]) < 0. (31)

The lower bound is clear from the construction of wc[i] in
(14). We show the upper bound. Developing (14) yields

ŵc[i] =
f̂ [i]wc[i]− f̂ [i] f [i] + f̂ [i] f [i]− f̂ [i] m[i]

f [i]−m[i]

=
f̂ [i]

f [i]−m[i]
(wc[i]−m[i]), c ∈ {r, g, b}. (32)

Using (31), one has

f̂ [i]
λm[i] + (1− λ)f [i]

f [i]
+ (1− λ)(m[i]− f [i]) < 0

and hence

f̂ [i] <
(1− λ)f [i]

λm[i] + (1− λ)f [i]
(f [i]−m[i]) < f [i]−m[i].

Thus, since 0 < wc[i]−m[i] < L− 1, we obtain finally

f̂ [i]

f [i]−m[i]
(wc[i]−m[i]) < L− 1.

Proof of Proposition 3: Let 0 ≤ λ1 < λ2 ≤ 1. In the upper
gamut case we always have f̂ [i] > f [i]. Then λ1f̂ [i] + (1 −
λ1)f [i] < λ2f̂ [i] + (1 − λ2)f [i], hence Gλ1

M [i] ≤ Gλ2

M [i] and
U(λ1) ⊆ U(λ2). Similarly, since f̂ [i] < f [i] in the lower
gamut case, λ1f̂ [i] + (1− λ1)f [i] > λ2f̂ [i] + (1− λ2)f [i] so
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that Gλ1
m [i] ≥ Gλ2

M [i] and hence L(λ1) ⊇ L(λ2). �
Proof of Proposition 4: Let i ∈ In \ {U(1) ∪ L(0)}. Then
ŵ×

c [i] is given by (20)(i) and since U(0) ⊆ U(1), the value
ŵ+

c [i] is given by (21)(i). Consequently,

w̃c[i] = λ
f̂ [i]

f [i]
(wc[i]− f [i]) + (1− λ)(wc[i]− f [i]) + f̂ [i] = ŵc[i],

where the last equality follows by U(λ) ⊆ U(1) and
Algorithm 3(i).

Let i ∈ U(0). Then ŵ+
c [i] is given by (21)(ii) and since

U(0) ⊆ U(1), ŵ×
c [i] is given by (20)(ii). We have ŵ+

c [i] =
ŵ×

c [i] which shows by U(0) ⊆ U(λ) that w̃c[i] = ŵ[i]. �
Proof of Proposition 5: By (22) we have S(w[i]) = 1−m[i]

f [i] , or
equivalently, f [i]−m[i] = f [i]S(w[i]). Algorithm 3 computes

ŵc[i] = d[i](wc[i]− f [i]) + f̂ [i], (33)

for

d[i] =


λ f̂ [i]

f [i]
+ (1− λ) if i ∈ In \ {U(λ) ∪ L(λ)},

L−1−f̂ [i]
M [i]−f [i]

if i ∈ U(λ),
f̂ [i]

f [i]S(w[i])
if i ∈ L(λ).

Since d[i] > 0 in all cases, we have

S(ŵ[i]) = 1− 1

f̂ [i]

(
d[i]

(
min{wr[i]wg[i], wb[i]} − f [i]

)
+ f̂ [i]

)
= 1− f [i]

f̂ [i]
d[i]

min{wr[i], wg[i], wb[i]}
f [i]

+
f [i]

f̂ [i]
d[i]− 1

= S(w[i])
f [i]

f̂ [i]
d[i] . (34)

Inserting the above values d[i] into (34) finishes the proof. �

Proof of Proposition 6: The case f̂ [i]
f [i] ≤ 1 follows just as a

special case of Proposition 5(i) for λ = 1. Let f̂ [i] > f [i].
Then case (ii) in Algorithm 2 can be rewritten as (33) for
d[i] := L−1−f̂ [i]

L−1−f [i] . Combining this with (34) we are done. �
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preserving histogram equalization method for color image enhancement
using a bayesian framework”, in Proc. 14th Int.Workshop Syst., Signal
Image Process. (IWSSIP), 2007, pp. 414–417.

[22] D. Menotti, L. Najman, J. Facon, and A. Albuquerque, “Histogram
equalization methods for color image contrast enhancement”, Int. J.
Comput. Sci. & Inform. Technology , vol. 4, no. 5, pp. 243–259, 2012.

[23] N. Kong and H. Ibrahim, “Color image enhancement using brightness
preserving dynamic histogram equalization”, IEEE Trans. Consum.
Electron., vol. 54, no. 4, pp. 1962–1967, 2008.

[24] M. Nikolova, “A fast algorithm for exact histogram specification. Simple
extension to colour images”, Lect. Notes Comput. Sc. 7893, Springer,
2013, pp. 174–185.

[25] T. Arici, S. Dikbas, and Y. Altunbasak, “A histogram modification
framework and its application for image contrast enhancement”, IEEE
Trans. Image Process., vol. 18, no. 9, pp. 1921–1935, 2009.

[26] Q. Wang and R. K. Ward, “Fast image/video contrast enhancement
based on weighted thresholded histogram equalization”, IEEE Trans.
Consum. Electron., vol. 53, no. 2, pp. 757–764, 2007.

[27] D. Sen and P. Sankar, “Automatic exact histogram specification for
contrast enhancement and visual system based quantitative evaluation”,
IEEE Trans. Image Process., vol. 20, no. 5, pp. 1211–1220, 2011.

[28] G. Thomas, “A modified version of van-cittert’s iterative deconvolution
procedure”, IEEE Trans. Acoust. Speech, Signal Process., vol. ASSP-29,
pp. 938–939, 1981.

[29] C.-L. Chien and D.-C. Tseng, “Color image enhancement with exact
HSI color model”, Int. J. of Innovative Computing, Information and
Control, vol. 7, no. 12, pp. 6691–6710, 2011.

[30] D. Coltuc, P. Bolon, and J.-M. Chassery, “Exact histogram specifica-
tion”, IEEE Trans. Image Process., vol. 15, no. 6, pp. 1143–1152, 2006.

[31] Y. Wan and D. Shi, “Joint exact histogram specification and image
enhancement through the wavelet transform”, IEEE Trans. Image
Process., vol. 16, no. 9, pp. 2245–2250, 2007.

[32] M. Nikolova and G. Steidl, “Fast sorting algorithm for exact histogram
specification”, Preprint hal-00870501, 2013.

[33] M. Nikolova, Y.-W. Wen, and R. Chan, “Exact histogram specification
for digital images using a variational approach”, J. Math. Imaging and
Vision, vol. 46, no. 3, pp. 309–325, 2013.



14

[34] C. C. Yang and J. J. Rodriguez, “Efficient luminance and saturation
processing techniques for bypassing color coordinate transformations”,
in Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, 1995, vol. 1,
pp. 667–672.

[35] C. C. Yang and J. J. Rodriguez, “Saturation clipping in the lhs and
yiq color spaces”, in Proc. IS&T/SPIE Int. Symp. Electronic Imaging:
Science & Technology Color Imaging: Device-Independent Color, Color
Hard Copy, and Graphic Arts, 1996, vol. 1.

[36] J.-Y. Kim and L.S. Kim, “An advanced contrast enhancement using
partially overlapped sub-block histogram equalization”, IEEE Trans.
Circ. Sys. Video, vol. 11, no. 4, pp. 475–484, 2001.


